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Abstract. Fast algorithms for matrix multiplication, namely those that perform asymptotically
fewer scalar operations than the classical algorithm, have been considered primarily of theoretical
interest. Apart from Strassen’s original algorithm, few fast algorithms have been efficiently im-
plemented or used in practical applications. However, there exist many practical alternatives to
Strassen’s algorithm with varying performance and numerical properties. Fast algorithms are known
to be numerically stable, but because their error bounds are slightly weaker than the classical al-
gorithm, they are not used even in cases where they provide a performance benefit. We argue in
this paper that the numerical sacrifice of fast algorithms, particularly for the typical use cases of
practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoret-
ically and empirically. The numerical accuracy of fast matrix multiplication depends on properties
of the algorithm and of the input matrices, and we consider both contributions independently. We
generalize and tighten previous error analyses of fast algorithms and compare their properties. We
discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulat-
ing the algorithms, and reducing input anomalies by various forms of diagonal scaling. Finally, we
benchmark performance and demonstrate our improved numerical accuracy.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1383

1. Introduction. After Strassen’s discovery in 1969 of an algorithm for dense
matrix-matrix multiplication [25] that reduced the computational complexity from
the classical O(N3) (for multiplying two N × N matrices) to O(N log2 7), extensive
effort has been made to understand fast matrix multiplication, based on algorithms
with computational complexity exponent less than 3. From a theoretical perspective,
there remains a gap between the best known lower bound [21] and best known upper
bound [14] on the exponent. From a practical perspective, it is unlikely that the
techniques for obtaining the best upper bounds on the exponent can be translated
into practical algorithms that will execute faster than the classical one for reasonably
sized matrices. In this paper, we are interested in the numerical stability of practical
algorithms that have been demonstrated to outperform the classical algorithm (as
well as Strassen’s in some instances) on modern hardware [3].

Nearly all fast matrix multiplication algorithms are based on recursion, using
a recursive rule that defines a method for multiplying matrices of fixed dimension
M0 × K0 by K0 × N0 M0K0N0 scalar multiplications. In this work, we use the
notation 〈M0,K0, N0〉 for these algorithms. For practical algorithms, these fixed
dimensions need to be very small, typically M0,K0, N0 < 10, as they define the factors
by which the dimensions of subproblems are reduced within the recursion. Many such
algorithms have been recently discovered [3, 24]. Most fast algorithms share a common
bilinear structure and can be compactly represented by three matrices that we denote
by JU,V,WK, following the notation of Bini and Lotti [4]. Many key properties of the
practicality of an algorithm, including its numerical stability, can be derived quickly
from its JU,V,WK representation. We also note that, because recursive subproblems
are again matrix multiplications, different recursive rules can be combined arbitrarily.
Following the terminology of Ballard et al. [2] and Demmel et al. [12], we refer to
algorithms that vary recursive rules across different recursive levels and within each
level as nonuniform, nonstationary algorithms. If an algorithm uses the same rule for
every subproblem in each recursive level but varies the rule across levels, we call it a
uniform, nonstationary algorithm; those defined by only one rule are called stationary
algorithms.

Fast matrix multiplication is known to yield larger numerical errors than those
of the classical algorithm. The forward error guarantee for the classical algorithm is
componentwise: the error bound for each entry in the output matrix depends only
on the dot product between the corresponding row and column of the input matrices.
Fast algorithms perform computations involving other input matrix entries that do
not appear in a given dot product (their contributions eventually cancel out), and
therefore the error bounds for these algorithms depend on more global properties
of the input matrices. Thus, fast algorithms with no modification are known to
exhibit so-called normwise stability [4] (sometimes referred to as Brent stability [23]),
while the classical algorithm exhibits the stronger componentwise stability, which is
unattainable for fast algorithms [23].

Our main goals in this paper are to explore means for improving the theoretical
error bounds of fast matrix multiplication algorithms and to test the improvements
with numerical experiments, focusing particularly on those algorithms that yield per-
formance benefits in practice. For computing C = A ·B, where A is M ×K and B
is K ×N , normwise stability bounds for full recursion take the following form:

‖Ĉ−C‖ ≤ falg(K)‖A‖‖B‖ε+O(ε2),

where ‖ · ‖ is the max-norm, ε is the machine precision, and falg is a polynomial
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1384 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

function that depends on the algorithm [4, 12, 16].1 For example, falg(K) = K2 for the
classical algorithm, with no assumption on the ordering of dot product computations.
We note that falg is independent of the input matrices, and ‖A‖‖B‖ is independent
of the algorithm. In this paper, we explore ways of improving each factor separately.
Our main contributions include

1. generalizing and tightening previous error analysis of stationary fast algo-
rithms to bound falg in terms of the number of recursive steps used and two
principal quantities derived from JU,V,WK;

2. presenting and comparing the stability quantities of recently discovered prac-
tical algorithms;

3. exploring means of improving algorithmic stability through algorithm selec-
tion and nonuniform, nonstationary combination of algorithms;

4. presenting diagonal scaling techniques to improve accuracy for inputs with
entries of widely varying magnitudes; and

5. showing empirical results of the effects of the various improvement techniques
on both error and performance.

The structure of the remainder of the paper is as follows. We describe related
work in section 2 and introduce our notation for fast matrix multiplication algorithms
in section 3. Section 4 presents the error analysis for bounding falg for general fast
algorithms, and section 5 discusses the implications of the bounds on known practical
algorithms. We present diagonal scaling techniques in section 6, showing how to
reduce the contribution of the input matrices to the error bound. Finally, we discuss
our results in section 7 and provide directions for improving implementations of fast
matrix multiplication algorithms.

2. Related work. Bini and Lotti [4] provide the first general error bound for
fast matrix multiplication algorithms, and their analysis provides the basis for our
results. Demmel et al. [12] generalize Bini and Lotti’s results and show that all fast
algorithms are stable. A more complete summary of the numerical stability of fast
algorithms, with a detailed discussion of Strassen’s algorithm along with Winograd’s
variant, appears in Higham’s textbook [16, Chapter 23]. We discuss these previous
works in more detail and compare them to our error bounds in section 4.

Castrapel and Gustafson [8] and D’Alberto [9] discuss means of improving the nu-
merical stability of Strassen’s algorithm (and Winograd’s variant) using the flexibility
of nonuniform, nonstationary algorithms. Castrapel and Gustafson propose general
approaches to such algorithms, and D’Alberto provides a specific improvement in the
case of two or more levels of recursion.

Smirnov [24] describes strategies for discovering practical fast algorithms and
presents several new algorithms, including a rank-23 algorithm for 〈3, 3, 3〉 with the
fewest known nonzeros and an algorithm for 〈6, 3, 3〉 that yields a better exponent than
that of Strassen’s. Similar techniques are used by Benson and Ballard [3], who demon-
strate performance improvements over the classical and Strassen’s algorithms for both
single-threaded and shared-memory multithreaded implementations. Laderman, Pan,
and Sha [20], and later Kaporin [18, 19], considered another form of practical algo-
rithm that can achieve fewer floating point operations than the Strassen–Winograd
variant for certain matrix dimensions. Kaporin demonstrates better numerical sta-
bility than that of Strassen–Winograd and shows comparable performance. However,
because the base case dimensions proposed are relatively large (e.g., 13 or 20), we

1Here and elsewhere, the O(ε2) term hides dependence on dimensions and norms of input
matrices.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1385

suspect that the performance will not be competitive on today’s hardware. Further-
more, because the JU,V,WK representations are not readily available, we do not
consider these types of algorithms in this work.

Dumitrescu [13] proposes a form of diagonal scaling to improve the error bounds
for Strassen’s algorithm. We refer to his approach as outside scaling and discuss it
in more detail in section 6. Higham [16] points out that inside scaling can also affect
the error bound, but he does not propose a technique for improving it. Demmel,
Dumitriu, and Holtz [11] and Ballard et al. [1] state (without proof) improved error
bounds using either inside or outside diagonal scaling.

3. Fast matrix multiplication algorithms. Fast algorithms for matrix mul-
tiplication are those that perform fewer arithmetic operations than the classical al-
gorithm in an asymptotic sense, achieving a computational complexity exponent less
than 3 for the square case. We consider such fast algorithms to be practical if it
has been (or likely can be) demonstrated that they outperform the most efficient im-
plementations of the classical algorithm on current hardware [3]. From a practical
viewpoint, because matrices arising in current applications have limited size, we can
consider a fast algorithm’s recursive rule being applied only a few times. In light of
this viewpoint, we state our algorithms (and error bounds) in terms of the number
of recursive levels rather than the dimension of the base case, where the number of
recursive levels need not be considered a fixed quantity. In the rest of this section, we
state the notation and terminology of the fast algorithms we consider in this paper.

3.1. Base case algorithms. A bilinear noncommutative algorithm that com-
putes a product of an M0 × K0 matrix and a K0 × N0 matrix (C = AB) using
R nonscalar (active) multiplications is determined by an M0K0 × R matrix U, a
K0N0 ×R matrix V, and an M0N0 ×R matrix W such that

(1) ck =

R∑
r=1

wkrmr where mr := sr · tr, sr :=

M0K0∑
i=1

uirai, tr :=

K0N0∑
j=1

vjrbj ,

for k = 1, . . . ,M0N0. Here, the single indices of entries of A and B assume column-
major order, the single indices of entries of C assume row-major order, and (·) sig-
nifies an active multiplication. We denote the dimensions of such an algorithm by
〈M0,K0, N0〉, the rank of the algorithm by R, and the set of coefficients that deter-
mine the algorithm by JU,V,WK.

3.2. Stationary algorithms. Now we consider multiplying an M ×K matrix
A by a K × N matrix B. We will assume that M , K, and N are powers of M0,
K0, and N0; otherwise, we can always pad the matrices with zeros, and the same
analysis will hold. The fast algorithm proceeds recursively by first partitioning A
into M0×K0 submatrices of size (M/M0)× (K/K0) and B into K0×N0 submatrices
of size (K/K0)× (N/N0) and then following (1) by matrix blocks, i.e.,
(2)

Ck =

R∑
r=1

wkrMr where Mr := Sr ·Tr, Sr :=

M0K0∑
i=1

uirAi, Tr :=

K0N0∑
j=1

vjrBj ,

for k = 1, . . . ,M0N0, where (·) signifies a recursive call to the algorithm. Here, we are
using single subscripts on matrices as an index for the column- or row-major ordering
of the matrix blocks. The algorithms in this class of fast matrix multiplication are
called stationary algorithms because they use a fixed base case algorithm at each

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1386 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

recursive step [12]. However, we do not assume that stationary algorithms recurse all
the way to a base case of dimension 1; we assume only that the base case computation
(of whatever dimension) is performed using the classical algorithm. Thus, a stationary
algorithm is defined by the triplet of matrices JU,V,WK along with a number of
recursive levels L used before switching to the classical algorithm.

