Supplementary material to Learning multifractal structure in large networks

Austin R. Benson, Carlos Riquelme, Sven P. Schmit

Institute for Computational and Mathematical Engineering
Stanford University
\{arbenson, rikel, schmit\} @ stanford.edu
February 21, 2014

1 Proof of Corollary 4.

1.1 Expected number of triangles

Let u, v and w be three random nodes of the graph. We define $E_{u, v, w}$ to be the event that there is a triangle between u, v, w and, similarly, let $E_{u, v, w}^{(i)}$ be the event that there is a triangle between u, v, w in H_{i}, $i=1, \ldots, k$. Then, by Theorem 2 ,

$$
\begin{equation*}
\mathbb{P}\left(E_{u, v, w}\right)=\prod_{i=1}^{k} \mathbb{P}\left(E_{u, v, w}^{(i)}\right)=\mathbb{P}\left(E_{u, v, w}^{(1)}\right)^{k} \tag{1}
\end{equation*}
$$

Now, we compute the probability of a triangle happening between three random nodes according to \mathcal{W}_{1} :

$$
\begin{aligned}
\mathbb{P}\left(E_{u, v, w}^{(1)}\right) & =\mathbb{P}((u, v),(u, w),(v, w) \in E) \\
& =\sum_{i, j, t \in \mathcal{C}} \mathbb{P}\left((u, v),(u, w),(v, w) \in E \mid c_{1}^{u}=i, c_{1}^{v}=j, c_{1}^{w}=t\right) \mathbb{P}\left(c_{1}^{u}=i, c_{1}^{v}=j, c_{1}^{w}=t\right) \\
& =\sum_{i, j, t \in \mathcal{C}} \mathbb{P}\left((u, v),(u, w),(v, w) \in E \mid c_{1}^{u}=i, c_{1}^{v}=j, c_{1}^{w}=t\right) \mathbb{P}\left(c_{1}^{u}=i\right) \mathbb{P}\left(c_{1}^{v}=j\right) \mathbb{P}\left(c_{1}^{w}=t\right) \\
& =\sum_{i, j, t \in \mathcal{C}} \mathbb{P}\left((u, v) \in E \mid c_{1}^{u}=i, c_{1}^{v}=j\right) \mathbb{P}\left((u, w) \in E \mid c_{1}^{u}=i, c_{1}^{w}=t\right) \mathbb{P}\left((v, w) \in E \mid c_{1}^{v}=j, c_{1}^{w}=t\right) l_{i} l_{j} l_{t} \\
& =\sum_{i, j, t \in \mathcal{C}} p_{i j} p_{i t} p_{j t} l_{i} l_{j} l_{t}=: s_{3} .
\end{aligned}
$$

By (1), we conclude that

$$
\begin{equation*}
\mathbb{P}\left(E_{u, v, w}\right)=s_{3}^{k} \tag{2}
\end{equation*}
$$

We can now compute the expected number of triangles C_{3} :

$$
\begin{equation*}
\mathbb{E}\left[C_{3}\right]=\sum_{\substack{S \subset V \\|S|=3}} \mathbb{1}\left(E_{S}\right)=\binom{n}{3} \mathbb{P}\left(E_{u, v, w}\right)=\binom{n}{3} s_{3}^{k} \tag{3}
\end{equation*}
$$

1.2 Expected number of t-cliques

We can generalize the proof for the expected number of triangles to the expected number of t-cliques. Consider t random nodes $S=\left\{u_{1}, \ldots, u_{t}\right\}$ and let E_{S} be the event that they form a t-clique. Furthermore, let $E_{S}^{(i)}$ be the event that they form a t-clique in $H_{i}, i=1, \ldots, k$. Then by Theorem 2 ,

$$
\mathbb{P}\left(E_{S}\right)=\prod_{i=1}^{k} \mathbb{P}\left(E_{S}^{(i)}\right)=\mathbb{P}\left(E_{S}^{(1)}\right)^{k}
$$