3.3. Uniform, nonstationary algorithms. In contrast to the stationary al-
gorithms discussed above, uniform, nonstationary algorithms employ a different fast
algorithm, in the sense of (1) and (2), at each recursive level [2]. The fast algorithm is
the same at a given recursive level. Specifically, we will consider uniform, nonstation-
ary algorithms with L steps of recursion, so the algorithm is specified by matrices U[l],

V[l], W[l] of dimensions M
[l]
0 K

[l]
0 ×R[l], K

[l]
0 N

[l]
0 ×R[l], M

[l]
0 N

[l]
0 ×R[l] for l = 1, . . . , L.

Uniform, nonstationary algorithms are of particular interest for maximizing per-
formance. The fastest algorithm for a particular triplet of dimensions M , K, and N
may depend on many factors; the same algorithm may not be optimal for the recur-
sive subproblems of smaller dimensions. Assuming performance is fixed for a given
triplet of dimensions, the flexibility of nonstationary algorithms allows for perfor-
mance optimization over a given set of fast algorithms. However, in parallel and more
heterogeneous settings, better performance may be obtained by the greater generality
of nonuniform, nonstationary algorithms described in the next section.

3.4. Nonuniform, nonstationary algorithms. The final class of matrix mul-
tiplication algorithms we consider contains nonuniform, nonstationary algorithms. In
contrast to the previous case, nonuniform, nonstationary algorithms use different al-
gorithms within a single recursive level as well across recursive levels [2], though we
restrict the dimensions of the partition to be fixed across base case algorithms at a
given recursive level. To define such algorithms, we must specify JU,V,WK for every

node in the recursion tree, a total of 1 + R[1] + R[1]R[2] + · · · +
∏L−1
l=1 R[l] recursive

rules. We use superscript notation [l, r1, r2, . . . , rl−1] to denote a recursive node at
level l, in the top-level subtree r1, in the second level subtree r2, and so on.

We demonstrate in subsection 4.5 that the flexibility of these algorithms allows for
an improvement in the numerical stability of multilevel recursive algorithms. We sus-
pect that they also provide a performance benefit over stationary algorithms, though
this has never been demonstrated empirically.

4. Error analysis. The work of Bini and Lotti [4] provides the basic framework
for the forward error analysis of fast matrix multiplication algorithms. They pro-
vide general bounds for any square, stationary, bilinear algorithm with power-of-two
coefficients (so that there is no error in scalar multiplications), assuming that full
recursion is used (a base case of dimension 1). Demmel et al. [12] extend the work of
Bini and Lotti by (1) accounting for errors induced by the scalar multiplications in
bilinear algorithms, (2) analyzing uniform, nonstationary bilinear fast matrix multi-
plication algorithms (algorithms that use different fast matrix multiplication routines
at different levels of recursion), and (3) analyzing group-theoretic fast matrix mul-
tiplication algorithms. The bounds provided by Demmel et al. also assume the use
of square algorithms and that full recursion is used. Higham [16] provides bounds
for Strassen’s original algorithm as well as Winograd’s variant in terms of the base
case dimension n0, where the recursion switches to the classical algorithm. Higham’s
bounds are also slightly tighter (in the case of Strassen’s and Winograd’s algorithms)
than the general bounds previously mentioned. We note that any matrix multiplica-
tion algorithm satisfying the componentwise error bound must perform at least N3

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1387

arithmetic operations; that is, we cannot get the same componentwise error bounds
even when using just one step of recursion of a fast algorithm [23].

The goal of the error analysis provided in this section is to generalize the previous
work in two main directions and to tighten the analysis particularly in the case when
nonzeros of U, V, and W are not all ±1. First, we will consider rectangular fast
algorithms; that is, instead of considering recursive rules for multiplying two K ×K
matrices, we consider the more general set of rules for multiplying an M ×K matrix
by a K ×N matrix. Second, we will state our general bounds in terms of the number
of levels of recursion used. Motivated by the results of recently discovered practical
algorithms [3, 24], we would like to understand the theoretical error guarantees of an
algorithm in terms of its JU,V,WK representation. The recent performance results
show that rectangular algorithms have practical value (even for multiplying square
matrices) and that, for performance reasons, typically only a small number of recursive
steps is used in practice. Several recently discovered practical algorithms include
fractional power-of-two coefficients (e.g., 1/2, 1/4, 1/8), and we expect that other
currently undiscovered, useful algorithms will include fractional coefficients that are
not powers of two. Therefore, we make no assumptions on the entries of U, V, and W,
and we derive principal quantities that can be tighter than the analogous quantities
in the previous works by Bini and Lotti [4] and Demmel et al. [12], particularly in
the case of fractional coefficients. This sometimes leads to much sharper error bounds
(see Example 4).

Finally, we point out that our representation of nonuniform, nonstationary al-
gorithms is more convenient than previous work. Careful choices of nonuniform,
nonstationary algorithms have been shown to improve the numerical stability over
stationary approaches (see Example 6) [9]. Bini and Lotti’s bounds [4] can be applied
to such algorithms in terms of the global JU,V,WK representation, but the size of
that representation grows quickly with the number of recursive levels. Our represen-
tation (see subsection 3.4) and error bound (see subsection 4.5), given in terms of
the base case rule used at each node in the recursion tree, allow for a more efficient
search of combinations of rules and have led to automatic discovery of more stable
algorithms (see Example 7).

After defining the principal quantities of interest and specifying our model of
computation, the rest of this section provides forward error bounds for each of the
types of fast algorithms defined in section 3. We warn the reader that there are
notational similarities and (sometimes subtle) inconsistencies with previous work as
a result of our tightening of the analysis.

4.1. Principal quantities. Following the approach of Bini and Lotti [4], we
identify two principal quantities associated with a fast algorithm that, along with
the dimensions of the algorithm and the number of levels of recursion, determine its
theoretical error bounds. The two principal quantities can be easily computed from
the JU,V,WK representation, and we define them in terms of the following vectors:

αr :=

M0K0∑
i=1

I(uir 6= 0), βr :=

K0N0∑
j=1

I(vjr 6= 0), γk :=

R∑
r=1

I(wkr 6= 0),(3)

ar :=

M0K0∑
i=1

|uir|, br :=

K0N0∑
j=1

|vjr|(4)

for r = 1, . . . , R and k = 1, . . . ,M0N0, where I is the Boolean-valued indicator func-
tion with value 1 for true and 0 for false. That is, α is the vector of numbers of

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1388 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Table 1
Principal quantities for a variety of fast matrix multiplication algorithms. The rank of the

algorithm (R) drives the asymptotic complexity, and the total number of nonzeros in the U, V, and
W (nnz) affects the constant in the complexity. Likewise, the E parameter drives the asymptotic
behavior of the stability bound, and the Q parameter affects the constant (see Theorem 3). The
stability exponent (stab. exp.) denotes the asymptotic stability of the algorithm assuming square
matrix multiplication (see (12)), which allows for comparison of algorithms with different base case
sizes.

〈M0,K0, N0〉 Ref. M0K0N0 R nnz Q E Stab. exp.

〈2, 2, 2〉 (classical) 8 8 24 4 2 1
〈2, 2, 2〉 [25] 8 7 36 8 12 3.58

〈3, 2, 2〉 [25]* 12 11 48 8 12 3.03

〈2, 3, 2〉 [25]* 12 11 48 9 13 3.03

〈4, 2, 2〉 [25]* 16 14 72 8 12 2.94

〈2, 4, 2〉 [25]* 16 14 72 12 24 2.94
〈3, 2, 3〉 Appendix B 18 15 94 10 20 3.21
〈3, 3, 2〉 Appendix B 18 15 94 11 23 3.21
〈3, 3, 3〉 [24] 27 23 139 15 29 3.07
〈4, 2, 3〉 [3] 24 20 130 14 34 3.38
〈3, 4, 2〉 [3] 24 20 130 14 30 3.38
〈2, 3, 4〉 [3] 24 20 130 14 35 3.38
〈4, 4, 2〉 Appendix C 32 26 257 22 89 3.90
〈4, 2, 4〉 Appendix C 32 26 257 23 92 3.93
〈3, 4, 3〉 [3] 36 29 234 23 100 3.66
〈3, 3, 4〉 [3] 36 29 234 18 71 3.66
〈3, 3, 6〉 [24] 54 40 960 39 428 4.69
〈3, 6, 3〉 [24] 54 40 960 48 728.5 4.69

* These algorithms correspond to straightforward generalizations of Strassen’s
〈2, 2, 2〉 algorithm, using either two copies of the algorithm or one copy of the
algorithm combined with the classical algorithm.

nonzeros in the columns of U, β is the vector of numbers of nonzeros in the columns
of V, γ is the vector of numbers of nonzeros in the rows of W, a is the vector of
column 1-norms of U, and b is the vector of column 1-norms of V. When U and V
have ±1 entries, α = a and β = b.

Definition 1. The prefactor vector q is defined entrywise by

(5) qk = γk + max
r

(αr + βr)I(wkr 6= 0)

for k = 1, . . . ,M0N0, and the prefactor Q is defined as

Q = max
k

qk.

Definition 2. The stability vector e is defined entrywise by

(6) ek =

R∑
r=1

ar · br · |wkr|

for k = 1, . . . ,M0N0, and the stability factor E is defined as

E = max
k

ek.

The principal quantities for several fast algorithms are listed in Table 1.

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1389

Bini and Lotti [4] provide a definition of q for two different summation algo-
rithms: sequential summation and serialized divide-and-conquer (see subsection 4.2).
We choose the looser of these two bounds (sequential summation) for generality and
simpler notation. However, our results are easily converted to the tighter case. Dem-
mel et al. use the serialized divide-and-conquer algorithm in their analysis. Bini and
Lotti’s analysis does not account for scalar (nonactive) multiplication by elements of
U, V, and W, so their E parameter depends only on the nonzero structure, rather
than the magnitude of the elements in these matrices (cf. (4) and Definition 2). Dem-
mel et al. do account for the multiplication by elements of U, V, and W. However,
their E parameter is identical to that of Bini and Lotti, and their bound includes an
additional factor of (‖U‖‖V ‖‖W‖)L, where L is the number of recursive levels and
‖ · ‖ is the max-norm.