Also, it follows that

$$
\mathbb{P}\left(E_{S}^{(1)}\right)=\sum_{i_{1}, \ldots, i_{t} \in \mathcal{C}}\left(\prod_{\substack{j, q \in[t] \\ j \neq q}} p_{i_{j} i_{q}}\right) l_{i_{1}} l_{i_{2}} \cdots l_{i_{t}}:=s_{t}
$$

Finally, let C_{t} be the expected number of t-cliques in G. We conclude that

$$
\begin{equation*}
\mathbb{E}\left[C_{t}\right]=\binom{n}{t} s_{t}^{k} \tag{4}
\end{equation*}
$$

1.3 Expected number of wedges

Let u, v, w be three distinct nodes of G. We define A to be the event that there is a wedge centered at u in G, that is, $A=\{(u, v),(u, w) \in E(G)\}$. Similarly, as in previous sections, we define $A^{(i)}$ to be the event restricted to H_{i}. By Theorem 2,

$$
\mathbb{P}(A)=\prod_{i=1}^{k} \mathbb{P}\left(A^{(i)}\right)=\mathbb{P}\left(A^{(1)}\right)^{k}
$$

Now, by considering only H_{1},

$$
\begin{aligned}
\mathbb{P}\left(A^{(1)}\right)=\mathbb{P}((u, v),(u, w) \in E) & =\sum_{i, j, t \in \mathcal{C}} \mathbb{P}\left((u, v),(u, w) \in E \mid c_{1}^{u}=i, c_{1}^{v}=j, c_{1}^{w}=t\right) \mathbb{P}\left(c_{1}^{u}=i, c_{1}^{v}=j, c_{1}^{w}=t\right) \\
& =\sum_{i, j, t \in \mathcal{C}} \mathbb{P}\left((u, v) \in E \mid c_{1}^{u}=i, c_{1}^{v}=j\right) \mathbb{P}\left((u, w) \in E \mid c_{1}^{u}=i, c_{1}^{w}=t\right) l_{i} l_{j} l_{t} \\
& =\sum_{i, j, t \in \mathcal{C}} p_{i j} p_{i t} l_{i} l_{j} l_{t}=: \omega
\end{aligned}
$$

It follows that the expected number of wedges S_{2} in G is given by

$$
\begin{equation*}
\mathbb{E}\left[S_{2}\right]=n\binom{n-1}{2} \omega^{k} \tag{5}
\end{equation*}
$$

1.4 Variance of the number of edges

Let $X_{i j}$ be the indicator random variable of the event $\left(v_{i}, v_{j}\right) \in E$ for $i \neq j$. We also define $X=\sum_{i<j} X_{i j}$, the total number of edges. We compute the second moment of X as follows:

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(\sum_{i<j} X_{i j}\right)\left(\sum_{i<j} X_{i j}\right)\right] \\
& =\mathbb{E}\left[\sum_{i<j} X_{i j}^{2}\right]+\mathbb{E}\left[\sum_{i, j \neq k, i<j, k} X_{i j} X_{i k}\right]+\mathbb{E}\left[\sum_{i \neq k, j \neq z, i<j, k<z} X_{i j} X_{k z}\right] \\
& =\mathbb{E}[X]+2 \mathbb{E}\left[S_{2}\right]+\sum_{i \neq k, j \neq z, i<j, k<z}\left[X_{i j}\right] \mathbb{E}\left[X_{k z}\right] \\
& =\mathbb{E}[X]+2 \mathbb{E}\left[S_{2}\right]+\binom{n}{2}\binom{n-2}{2} \mathbb{P}\left(\left(v_{i}, v_{j}\right) \in E\right)^{2} \\
& =\mathbb{E}[X]+2 \mathbb{E}\left[S_{2}\right]+\binom{n}{2}\binom{n-2}{2} s^{2 k} .
\end{aligned}
$$