4.2. Model of arithmetic and notation. We follow the notation of Demmel
et al. [12]. Let Θ = {θ | |θ| < ε} be the set of all errors bounded by ε (machine
precision), and let ∆ = {1 + θ | θ ∈ Θ}. We assume the standard model of
rounded arithmetic, where the computed value of op(a, b) is op(a, b)(1 + θ) for some
θ ∈ Θ. We use the set operation notation: A + B := {a + b | a ∈ A, b ∈ B},
A−B := {a− b | a ∈ A, b ∈ B}, and A ·B := {a · b | a ∈ A, b ∈ B}.

We define Aj = A ·A · . . . ·A and note that ∆j ⊂ ∆j+1 as 1 ∈ ∆. Furthermore, we
will not distinguish between singleton sets and an element when using this notation,
e.g., op(a, b)(1+θ) ∈ op(a, b)∆. Finally, we will use the standard hat or fl(·) notation

to denote a computed value, e.g., Ĉ or fl(op(a, b)) ∈ op(a, b)∆.
Under this arithmetic, the following fact for summation will be useful in our

analysis:

(7) fl

(
N∑
i=1

fl(ci · ai)

)
∈

(
N∑
i=1

ci · ai

)
∆N ,

where the algorithm for summation is simply to accumulate the terms ai one at a
time in sequential order. By using a serialized divide-and-conquer summation, we can
also achieve

(8) fl

(
N∑
i=1

fl(ci · ai)

)
∈

(
N∑
i=1

ci · ai

)
∆1+dlog2Ne.

For generality, we will assume the more pessimistic bound in (7). Our results can
easily be modified for the error bounds in (8).

We will also use the following property:

(9) fl

(
N∑
i=1

ci∆
aj

)
∈

(
N∑
i=1

ci

)
∆N+maxj aj .

4.3. Forward error analysis of stationary algorithms. The following theo-
rem states the forward error bound for a stationary algorithm in terms of the principal
quantities Q and E defined in subsection 4.1, which can be readily determined from its
JU,V,WK representation. The sources of error are floating point error accumulation
and possible growth in magnitude of intermediate quantities. The floating point error
accumulation depends in part on Q and grows at worst linearly in L. The growth of
intermediate quantities depends on E and grows exponentially in L, which typically
dominates the bound. Table 1 shows the values of these quantities for a variety of
algorithms.

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1390 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Theorem 3. Suppose that C = A · B, where A ∈ RM×K and B ∈ RK×N is
computed by using L recursive steps of the fast matrix multiplication in (2), with the
classical algorithm used to multiply the (M/ML

0 )×(K/KL
0 ) matrices by the (K/KL

0 )×
(N/NL

0 ) matrices at the base cases of the recursion. Then the computed matrix Ĉ
satisfies

‖Ĉ−C‖ ≤
(
K/KL

0 +Q · L
)

(K/KL
0 ) · EL‖A‖‖B‖ε+O(ε2),

where ‖ · ‖ is the max-norm.

Proof. We begin by analyzing how relative errors propagate as we form the S
and T matrices. Let a superscript index in brackets denote a matrix formed at the
specified level of recursion. Following (7), we have the following error at the first
recursive level:

Ŝ
[1]

r ∈
M0K0∑
i=1

uirAi∆
αr , T̂

[1]

r ∈
K0N0∑
j=1

vjrBj∆
βr ,

where α and β are defined in (3).
This error propagates as we recurse. At the lth level of recursion, the inputs to

the fast algorithm are given as sums of matrices Aφ and Bψ, each with a possible
error of ∆a and ∆b, respectively, for some index sets φ and ψ and some integers a
and b. Following (2) and (7), the algorithm simply accumulates an additional factor
of ∆αrl and ∆βrl before the matrices are passed to the subsequent level of recursion.
Thus, at the Lth level of recursion, we have

(10) Ŝ
[L]

r ∈ S[L]
r ∆αr1+···+αrL , T̂

[L]

r ∈ T[L]
r ∆βr1+···+βrL ,

with r = r1 + (r2 − 1)R+ · · ·+ (rL − 1)RL−1. Note that in exact arithmetic,

(11) S[L]
r =

ML
0 K

L
0∑

i=1

ui1r1 · · ·uiLrLAi, T[L]
r =

KL
0 N

L
0∑

j=1

vj1r1 · · · vjLrLBj ,

where i = i1 + (i2− 1)M0K0 + · · ·+ (iL− 1)(M0K0)L−1 and j = i1 + (j2− 1)K0N0 +
· · ·+ (jL − 1)(K0N0)L−1 represent recursive orderings of the subblocks of A and B.

We now use the classical algorithm to multiply the computed S[L] and T[L] ma-
trices at the leaves of the recursion. Because the inner dimension of each leaf-level
matrix multiplication is K/KL

0 , from (7) and (10) we accumulate another factor of

∆K/KL
0 to obtain

M̂
[L]

r ∈ S[L]
r T[L]

r ∆χr+K/K
L
0 ,

where χr = αr1 + βr1 + · · ·+ αrL + βrL for 1 ≤ r ≤ RL.

Next, the computed matrices M[L] are added to form C following (2). At the lth

level of recursion, sums of matrices M
[L]
φ , for appropriate index sets φ and including

accumulated error ∆a for some integers a, are added together to form the intermediate
computed quantities M[l]. In the final step at the top of the recursion tree, we have

Ĉk ∈
R∑
r=1

wkrM̂
[1]

r ∆γk ,

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1391

where γ is as defined in (3). Following (9), if M̂
[1]

r ∈ M[1]
r ∆xr for some integers xr,

then

Ĉk ∈
R∑
r=1

wkrM
[1]
r ∆γk+maxr xr·I(wkr 6=0).

Likewise, a factor of ∆γkl is accumulated at every recursive step, and the con-
tributed error from the M[L] matrices comes from the leaf that is involved in the
summation with maximum error. Leaf matrix M[L]

r is involved in the summation
for Ck if wk1r1 · · ·wkLrL 6= 0, where r = r1 + (r2 − 1)R + · · · (rL − 1)RL−1 and
k = k1 + (k2 − 1)M0N0 + · · ·+ (kL − 1)(M0N0)L−1. Thus, we have

Ĉk ∈
RL∑
r=1

wk1r1 · · ·wk1rLM[L]
r ∆µk+maxr χr·I(wk1r1

···wkLrL
6=0)+K/KL

0 ,

where µk = γk1 + · · ·+ γkL .
Let δk = µk + maxr χr · I(wk1r1 · · ·wkLrL 6= 0) + K/KL

0 . In order to determine
the largest accumulated error, we compute the maximum over all output blocks Ck:

max
k

δk = K/KL
0 + max

k1,...,kL

{
µk + max

r1,...,rL
χr · I(wk1r1 · · ·wkLrL 6= 0)

}
= K/KL

0 + max
k1

{
γk1 + max

r1
(αr1 + βr1)I(wk1r1 6= 0)

}
+ · · ·

+ max
kL

{
γkL + max

rL
(αrL + βrL)I(wkLrL 6= 0)

}
= K/KL

0 + max
k1

{
γk1 + max

r1
(αr1 + βr1)I(wk1r1 6= 0)

}
· L = K/KL

0 +Q · L,

where Q is given in Definition 1.
We now compute the forward error bound for each block of the output matrix.

We have Ek = Ck − Ĉk ∈
∑
r wk1r1 · · ·wk1rLM[L]

r Θδk , which implies (using (11))

|Ek| ≤
RL∑
r=1

∣∣∣wk1r1 · · ·wk1rLS[L]
r T[L]

r

∣∣∣ δkε+O(ε2)

≤
RL∑
r=1

|wk1r1 · · ·wk1rL |
ML

0 K
L
0∑

i=1

|ui1r1 · · ·uiLrL ||Ai|
KL

0 N
L
0∑

j=1

|vj1r1 · · · vjLrL ||Bj |δkε

+O(ε2)

≤
RL∑
r=1

|wk1r1 · · ·wk1rL |
ML

0 K
L
0∑

i=1

|ui1r1 · · ·uiLrL |
KL

0 N
L
0∑

j=1

|vj1r1 · · · vjLrL |

· (K/KL
0 )‖A‖‖B‖δkε+O(ε2).

Let ξk =
∑
r |wk1r1 · · ·wk1rL |

∑
i |ui1r1 · · ·uiLrL |

∑
j |vj1r1 · · · vjLrL |. In order to de-

termine the largest intermediate quantity, we compute the maximum over all output

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1392 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

blocks Ck:

max
k

ξk = max
k1,...,kL

∑
r1,...,rL

|wk1r1 · · ·wkLrL |
∑

i1,...,iL

|ui1r1 · · ·uiLrL |
∑

j1,...,jL

|vj1r1 · · · vjLrL |

=

max
k1

∑
r1

|wk1r1 |
∑
i1

|ui1r1 |
∑
j1

|vj1r1 |


· · ·

max
kL

∑
rL

|wkLrL |
∑
iL

|uiLrL |
∑
jL

|vjLrL |


=

max
k1

∑
r1

|wk1r1 |
∑
i1

|ui1r1 |
∑
j1

|vj1r1 |

L

= EL,

where E is given in Definition 2.
Computing maxk |Ek| by maximizing over δk and ξk separately, we obtain our

result. We note that the two quantities may not achieve their maxima for the same k,
but we ignore the possible looseness, as the overall bound will typically be dominated
by the value of E.

Note that if L = logK0
K (full recursion), the bound in Theorem 3 becomes

‖Ĉ−C‖ ≤ (1 +Q · L) · ElogK0
K‖A‖‖B‖ε+O(ε2),

which is the bound provided by Demmel et al. [12], assuming M0 = K0 = N0,
M = K = N , all nonzeros of U have the same value, all nonzeros of V have the same
value, and all nonzeros of W have the same value. If L = 0 (no recursion), we get the
familiar bound

‖Ĉ−C‖ ≤ K2‖A‖‖B‖ε+O(ε2).

Example 4. Because our definition of E (Definition 2) accounts for the magnitude
of the entries U, V, and W in situ, the bound from Theorem 3 can be tighter than
previous analyses [4, 12] when U, V, or W has entries outside of {−1, 0, 1}. As an
example, we consider a 〈4, 4, 2〉 algorithm, where the U and W matrices have entries
in {−0.5, 0.5} [3] (see Appendix C). For this algorithm, E according to Definition 2
is 89, while E according to previous work is 125.

4.4. Forward error analysis of uniform, nonstationary algorithms. Re-
call that uniform, nonstationary algorithms use a single algorithm at each recursive
level. We denote the prefactor vector, stability vector, and partition dimensions of al-

gorithm JU[l],V[l],W[l]K at level l by q[l], e[l] and M
[l]
0 , K

[l]
0 , and N

[l]
0 . Using analysis

similar to that in subsection 4.3, we get the following stability bound for this class of
algorithms.

Theorem 5. Suppose that C = A · B is computed by a uniform, nonstationary
algorithm with L recursive steps of fast matrix multiplication, with the fast algorithm
JU[l],V[l],W[l]K used at level l and the classical algorithm used to multiply the matrices

at the base case of the recursion. Then the computed matrix Ĉ satisfies

‖Ĉ−C‖ ≤

(
K∏L

l=1K
[l]
0

+

L∑
l=1

Q[l]

)(
K∏L

l=1K
[l]
0

)
·

(
L∏
l=1

E[l]

)
‖A‖‖B‖ε+O(ε2).
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1393

Proof. The proof is similar to the proof of Theorem 3. The largest accumulation
error δ now satisfies

max
k

δk =
K∏L

l=1K
[l]
0

+ max
k1

{
γ
[1]
k1

+ max
r1

(α[1]
r1 + β[1]

r1 )I(w[1]
k1r1
6= 0)

}
+ · · ·

+ max
kL

{
γ
[L]
kL

+ max
rL

(α[L]
rL + β[L]

rL )I(w[L]
kLrL

6= 0)

}
=

K∏L
l=1K

[l]
0

+

L∑
l=1

Q[l],

and the largest intermediate growth quantity ξ satisfies

max
k

ξk

max
k1

R[1]∑
r1=1

|w[1]
k1r1
|
M

[1]
0 K

[1]
0∑

i1=1

|u[1]i1r1 |
K

[1]
0 N

[1]
0∑

j1=1

|v[1]j1r1 |


· · ·

max
kL

R[L]∑
rL=1

|w[L]
kLrL
|
M

[L]
0 K

[L]
0∑

iL=1

|u[L]iLrL
|
K

[L]
0 N

[L]
0∑

jL=1

|v[L]jLrL
|

 =

L∏
l=1

E[l].

4.5. Forward error analysis of nonuniform, nonstationary algorithms.
We now consider nonstationary algorithms, where the algorithm may be nonuniform
at every given recursive level of fast matrix multiplication. That is, at any node in the
recursion tree, we may choose a different fast algorithm. For simplicity, we assume
that at level l in the recursion tree, all algorithms have the same partitioning scheme
and rank (so that the JU[l,r1,...,rl−1],V[l,r1,...,rl−1],W[l,r1,...,rl−1]K representations have
the same dimensions across all values r1, . . . , rl−1) and that after L levels of recursion,
all leaf nodes use the classical algorithm.

In the case of stationary algorithms, one JU,V,WK defines the entire algorithm;

in the case of uniform nonstationary algorithms, L choices of JU[l],V[l],W[l]K define
the entire algorithm; in this case, we have much more flexibility and can choose
1 + R[1] + R[1]R[2] + · · ·+ ΠL−1

l=1 R
[l] different fast algorithms (the number of internal

nodes of the recursion tree). Recall that we use the notation [l, r1, r2, . . . , rl−1] as a
superscript to refer to the algorithm used at level l in the recursion tree, where r1
defines subtree membership at level 1, r2 defines subtree membership at level 2, and
so on, and rl−1 defines the subtree node at the lth level.

Our analysis of these algorithms is fundamentally the same—we bound the ac-
cumulated error (δ) and then bound the number of terms (ξ). However, maximizing
over all output blocks is not as straightforward and cannot be simplified as cleanly
as in the previous cases. In particular, we define the largest accumulation error δ
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1394 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

recursively as maxk δ
[1]
k , where

δ
[1]
k =

K∏L
l=1K

[l]
0

+ γ
[1]
k1

+ max
r1

δ
[2,r1]
k · I(w[1]

k1r1
6= 0),

δ
[2,r1]
k = γ

[2,r1]
k2

+ max
r2

δ
[3,r1,r2]
k · I(w[2,r1]

k2r2
6= 0),

...

δ
[l,r1,...,rl−1]
k = γ

[l,r1,...,rl−1]
kl

+ max
rl

δ
[l+1,r1,...,rl]
k · I(w[l,r1,...,rl−1]

klrl
6= 0),

...

δ
[L,r1,...,rL−1]
k = γ

[L,r1,...,rL−1]
kL

+ max
rL

χr · I(w[L,r1,...,rL−1]
kLrL

6= 0), and

χr = α[1]
r1 + β[1]

r1 + α[2,r1]
r2 + β[2,r1]

r2 + · · ·+ α[L,r1,...,rL−1]
rL + β[L,r1,...,rL−1]

rL .

This expression does not simplify as before. Note that for block k of the output
matrix, node (r1, . . . , rl−1) at level l of the recursion tree accumulates error for the

additions/subtractions required by matrix W[l,r1,...,rl−1] at that node plus the max-
imum accumulated error from any of the combined terms. The expression for χr
reflects the number of additions and subtractions required to produce the factor ma-
trices S[L]

r and T[L]
r at the leaf nodes, and the error accumulated during the classical

matrix multiplications is included in the definition of δ
[1]
k .

Likewise, the largest intermediate growth quantity ξ is maxk ξk, where

ξk =
∑

r1,...,rL

∣∣∣w[1]
k1r1

w
[2,r1]
k2r2

· · ·w[L,r1,...,rL−1]
kLrL

∣∣∣
·
∑

i1,...,iL

∣∣∣u[1]i1r1u[2,r1]i2r2
· · ·u[L,r1,...,rL−1]

iLrL

∣∣∣ · ∑
j1,...,jL

∣∣∣v[1]j1r1v[2,r1]j2r2
· · · v[L,r1,...,rL−1]

jLrL

∣∣∣ ,
which we can simplify to

ξk =
∑
r1

∣∣∣w[1]
k1r1

∣∣∣ a[1]r1 b[1]r1 ·∑
r2

∣∣∣w[2,r1]
k2r2

∣∣∣ a[2,r1]r2 b[2,r1]r2

· · ·
∑
rL

∣∣∣w[L,r1,...,rL−1]
kLrL

∣∣∣ a[L,r1,...,rL−1]
rL b[L,r1,...,rL−1]

rL ,

where a and b vectors are defined as in (4). Note that we cannot simplify further as
in the uniform case.

In subsection 5.2, we use nonuniform, nonstationary algorithms to improve the
numerical stability of fast matrix multiplication algorithms.

5. Algorithm selection. Theorem 3 immediately provides several options for
improving the numerical stability of fast matrix multiplication. First, we can look
for algorithms with a smaller Q and E. Since prior work on finding fast algorithms
focuses on performance, this provides a new dimension for algorithm design. In sub-
section 5.1, we compare several stationary algorithms for the same base case as a first
step in this dimension of algorithm design. We then extend this analysis to nonuni-
form, nonstationary algorithms in subsection 5.2. Second, we can reduce the number
of recursive levels before using standard matrix multiplication However, fewer recur-
sive levels means an asymptotically slower algorithm. We examine this trade-off in
subsection 5.3. Finally, we can also reduce ‖A‖ and ‖B‖ by pre- and postprocessing
the data, and we provide several such strategies in section 6.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1395

5.1. Searching for better stationary algorithms. Typically, the only quan-
tity of interest for finding fast matrix multiplication algorithms is the rank of the
solution, which controls the asymptotic complexity. However, we can also search for
algorithms to minimize the Q and E quantities while maintaining the same rank. This
will improve the numerical stability of the algorithm without sacrificing (asymptotic)
performance. We will also consider the number of nonzeros (nnz) in the solution, i.e.,
the sum of the number of nonzero entries in U, V, and W, as this affects the constant
in the asymptotic complexity and has noticeable impact on empirical performance [3].
Thus, the parameters of interest for these algorithms is a performance-stability 3-tuple
(nnz, Q, E). In general, the number of nonzeros is positively correlated with Q and
E, since these quantities directly depend on the nonzero patterns of U, V, and W
(see (5) and (6)).

We first examined the base case 〈4, 2, 3〉, which has outperformed Strassen’s al-
gorithm in practice [3]. We found 479 algorithms with rank R = 20 using numer-
ical low-rank tensor decomposition search techniques [3]. Of these, there were 208
performance-stability tuples. The smallest nnz, Q, and E quantities over all algo-
rithms were 130, 12, and 32, and the corresponding algorithms had performance-
stability tuples (130, 14, 34), (138, 12, 34), and (134, 13, 32). No algorithm we found
had parameters that achieved more than one of these minima, so we call these three
algorithms semi-optimal. Consequently, there is a theoretical trade-off between per-
formance and stability. We note that although this list of algorithms is not exhaustive,
they are the only publicly available 〈4, 2, 3〉 algorithms.2

We tested the stability of these algorithms by computing the product of samples
of random matrices A ∈ R4096×256 and B ∈ R256×2187. The distributions were aij ,
bij ∼ Uniform(0, 1) and aij , bij ∼ Uniform(−1, 1). In addition to the three semi-
optimal algorithms described above, we also tested an algorithm with a much worse
performance-stability tuple of (156, 26, 132), which we call a suboptimal algorithm.
For each pair of matrices, we ran the four algorithms with number of recursive levels
L = 1, 2, . . . , 6. Our goal here is to compare the errors of different algorithms with
the same base case and varying number of recursive levels—we are not claiming that
any of these algorithms are the best to use for these problem dimensions.

To estimate ‖Ĉ − C‖, we computed C using the classical algorithm in quadru-
ple precision arithmetic. All other computations used double precision arithmetic.
Overall, we computed the errors for 100 random pairs A and B for each distribution.
Figure 1 reports the maximum error over the 100 trials for each algorithm and each
number of recursive levels as well as the upper bound on the error from Theorem 3.
We see the following results:

1. The error bounds are still pessimistic, even with the improved analysis from
Theorem 3. Furthermore, the error bounds for the three semi-optimal 〈4, 2, 3〉
algorithms are quite similar.

2. The true error increases with the number of recursive levels, as predicted by
Theorem 3 and modeled by the error bound.

3. For both distributions, the suboptimal algorithm has larger errors than the
semi-optimal algorithms, as modeled by the error bound.