Hence, we see that

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\mathbb{E}[X]+2 \mathbb{E}\left[S_{2}\right]+\binom{n}{2}\binom{n-2}{2} s^{2 k}-\mathbb{E}[X]^{2} \\
& =\mathbb{E}[X](1-\mathbb{E}[X])+2 n\binom{n-1}{2} \omega^{k}+\binom{n}{2}\binom{n-2}{2} s^{2 k} \\
& =\binom{n}{2} s^{k}\left(1-\binom{n}{2} s^{k}\right)+2 n\binom{n-1}{2} \omega^{k}+\binom{n}{2}\binom{n-2}{2} s^{2 k} .
\end{aligned}
$$

$1.5 d$-stars and degree distribution

A d-star centered at node u is a graph containing $d+1$ vertices whose edges go from u to each of the other d vertices in the graph. For example, a wedge is a 2 -star. We start by noting the following key and simple fact: the number of vertices with degree d in a graph G equals the number of copies of d-stars in G that are not part of any $(d+1)$-star in G. Let us define X_{d} to be the random variable that counts the number of d-stars in G, for any $d \in[n-1]$.
Let $d^{\prime}>d$ and suppose that vertex u has degree d^{\prime}. Then, u will contribute with $\binom{d^{\prime}}{d}$ stars to X_{d}.
We define V_{d} to be the random variable that counts the number of nodes with degree $\geq d$. Similarly, we denote by E_{d} the number of nodes with degree d. We see that

$$
E_{d}=V_{d}-V_{d+1}
$$

which directly implies

$$
\mathbb{E}\left[E_{d}\right]=\mathbb{E}\left[V_{d}\right]-\mathbb{E}\left[V_{d+1}\right]
$$

Our goal is to write V_{d} as a function of X_{d} and X_{d+1}. We see that $E_{n-1}=X_{n-1}$ and

$$
E_{d}=X_{d}-\sum_{i=d+1}^{n}\binom{i}{d} E_{i}
$$

Taking expectations, we conclude that

$$
\mathbb{E}\left[E_{d}\right]=\mathbb{E}\left[X_{d}\right]-\sum_{i=d+1}^{n}\binom{i}{d} \mathbb{E}\left[E_{i}\right]
$$

We can compute the expected number of d-stars in G. Let u_{1}, \ldots, u_{d+1} be $d+1$ distinct nodes, and let S be the event that there is a d-star centered at u_{1} in G. In other words, $S=\left\{\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right), \ldots,\left(u_{1}, u_{d+1}\right) \in\right.$ $E\}$. Let $S^{(i)}$ be the event restricted to H_{i}. By Theorem 2,

$$
\mathbb{P}(S)=\prod_{i=1}^{k} \mathbb{P}\left(S^{(i)}\right)=\mathbb{P}\left(S^{(1)}\right)^{k}
$$

Now, let us compute $\mathbb{P}\left(S^{(1)}\right)$:

$$
\begin{aligned}
\mathbb{P}\left(S_{1}\right) & =\mathbb{P}\left(\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right), \ldots,\left(u_{1}, u_{d+1}\right) \in E\right) \\
& =\sum_{i_{1}, \ldots, i_{d+1} \in \mathcal{C}} \mathbb{P}\left(\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right), \ldots,\left(u_{1}, u_{d+1}\right) \in E \mid c_{1}^{u_{j}}=i_{j} \forall j\right) \mathbb{P}\left(c_{1}^{u_{j}}=i_{j} \forall j\right) \\
& =\sum_{i_{1}, \ldots, i_{d+1} \in \mathcal{C}} \mathbb{P}\left(\left(u_{1}, u_{2}\right) \in E \mid c_{1}^{u_{1}}=i_{1}, c_{1}^{u_{2}}=i_{2}\right) \cdots \mathbb{P}\left(\left(u_{1}, u_{d+1}\right) \in E \mid c_{1}^{u_{1}}=i_{1}, c_{1}^{u_{d+1}}=i_{d+1}\right) \prod_{j=1}^{d+1} l_{i_{j}} \\
& =\sum_{i_{1}, \ldots, i_{d+1} \in \mathcal{C}}\left(\prod_{j=2}^{d+1} p_{i_{1} i_{j}}\right) \prod_{j=1}^{d+1} l_{i_{j}}
\end{aligned}
$$