4. The difference between the semi-optimal algorithms depends on the matrices.
For the Uniform(0, 1) distribution, there is a clear difference in error between
the algorithms. Interestingly, the (134, 13, 32) semi-optimal algorithm has

2All of our algorithms, as well as the software for finding them, are publicly available at https:
//github.com/arbenson/fast-matmul.
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Number of recursive levels (L)
1 2 3 4 5 6

∥Ĉ
−
C
∥

10-15

10-10

10-5

100  Uniform(0, 1)

(130,14,34)
(134,13,32)
(138,12,34)
(156,26,132)
classical

Number of recursive levels (L)
1 2 3 4 5 6

∥Ĉ
−

C
∥

10-15

10-10

10-5

100  Uniform(-1, 1)

(130,14,34)
(134,13,32)
(138,12,34)
(156,26,132)
classical

Fig. 1. Error for four 〈4, 2, 3〉 fast matrix multiplication algorithms with different stability
parameters and the classical algorithm as a function of the number of recursive levels, L. Three al-
gorithms are semi-optimal in the sense that they minimize one of the following quantities: number of
nonzeros, Q, or E. The solid curves are the maximum experimental error over 100 pairs of random
matrices, and the corresponding markers are the upper bounds from Theorem 3. The experimental
error increases with L, as modeled by Theorem 3. The semi-optimal algorithms with minimal nnz,
Q, and E all have similar performance, but the fast algorithm with a worse performance-stability
tuple is noticeably less stable in theory and practice.

larger errors than the (130, 14, 34), even though the former algorithm has
strictly better Q and E parameters. For the Uniform(−1, 1) distribution, the
errors of the semi-optimal algorithms are practically indistinguishable.

We also considered the 〈2, 3, 2〉 base case, which has optimal rank R = 11 [5].
One known algorithm that achieves the optimal rank uses Strassen’s algorithm on a
2 × 2 subblock and classical matrix multiplication on the remaining subblocks. The
base case of the algorithm is small enough so that we could use a SAT solver [10] to
find over 10,000 rank-11 〈2, 3, 2〉 algorithms (ignoring symmetries). We found that the
combination of Strassen’s algorithm with the classical algorithm had a strictly smaller
performance-stability triple than all of the other rank-11 solutions. We conclude that
this algorithm is likely optimal in both a performance and a stability sense for the
class of 〈2, 3, 2〉 algorithms where the scalar multiplications are ±1.

5.2. Searching for better nonuniform, nonstationary algorithms. Sta-
tionary algorithms benefit from their simplicity, but nonuniform, nonstationary
algorithms provide a broader search space for algorithms with better numerical prop-
erties. We provide several examples below.

Example 6. D’Alberto [9] describes a nonuniform, nonstationary approach using
Strassen’s algorithm that obtains a smaller stability factor than that of the original
stationary algorithm (for L ≥ 2). Strassen’s algorithm, with JU,V,WK as given in
Appendix A, has stability vector e =

[
12 4 4 12

]
; two levels of recursion with a

stationary approach yield a two-level stability vector of e ⊗ e with maximum entry
122 = 144. D’Alberto shows that, for L = 2, a stability factor of 96 can be obtained
with a nonuniform approach using one variant of Strassen’s algorithm. One way to
achieve this stability factor is to use the alternative algorithm

JŨ, Ṽ,W̃K =

s
U

([
0 1
1 0

]
⊗
[
1 0
0 1

])
V

([
1 0
0 1

]
⊗
[
0 1
1 0

])
W

{

for nodes [2, 1], [2, 3], and [2, 4] of the recursion tree, while using the original algorithm
at nodes [1], [2, 2], [2, 5], [2, 6], and [2, 7]. Similar improvements can be made based

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1397

on the Strassen–Winograd algorithm, which has a slightly larger stability factor.

A more generic nonuniform approach is described in a patent by Castrapel and
Gustafson [8]. They consider eight variants of the Strassen–Winograd algorithm,
defined by

s([
0 1
1 0

]x
⊗
[
0 1
1 0

]y)
U

([
0 1
1 0

]z
⊗
[
0 1
1 0

]x)
V

([
0 1
1 0

]y
⊗
[
0 1
1 0

]z)
W

{
,

with x, y, z ∈ {1, 2}. The correctness of these variants can be derived from the work of
Johnson and McLoughlin [17, equation (6)]. Castrapel and Gustafson suggest using
random, round-robin, or matrix-dependent selections of algorithms to more evenly
distribute the error, but they do not prove that any particular techniques will reduce
the stability factor.

Example 7. We can improve the two-level stability factor for the 〈3, 2, 3〉 case in
a similar manner. The smallest stability factor we have discovered for this case is
E = 20, given by the JU,V,WK in Appendix B, which has stability vector

e =
[
20 20 2 12 4 20 4 12 20

]
.

Compared to a uniform two-level stability factor of 202 = 400, we can achieve a
stability factor of 352 using 3 variants of the algorithm. We use the original algorithm
at nodes [1], [2, 2], [2, 6], [2, 8], [2, 14], and [2, 15], the variant

u

v

I2 ⊗
1 0 0

0 0 1
0 1 0

U

1 0 0
0 0 1
0 1 0

⊗ I2
V

1 0 0
0 0 1
0 1 0

⊗
1 0 0

0 0 1
0 1 0

W

}

~

at nodes [2, 1], [2, 3], [2, 10], and [2, 11], and the variant

u

v

I2 ⊗
0 1 0

0 0 1
1 0 0

U

0 1 0
0 0 1
1 0 0

⊗ I2
V

0 1 0
0 0 1
1 0 0

⊗
0 1 0

0 0 1
1 0 0

W

}

~

at nodes [2, 4], [2, 5], [2, 7], [2, 9], [2, 12], and [2, 13]. We suspect that better two-level
stability factors are achievable.

5.3. Performance and stability trade-offs with a small number of recur-
sive levels. In addition to searching for better algorithms, we may also consider the
effect of the number of recursive levels on the numerical stability. We now consider
the performance and stability of fast matrix multiplication algorithms across several
base cases and several values of L. Table 1 summarizes the best known (to us) stabil-
ity factors (E) for several practical base case dimensions. The columns of the table
represent the relevant performance and stability parameters for each algorithm, all of
which can be computed from the JU,V,WK representation.

The rank R and the number of nonzeros (nnz), along with the number of re-
cursive levels used, determine the number of floating point operations performed by
the stationary version of the algorithm. The rank can be compared to the product
M0K0N0, the rank of the classical algorithm for that base case. The quantities Q
and E are computed using Definitions 1 and 2, respectively; for a given base case we
report the algorithm with the best known E along with that algorithm’s Q. We do
not report both 〈M0,K0, N0〉 and 〈N0,K0,M0〉 because the best algorithms for each

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1
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4

Fig. 2. Distribution of relative instability, (E/K2
0 )L, and percentage of classical flops,

(R/(M0K0N0))L, for the algorithms in Table 1 with L = 1, 2, 3, 4. A larger value on the y-axis
means a less stable algorithm, and a smaller value on the x-axis means a faster algorithm for large
problem sizes. There is a general log-linear trade-off between stability and number of floating point
operations.

have identical nnz, E, and Q parameters, due to transformations corresponding to
transposition of the matrix multiplication.

Although we stress that these algorithms will be used with only a few levels
of recursion, we also report the asymptotic stability exponent (stab. exp.) in order
to compare algorithms across different base case dimensions. If an algorithm for a
square base case 〈N0, N0, N0〉 is used on square matrices of dimension N down to
subproblems of constant dimension, the bound of Theorem 3 can be simplified to

(12) ‖Ĉ−C‖ ≤ c ·N logN0
E logN‖A‖‖B‖ε+O(ε2),

where c is a constant that depends in part on Q. In this case, the stability exponent
is logN0

E. We note that the first two rows of Table 1 match the results of Bini
and Lotti [4, Table 2]. The most stable rank-23 〈3, 3, 3〉 algorithm of which we are
aware is a cyclic rotation of the one given by Smirnov [24]. In the case of rectangular
base cases 〈M0,K0, N0〉, we assume a uniform, nonstationary algorithm based on
cyclic use of algorithms for 〈M0,K0, N0〉, 〈N0,M0,K0〉, and 〈K0, N0,M0〉, where the
three recursive rules are transformations of each other, either by cyclic rotations or
transposition (for more details, see Appendices B and C).

Figure 2 shows the distribution of relative instability and percentage of classical
flops for the algorithms in Table 1 for L = 1, 2, 3, 4. We measure both terms asymp-
totically. Ignoring the quadratic cost of additions, the percentage of classical flops is
given by (R/(M0K0N0))L. For large matrix dimension and L small, we can ignore
Q by Theorem 3, and we define the relative instability to be (E/K2

0 )L, which is the
factor by which the error bound exceeds that of the classical algorithm. In general,
most algorithms follow a narrow log-linear trade-off between these two parameters.
However, there is still room to select algorithms for a fixed number of recursion levels.
For example, with L = 1, the 〈3, 3, 3〉 algorithm has roughly the same stability and

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
Energy

D
ow

nl
oa

de
d 

10
/0

5/
16

 to
 1

71
.6

7.
21

6.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1399

does fewer floating point operations than Strassen’s algorithm.

6. Scaling. We now turn our attention to strategies for pre- and postprocessing
matrices in order to improve numerical stability. The error bounds from section 4 can
be summarized by the following elementwise absolute error bound:

(13) |cij − ĉij | ≤ falg(K)‖A‖‖B‖ε+O(ε2).

Recall that falg is the (at worst) polynomial function of the inner dimension that
depends on the particular algorithm used. Unfortunately, these bounds can often be
quite large when |cij | is small relative to ‖A‖‖B‖. The purpose of this section is to
address the contribution of ‖A‖ and ‖B‖ to the error bound, ignoring the particular
fast algorithm that is used. Thus, for the remainder of this section, we will ignore
falg and consider it a fixed quantity, so that falg(K)ε = O(ε), and we will focus on
relative error.

The following example shows that the relative error from fast matrix multiplica-
tion computations can be large. We note that for the purposes of this example and
subsequent examples throughout the paper, we assume that floating point operations
incur an ε relative error even if the operands happen to be powers of two or if we are
subtracting identical values. This assumption does not limit the generality of our ex-
amples; instead, we have chosen the matrix entries to make the examples as simple as
possible. One could apply small independent relative perturbations on matrix entries
for the examples to work in standard floating point arithmetic.

Example 8. Consider the matrices

(14) A =

[
1 1
1 1

]
, B =

[
z 1
z 1

]
, C = A ·B =

[
2z 2
2z 2

]
for small z > 0. By (13), we have the following relative error bound:

(15)
|c11 − ĉ11|
|c11|

≤ O
(
‖A‖‖B‖ε
|c11|

)
= O (ε/z) ,

which can be quite large for small z. Furthermore, this bound is actually achieved
with Strassen’s algorithm (see Appendix A for the definition of Strassen’s algorithm).
Specifically, Strassen’s algorithm computes

m1 = (a11 + a22)(b11 + b22) = (1 + 1) · (z + 1),

m4 = a22(b21 − b11) = 1 · (z − z),
m5 = (a11 + a12)b22 = (1 + 1) · 1,
m7 = (a12 − a22)(b21 + b22) = (1− 1) · (z + 1),

c11 = m1 +m4 −m5 +m7.

There are terms of size O(1) in computing m1, m4, m5, and m7, so the absolute
error |c11 − ĉ11| is O(ε). Since c11 = z, the relative error is O(ε/z).

We now demonstrate several methods for improving numerical stability issues by
preprocessing A and B and postprocessing C. The idea underlying these methods is
the following straightforward observation:

(16) C = DAD−1A ADD−1BD−1B DB

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1400 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

for any nonsingular scaling matrices DA, DB , and D. By taking advantage of the
associativity of matrix multiplication (in exact arithmetic) and scaling matrices DA,
DB , and D that are easy to apply, we can improve the normwise bound in Theorem 3
without significantly affecting the performance of the algorithm.

For the algorithms and analysis in this section, we will consider diagonal scaling
matrices with positive diagonal entries. In order to simplify the analysis, we will as-
sume that there is no numerical error in applying or computing the scaling matrices.
This could be achieved, for example, by rounding the scaling matrix entries to the
nearest power of two. Regardless, the error introduced by the fast matrix multipli-
cation algorithm has the larger impact on the stability, and the scaling matrices can
curb numerical inaccuracies.

6.1. Outside scaling. In light of (16), Dumitrescu proposed the following out-
side scaling matrices [13]:

DA = diag

(
max
j
|aij |

)
, DB = diag

(
max
i
|bij |

)
.

The resulting procedure is Algorithm 1.

Algorithm 1. Outside scaling for fast matrix multiplication.

Require: matrices A and B
Ensure: C = A ·B

1: DA ← diag(maxj |aij |)
2: A′ ← D−1A A
3: DB ← diag(maxi |bij |)
4: B′ ← BD−1B
5: C′ ← A ·B with fast matrix multiplication.
6: C← DAC′DB

Clearly, the algorithm correctly computes C = A·B in exact arithmetic, provided
there are no all-zero rows in A or all-zero columns in B. Importantly, the normwise
bound in Theorem 3 applies to the scaled matrices A′ and B′. In particular, we get
the following improved bound [13].

Proposition 9. Using Algorithm 1,

|cij − ĉij | ≤ O(ε)‖ai,:‖‖b:,j‖.

Proof. Outside scaling ensures that ‖A′‖ = ‖B′‖ = 1, so by (13), ‖C′ − Ĉ
′
‖ ≤

O(ε). Since C′ − Ĉ
′

= DA(Ĉ −C)DB , the result follows from the fact that the ith
diagonal entry of DA is ‖ai,:‖ and jth diagonal entry of DB is ‖b:,j‖.

For the matrices in Example 8, the bound from Proposition 9 improves upon (15):

|c11 − ĉ11|
|c11|

≤ O
(
‖a1,:‖‖b:,1‖ε
|c11|

)
= O (ε) .

This indeed improves the numerical stability of Strassen’s algorithm. For the
matrices in (14), the outside scaling is

A′ ←
[
1 1
1 1

]
, B′ ←

[
1 1
1 1

]
, C′ = A′ ·B′ =

[
2 2
2 2

]
,

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
Energy

D
ow

nl
oa

de
d 

10
/0

5/
16

 to
 1

71
.6

7.
21

6.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1401

and when computing C′ with Strassen’s algorithm,

m1 = (a′11 + a′22)(b′11 + b′22) = (1 + 1) · (1 + 1),

m4 = a′22(b′21 − b′11) = 1 · (1− 1),

m5 = (a′11 + a′12)b′22 = (1 + 1) · 1,
m7 = (a′12 − a′22)(b′21 + b′22) = (1− 1) · (1 + 1),

c′11 = m1 +m4 −m5 +m7.

Now, all subterms are on the order of unity, so the relative error in computing
c′11 is O(ε).

6.2. Inside scaling. There are pairs of matrices in which outside scaling is not
sufficient for numerical stability.

Example 10. Consider the matrices

(17) A =

[
1 z
1 z

]
, B =

[
z z
1 1

]
, C = A ·B =

[
2z 2z
2z 2z

]
for small z > 0. Using outside scaling on these matrices does nothing since DA =
DB = I. However, using a fast algorithm can still have severe numerical stability
issues. Computing c12 with Strassen’s algorithm uses the following computations:

m3 = a11(b12 − b22) = 1 · (z − 1),

m5 = (a11 + a12)b22 = (1 + z) · 1,
c12 = m3 +m5.

The computation of m3 and m5 has terms of unit size, so |c12 − ĉ12| is O(ε) and the
relative error is O(ε/z). This is reflected in the bound from (13),

‖A‖‖B‖/|c12| = 1/(2z).

We now propose a technique called inside scaling based on the following matrix:

(18) D = diag

(√
maxj |bkj |
maxi |aik|

)
.

The resulting procedure is in Algorithm 2. The idea is to scale the columns of A and
the corresponding rows of B to have the same norm. In general, we get an improved
error bound, as detailed in Proposition 11. We note that there exist several references
to inside scaling [1, 11, 16, 22], though to the best of our knowledge this is the first
explicit statement of the diagonal values in (18). A crude inside scaling method was
proposed earlier by Brent [7], where the inside scaling matrix is D =

√
‖B‖/‖A‖I.

Proposition 11. Using Algorithm 2,

‖Ĉ−C‖ ≤ O(ε) max
i,k,j
|aik||bkj |.

Proof. By (13),

‖Ĉ−C‖ ≤ O(ε)‖AD‖‖D−1B‖ = O(ε)

(
max
k
‖a:,k‖dkk

)(
max
l
d−1ll ‖bl,:‖

)
.

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1402 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Algorithm 2. Inside scaling for fast matrix multiplication.

Require: matrices A and B
Ensure: C = A ·B

1: D← diag
(√

maxj |bkj |
maxi |aik|

)
2: A′ ← AD
3: B′ ← D−1B
4: C← A′ ·B′ with fast matrix multiplication.

By the definition of D,

‖a:,k‖dkk = d−1kk ‖bk,:‖ =
√
‖a:,k‖‖bk,:‖,

so the two maxima are attained at the same index. The result then follows from the
fact that ‖a:,k‖‖bk,:‖ = maxi,k,j |aik||bkj |.

For A and B in Example 10, maxi,k,j |aik||bkj | = z, and we get an O(ε) relative
error bound for computing each entry in C. The inside scaling updates to the matrices
in (17) are

D =

[√
z 0

0 1/
√
z

]
, A′ ←

[√
z
√
z√

z
√
z

]
, B′ ←

[√
z
√
z√

z
√
z

]
.

Strassen’s algorithm now computes

m3 = a′11(b′12 − b′22) =
√
z · (
√
z −
√
z),

m5 = (a′11 + a′12)b′22 = (
√
z +
√
z) ·
√
z,

c′12 = m3 +m5.

This time, the computation of m3 and m5 involves terms on the order of z instead of
on the order of unity, and we get an O(ε) relative error in the computation.

6.3. Repeated outside-inside scaling. Next, we consider repeatedly applying
outside and inside scaling in alternating order, as shown in Algorithm 3. This process
can only improve the error bounds, and it eventually converges. Outside and inside
scaling can simply be applied several times, or the user can specify a cheaply computed
stopping criterion that will guarantee a relative distance from the limit point.

We start with our accuracy analysis. In our analysis, we use A(t) and B(t) to
denote the values of A′ and B′, respectively, after t steps of Algorithm 3. We also

use r
(t)
i and s

(t)
j to denote the diagonal elements of DA and DB , respectively, after t

steps. The initial values of these variables correspond to t = 0 in our notation.

Proposition 12. Let t be the number of steps of Algorithm 3 that we complete.
The computed product satisfies

|cij − ĉij | ≤ O(ε) r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ .

Proof. If the last step is an O step, then following the proof of Proposition 9,
‖A(t)‖ = ‖B(t)‖ = 1 and |c′ij − ĉ′ij | ≤ O(ε). If the last step is an I step, then by
Proposition 11,

|c′ij − ĉ′ij | ≤ O(ε) max
i,k,j
|a(t)ik ||b

(t)
kj | ≤ O(ε)‖A(t)‖‖B(t)‖.

The result then follows from the fact that C− Ĉ = DA(C′ − Ĉ
′
)DB .

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
Energy

D
ow

nl
oa

de
d 

10
/0

5/
16

 to
 1

71
.6

7.
21

6.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1403

Algorithm 3. Repeated outside-inside scaling for fast matrix multiplication.

1: A′ ← A, B′ ← B, DA ← I, DB ← I
2: alternate
3: O step
4: D′A ← diag(maxk|a′ik|)
5: DA ← DAD′A
6: A′ ← (D′A)−1A′

7: D′B ← diag(maxk|b′kj |)
8: DB ← D′BDB

9: B′ ← B′(D′B)−1

10: end
11: I step

12: D← diag
(√

maxj |b′kj |
maxi|a′ik|

)
13: A′ ← A′D
14: B′ ← D−1B′

15: end
16: until converged
17: C′ ← A′ ·B′ with fast matrix multiplication.
18: C← DAC′DB

We now state the main result of this section.

Theorem 13. The sequence

r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ for t = 0, 1, . . .

is monotonically nonincreasing and converges linearly.

Proof. See Appendix D.

This result implies that we can safely iteratively apply inside and outside scaling
to improve the error bounds, but this process provides diminishing returns.

Next, we introduce our stopping criterion, which requires the following additional

notation. Whenever step t is an O step, we use r
′(t)
i and s

′(t)
j to denote the diago-

nal elements of the matrices D′A and D′B , respectively, that we compute in step t.

Similarly, if step t is an I step, p
′(t)
k denotes the diagonal elements of D.

The stopping criterion works as follows. We test the intermediate scaling factors

p
′(t)
k , r

′(t)
i , and s

′(t)
j in each iteration starting with the one that immediately follows

the first O step. In the I steps, we test whether all of the p
′(t)
k fall within the interval[

(1 + τ)−
1
4 , (1 + τ)

1
4

]
, and in the O steps, we test whether all of the r

′(t)
i and s

′(t)
j

are greater than the threshold (1 + τ)−1/2. Whenever one of these conditions is true,
Theorem 14 below states that we are within a relative distance τ from the limit, and
so we stop iterating. In practice, we may just specify t steps of scaling a priori, so
as to have a better handle on the overhead of the preprocessing. We explore the
performance overhead of the preprocessing in subsection 6.5.