We can now compute the expected number of d-stars in G :

$$
\begin{aligned}
\mathbb{E}\left[X_{d}\right] & =n\binom{n-1}{d} \mathbb{P}(S)=n\binom{n-1}{d} \mathbb{P}\left(S_{1}\right)^{k} \\
& =n\binom{n-1}{d}\left[\sum_{i_{1}, \ldots, i_{d+1} \in \mathcal{C}}\left(\prod_{j=2}^{d+1} p_{i_{1} i_{j}}\right) \prod_{j=1}^{d+1} l_{i_{j}}\right]^{k}
\end{aligned}
$$

2 Recovered measures for real-world networks

In this section, we provide the recovered measures found by the method of moments algorithm for the real data sets.

2.1 Gnutella

For $m=2, k$ is 16 , and

$$
\mathbf{P}=\left(\begin{array}{ll}
0.9424 & 0.2241 \\
0.2241 & 0.7232
\end{array}\right), \quad \ell=\binom{0.5869}{0.4311}
$$

For $m=3, k$ is 11 , and

$$
\mathbf{P}=\left(\begin{array}{lll}
0.9562 & 0.0873 & 0.2602 \\
0.0873 & 0.6078 & 0.1486 \\
0.2602 & 0.1486 & 0.7090
\end{array}\right), \quad \ell=\left(\begin{array}{c}
0.4249 \\
0.1869 \\
0.3882
\end{array}\right)
$$

2.2 Citation

For $m=2, k$ is 16 , and

$$
\mathbf{P}=\left(\begin{array}{ll}
1.0000 & 0.0567 \\
0.0567 & 0.9202
\end{array}\right), \quad \ell=\binom{0.2219}{0.7781}
$$

For $m=3, k$ is 10 , and

$$
\mathbf{P}=\left(\begin{array}{lll}
0.9999 & 0.7387 & 0.9930 \\
0.7387 & 0.7072 & 0.0062 \\
0.9930 & 0.0062 & 0.9003
\end{array}\right), \quad \ell=\left(\begin{array}{c}
0.0487 \\
0.3794 \\
0.5719
\end{array}\right)
$$

2.3 Facebook

For $m=2, k$ is 12 , and

$$
\mathbf{P}=\left(\begin{array}{ll}
1.0000 & 0.0653 \\
0.0653 & 0.9679
\end{array}\right), \quad \ell=\binom{0.1969}{0.8031}
$$

For $m=3, k$ is 8 , and

$$
\mathbf{P}=\left(\begin{array}{ccc}
1.0 & 0 & 1.0 \\
0 & 0.7204 & 1.0 \\
1.0 & 1.0 & 0.9696
\end{array}\right), \quad \ell=\left(\begin{array}{c}
0.5933 \\
0.3373 \\
0.0694
\end{array}\right)
$$

2.4 Twitter

For $m=2, k$ is 17 , and

$$
\mathbf{P}=\left(\begin{array}{ll}
0.5312 & 0.1047 \\
0.1047 & 0.9358
\end{array}\right), \quad \ell=\binom{0.2194}{0.7806} .
$$

For $m=3, k$ is 11 , and

$$
\mathbf{P}=\left(\begin{array}{ccc}
0.5132 & 1.0000 & 0 \\
1.0000 & 1.0000 & 1.0000 \\
0 & 1.0000 & 0.9311
\end{array}\right), \quad \ell=\left(\begin{array}{c}
0.3648 \\
0.0598 \\
0.5754
\end{array}\right) .
$$