We now state the theorem that justifies the stopping criterion. As we show in

Appendix D, the sequences r
(t)
i , s

(t)
j , ‖A(t)‖, and ‖B(t)‖ converge. We use a superscript

? to denote their limits, so that

r
(t)
i → r

(?)
i , s

(t)
j → s

(?)
j , ‖A(t)‖ → ‖A(?)‖ , ‖B(t)‖ → ‖B(?)‖ ,

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1404 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

and we let

µ
(t)
ij =

∣∣r(t)i s
(t)
j ‖A

(t)‖‖B(t)‖ − r(?)i s
(?)
j ‖A

(?)‖‖B(?)‖
∣∣∣∣r(?)i s

(?)
j ‖A

(?)‖‖B(?)‖
∣∣

be the relative distance of r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ from the limit. We use t0 to denote the
index of the first O step of the iteration.

Theorem 14. Let τ > 0 be a user-specified tolerance parameter. We have that
for t = t0, t0 + 2, . . . ,

max
i,j

µ
(t+1)
ij ≤ τ if min

k
p
′(t+1)
k ≥ (1 + τ)−

1
4 and max

k
p
′(t+1)
k ≤ (1 + τ)

1
4 ,

and

max
i,j

µ
(t+2)
ij ≤ τ if min

i
r
′(t+2)
i ≥ (1 + τ)−

1
2 and min

j
s
′(t+2)
j ≥ (1 + τ)−

1
2 .

Proof. See Appendix E.

Finally, we note that Algorithm 3 does not specify which form of scaling to apply
first. While the analysis in this section applies to either choice, we note that the limits
of the two sequences are not identical—they depend on which step is applied first.
We conclude this subsection with examples demonstrating that these two choices can
produce significantly different results (in the case of one iteration of Algorithm 3) and
that neither choice is always preferable. Example 15 shows a case where performing
outside followed by inside scaling is more accurate than performing inside followed by
outside scaling; the opposite is true for the case of Example 16.

Example 15. Consider the matrices

A =

[
1 z−1

1 1

]
, B =

[
z 1
z 1

]
, C = A ·B =

[
1 + z 1 + z−1

2z 2

]
for small z > 0. We consider one step of alternating scaling. Performing outside and
then inside scaling computes

(19) A′ ←
[
z 1
1 1

]
, B′ ←

[
1 1
1 1

]
, C′ ←

[
1 + z 1 + z

2 2

]
,

and inside followed by outside scaling computes

(20) A′ ←
[
z1/2 1

1 z1/2

]
, B′ ←

[
z1/2 z1/2

1 1

]
, C′ ←

[
1 + z1/4 1 + z1/4

2 · z1/2 2 · z1/2
]
.

Consider the computation of entry c21 with Strassen’s algorithm:

m2 = (a′21 + a′22)b′11, m4 = a′22(b′21 − b′11), c′21 = m2 +m4.

With A′ and B′ in (19), all subterms are O(1) and c′21 is O(1), whereas for A′ and
B′ in (20), there are O(z1/4) subterms and c′21 is O(z1/2).

From Proposition 12, the absolute error bound for entry c21 = O(z) with no
scaling is O(1/z), with outside and then inside is O(z), and with inside and then
outside is O(1/z1/2). Thus, using only one step of Algorithm 3, the accuracy of
starting with an O step can be much better than that of starting with an I step.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1405

Example 16. Consider the matrices

A =

[
1 z
z z

]
, B =

[
z 1
1 z−1

]
, C = A ·B =

[
2z 2

z + z2 1 + z

]
for small z > 0. We consider one step of alternating scaling. Performing outside and
then inside scaling computes

(21) A′ ←
[
1 z
1 1

]
, B′ ←

[
z 1
z 1

]
, C′ ←

[
z + z2 1 + z

2z 2

]
,

and inside followed by outside scaling computes

(22) A′ ←
[
1 1
z 1

]
, B′ ←

[
1 1
1 1

]
, C′ ←

[
2 2

1 + z 1 + z

]
.

Consider the computation of entry c21 with Strassen’s algorithm:

m2 = (a′21 + a′22)b′11, m4 = a′22(b′21 − b′11), c′21 = m2 +m4.

With A′ and B′ in (21), c′21 is O(z) but there are O(1) subterms, whereas for A′ and
B′ in (22), c′21 and all subterms are O(1). This case illustrates that when using only
one step of Algorithm 3, the accuracy of starting with an I step can be much better
than that of starting with an O step.

6.4. Scaling is not always enough. We now provide a simple example that
shows how Strassen’s algorithm computes a result with large relative error, using any
of the scaling algorithms presented in this section.

Example 17. Consider the matrices

(23) A =

[
1 z
z 1

]
, B =

[
1 z
z 1

]
, C = A ·B =

[
1 + z2 2z

2z 1 + z2

]
for small z > 0. In this case, both outside and inside scaling leave the matrix un-
changed. When computing c12,

m3 = a11(b12 − b22) = 1(z − 1),

m5 = (a11 + a12)b22 = (1 + z)1,

c12 = m3 +m5.

There are subterms on the order of unity, so the relative error is O(1/z).

6.5. Numerical experiments. We tested the scaling algorithms on samples of
random matrices whose entries were not as contrived as those in the prior sections.
We used a sample of A ∈ RN×N and BN×N from the following distributions:

1. aij , bij ∼ Uniform(0, 1)
2. aij ∼ Uniform(0, 1/N2) if j > N/2; otherwise, aij ∼ Uniform(0, 1); bij ∼

Uniform(0, 1/N2) if i < N/2; otherwise, bij ∼ Uniform(0, 1)
3. aij ∼ Uniform(0, N2) if i < N/2 and j > N/2; otherwise, aij ∼ Uniform(0, 1);
bij ∼ Uniform(0, 1/N2) if j < N/2; otherwise, bij ∼ Uniform(0, 1).

Samples from the first distribution are well-behaved for fast matrix multiplication
algorithms. On the other hand, samples from the second and third distributions are
adversarial and model the matrices in Examples 10 and 15, respectively.

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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Fig. 3. Relative error of Strassen’s algorithm as a function of the number of recursive steps,
L, for several scaling techniques. The results in each plot are for matrices A and B sampled from
different probability distributions. Left: Stability is well-behaved, and no scaling is necessary for
small relative errors. Middle: The matrices are adversarial, and inside-outside and 2-times repeated
outside-inside scaling have the smallest relative errors. Right: The matrices are adversarial, and
outside, outside-inside, and 2-times repeated outside-inside scaling have the smallest relative errors.

We sampled 100 pairs of matrices (N = 2000) from each distribution and com-
puted the error of Strassen’s algorithm with L recursive levels, L = 1, 2, . . . , 6. Specif-
ically, the error was the maximum value of maxij |ĉij− cij |/|cij | over the 100 samples,
where C was computed with quadruple precision. Figure 3 plots these errors. For the
first probability distribution, the relative errors are all roughly the same. With the
second distribution, only inside-outside scaling and 2-times repeated outside-inside
scaling compute relatively accurate solutions. In this case, inside and outside-inside
scaling are moderately more accurate than no scaling or outside scaling, but they still
produce relative errors several orders of magnitude larger than the best case. Finally,
for the third distribution, inside scaling and no scaling result in much larger relative
errors, and inside-outside scaling is slightly worse than outside, outside-inside, or 10-
times repeated outside-inside scaling. These experiments demonstrate that with no
prior knowledge of the distribution, repeated outside-inside scaling is the safe choice
for fast matrix multiplication.

Each iteration of outside or inside scaling is O(MK+KN+MN) flops, so scaling
does not affect the asymptotic performance. However, quadratic costs do affect the
practical implementation of fast matrix multiplication [3]. Subsequently, we tested
the performance impact of scaling. We use effective gflops [3, 22] to measure the
performance of multiplying an M ×K matrix by a K ×N matrix:

(24)
2 ·MKN −MN

time in seconds
· 1e-9.

This lets us compare fast matrix multiplication algorithms to the classical algorithm
on a familiar inverse-time scale. All experiments were conducted on a single compute
node on NERSC’s Edison machine. Each node has two 12-core Intel 2.4 GHz Ivy
Bridge processors and 64 GB of memory. Our experiments were single-threaded. We
report the median of five trials for each timing result.

Figure 4 summarizes the performance results for Strassen’s algorithm (L = 1),
with and without two steps of Algorithm 3, for multiplying square matrices of dimen-
sion N . There is a noticeable impact on performance. Strassen’s algorithm without
scaling outperforms the classical algorithm for N ≥ 2500, while scaling pushes this
threshold to N ≥ 3500. As N grows, the performance impact of scaling gets smaller.
This follows from the asymptotic analysis—as N grows, the impact from quadratic
terms shrinks.

7. Discussion. One of the central components of our algorithmic error anal-
ysis is that two data-independent quantities drive the error bounds for fast matrix

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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Dimension (N)
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22

24

26

28
 Performance of N x N X N matrix multiplication

Strassen
Strassen + 2x O-I scaling
Classical

Fig. 4. Performance of Strassen’s algorithm (L = 1), with and without two steps of inside-
outside scaling, and the classical algorithm.

multiplication. First, Q captures the accumulation error from adding matrices. Sec-
ond, E bounds the growth in the magnitude of intermediate terms. Our results in
section 5 show that having a small E is important, but this does not fully characterize
stability in practice. The same result has been observed when comparing Strassen’s
algorithm and the Winograd variant [16]. An encouraging result from our experiments
is that the number of nonzeros in the U, V, and W matrices, which determines the
constant in the computational complexity, is positively correlated with E. In other
words, for a given base case and algorithm rank, by improving performance, we gen-
erally also improve stability. Another lesson from our analysis is that we should not
think of using fast algorithms asymptotically but rather as having a fixed number
of recursive levels. This leads to better performance in practice [3] and also to the
improved error bounds and numerical stability presented in sections 4 and 5. Finally,
because the principal quantities for understanding algorithmic error (E and Q) are in-
dependent of the asymptotic complexity, we have new metrics over which to optimize
when searching for fast matrix multiplication algorithms.

For performance reasons, the best choice of fast algorithm depends on the shape
of the matrices being multiplied [3]. In general, a choice of algorithm can be made at
each recursive level. Subsequently, we believe that uniform nonstationary algorithms
are the right choice in practice for achieving the best performance. Theorem 5 provides
the appropriate error bounds for this case.

The analysis in subsection 4.5 formalizes the error analysis for existing techniques
to improve stability of Strassen’s algorithm and the Winograd variant [8, 9] and also
generalizes the approach for all fast matrix multiplication algorithms. The analysis
provides the formula over which to optimize when considering nonuniform, nonstation-
ary algorithms. However, finding the best algorithm is a combinatorial optimization
problem that grows exponentially in the number of recursive levels. Algorithm design
in this space is an interesting avenue for future research.

Using these algorithmic techniques improves the normwise accuracy of the com-
puted product. However, because the errors are normwise, small elements of the
product can be computed less accurately than warranted by their condition numbers.
By pre- and postprocessing the data, we can improve componentwise accuracy as well.
Specifically, we analyzed a hierarchy of diagonal scaling techniques that reduce the
number of cases where fast matrix multiplication yields relatively inaccurate small
entries in the product. Nevertheless, there are cases that cannot be solved by our
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1408 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

diagonal scaling algorithms (e.g., Example 17). When scaling helps, a few iterations
are sufficient, and this is backed up by Theorem 13.

The asymptotic operation cost of diagonal scaling is proportional to the size of the
matrices, so it is dominated by the cost of current matrix multiplication algorithms. In
our experiments, we found that scaling does incur a noticeable performance penalty for
reasonably sized matrices, but fast matrix multiplication with diagonal scaling still can
outperform the classical algorithm. We note that our diagonal scaling implementation
is not fully optimized; for example, it is possible to overlap inside and outside scaling
and delay updating actual matrix entries, both of which can reduce the memory traffic
overhead.

Appendix A. Strassen’s algorithm. Strassen’s algorithm [25] is a 〈2, 2, 2〉
algorithm specified by the following U, V, and W matrices:

U =


1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1

 ,

V =


1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1

 ,

W =


1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0

 .

Note that the rows of U and V correspond to a column-major ordering of the entries
of the input matrices, and the rows of W correspond to a row-major ordering of the
output matrix, following the convention of previous work [6, 17]. We point out that
this algorithm is cyclic-invariant, so that JU,V,WK = JW,U,VK = JV,W,UK (up
to permutations on the columns of the matrices), which implies that all three rotations
have the same Q and E values.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1409

Appendix B. 〈3, 2, 3〉 fast matrix multiplication algorithm. The following
algorithm for base case 〈3, 2, 3〉 has 94 nonzeros with E = 20 and Q = 10:

U =


0 1 0 0 −1 1 1 0 0 0 −1 0 0 0 −1
0 1 0 0 0 0 0 −1 0 −1 0 0 1 −1 0
0 0 0 1 0 0 0 −1 0 −1 1 0 0 −1 0
−1 0 1 0 1 0 0 0 0 0 1 0 0 0 1
−1 0 0 0 0 1 0 1 0 1 0 1 −1 0 0

0 0 −1 0 0 0 0 1 1 0 −1 0 0 0 −1

 ,

V =


0 0 1 1 0 0 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 −1 1 −1 0 0 0 1 0
0 −1 0 0 0 1 0 0 0 1 0 1 1 −1 0
−1 0 0 0 0 0 0 1 0 1 0 1 0 −1 0

0 1 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 1 1 0 0 0 0 0 0 0 1

 ,

W =



0 0 1 0 0 0 −1 0 1 0 0 0 0 0 −1
1 0 0 0 1 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 −1 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 1 −1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 −1 0 0 −1 0 0
0 0 0 −1 1 0 0 0 0 0 1 0 0 0 −1


.

Note that the rows of U and V correspond to a column-major ordering of the entries
of the input matrices, and the rows of W correspond to a row-major ordering of
the output matrix, which implies that JW,U,VK is an algorithm for 〈3, 3, 2〉 and
JV,W,UK is an algorithm for 〈2, 3, 3〉.

Appendix C. 〈4, 4, 2〉 fast matrix multiplication algorithm. The follow-
ing algorithm specifies a rank-26 fast matrix multiplication algorithm with base case
〈4, 4, 2〉:

U =
1

2



2 0 0 −2 0 0 0 0 −2 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 −2 0 0 0 0 2 2 2 −2 0 0 0 0 0 0 −2 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 2
0 2 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 1 0 −2 0 2 −2 0
0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 −2 0 0 0 0
0 0 0 1 2 0 −1 −1 0 −1 −2 2 0 −2 −2 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 1 1 0 0 0 0 0 0 0 0
0 2 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 −2 2 0 2 0
0 2 0 0 −2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 2 0 2 0
0 0 0 1 0 0 −1 −1 0 1 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0
0 −2 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 −2
0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 −2 0
0 0 0 0 −2 0 0 0 0 0 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0



,

V =
1

2



2 0 −2 0 0 −2 0 0 0 0 −2 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0
2 1 2 2 0 0 0 2 2 0 0 0 0 0 0 0 2 −2 −2 2 2 0 0 −2 1 0
−2 0 −2 −2 0 −2 −2 0 0 −2 0 −2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
−2 0 2 −2 0 0 −2 0 −2 2 0 0 0 0 0 −2 −2 0 0 2 2 0 −2 −2 0 0

2 1 −2 2 0 0 0 2 2 0 0 0 0 0 0 2 0 2 2 0 −2 0 0 2 −1 2
2 1 −2 2 0 2 0 2 2 0 2 0 −2 0 2 2 0 2 −2 0 −2 0 0 2 −1 0
−2 −2 −2 −2 0 0 −2 0 −2 −2 0 0 0 0 0 0 0 0 0 0 −2 2 2 2 0 −2
−2 0 −2 −2 −2 2 −2 0 −2 −2 2 0 −2 0 0 0 0 0 0 0 −2 0 −2 2 −2 0


,

W =



1 −1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1
0 1 −1 0 0 0 0 0 0 −1 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1
0 −1 0 1 0 0 1 1 −1 0 0 0 0 0 0 1 −1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 −1 1 −1 −1 −1 1 0
0 0 1 0 1 0 0 0 0 1 −1 0 −1 0 1 1 1 1 0 1 1 0 0 0 1 0
1 0 −1 1 0 0 1 0 0 −1 0 0 0 −1 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 −1 1 0 0 0 −1 −1 −1 −1 0 1 −1 0 0 1 −1 0
0 0 0 0 0 1 1 0 0 1 1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0


.
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1410 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Note that the rows of U and V correspond to a column-major ordering of the
entries of the input matrices, and the rows of W correspond to a row-major ordering
of the output matrix, which implies that JW,U,VK is an algorithm for 〈4, 2, 4〉 and
JV,W,UK is an algorithm for 〈2, 4, 4〉. However, JV,W,UK yields an E = 102,
which is greater than JU,V,WK’s 89. The E value can be maintained for base case
〈2, 4, 4〉 by using the following different transformation that corresponds to transposing
the matrix multiplication: JP4,2V,P4,4U,P2,4WK, where Pm,n is the so-called vec
permutation matrix [15], exchanging column-ordering for row-ordering in a vectorized
m× n matrix.

Appendix D. Convergence analysis of alternating scaling. In this appen-
dix we prove Theorem 13. We start with its first part.

Lemma 18. The sequence

r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ for t = 0, 1, . . .

is monotonically nonincreasing.

Proof. If step t is an O step, then

‖A(t)‖ = ‖B(t)‖ = 1 , r
(t)
i = r

(t−1)
i ‖a(t−1)i,: ‖ , s

(t)
j = s

(t−1)
j ‖b(t−1):,j ‖ ,

and therefore

r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ = r
(t−1)
i s

(t−1)
j ‖a(t−1)i,: ‖‖b(t−1):,j ‖

≤ r(t−1)i s
(t−1)
j ‖A(t−1)‖‖B(t−1)‖ .

Next, assume that step t is an I step. Column k of A′ is transformed so that

a
(t)
ik =

(
‖b(t−1)k,: ‖

‖a(t−1):,k ‖

)1
2

a
(t−1)
ik ,

and therefore,

‖a(t):,k‖ =

(
‖b(t−1)k,: ‖

‖a(t−1):,k ‖

)1
2

‖a(t−1):,k ‖ =

√
‖a(t−1):,k ‖‖b(t−1)k,: ‖ ,(25)

and similarly

‖b(t)k,:‖ =

√
‖a(t−1):,k ‖‖b(t−1)k,: ‖ .(26)

Hence,

‖A(t)‖ = ‖B(t)‖ = max
k

√
‖a(t−1):,k ‖‖b(t−1)k,: ‖ , r

(t)
i = r

(t−1)
i , s

(t)
j = s

(t−1)
j ,

and therefore,

r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖ = r
(t−1)
i s

(t−1)
j

(
max
k

√
‖a(t−1):,k ‖‖b(t−1)k,: ‖

)2
= r

(t−1)
i s

(t−1)
j max

k

(
‖a(t−1):,k ‖‖b(t−1)k,: ‖

)
≤ r(t−1)i s

(t−1)
j ‖A(t−1)‖‖B(t−1)‖ .
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1411

Next, we prove that the factors in the sequence of Theorem 13 converge individ-
ually. This is required in the subsequent analysis.

Lemma 19. The sequences r
(t)
i , s

(t)
j , ‖A(t)‖, and ‖B(t)‖ for t = 0, 1, . . . converge.

Proof. As we showed in the proof of Lemma 18,

‖A(t)‖ = ‖B(t)‖ = 1 ,

‖A(t+1)‖ = ‖B(t+1)‖ = max
k

√
‖a(t):,k‖‖b

(t)
k,:‖ for t = t0, t0 + 2, . . . .

Therefore,

‖A(t+1)‖ = max
k

√
‖a(t):,k‖‖b

(t)
k,:‖ ≤

√
‖A(t)‖‖B(t)‖ = 1 ,

and hence

(27) r
′(t+2)
i = ‖a(t+1)

i,: ‖ ≤ ‖A(t+1)‖ ≤ 1 .

The sequence r
(t)
i satisfies

r
(t0)
i = r

(t0+1)
i = r

′(t0)
i ,

r
(t0+2)
i = r

(t0+3)
i = r

′(t0)
i r

′(t0+2)
i

...
...

It is nonnegative because r
′(t)
i ≥ 0, it is monotonically nonincreasing by (27), and

hence it must converge. The same is true for s
(t)
j .

Consider the effect of the first t steps of the iteration on A′ and B′. The cumu-

lative effect of the O steps is to divide the rows of A′ by r
(t)
i and the columns of B′

by s
(t)
j , and that of the I steps is to make sure that every column of A′ is equal in

norm to the corresponding row of B′. Therefore,

a
(t)
ik = aik

1

r
(t)
i

(
maxj

∣∣bkj/s(t−1)j

∣∣
maxi

∣∣aik/r(t−1)i

∣∣
)1

2

for t = t0 + 1, t0 + 2, . . . ,

which shows that the convergence of r
(t)
i and s

(t)
j guarantees the convergence of a

(t)
ik ,

and hence also the convergence of ‖A(t)‖. The same is true for ‖B(t)‖.
The following lemma shows that the intermediate scaling factors that we compute

in each step rapidly converge to 1. We use the notation

w(t) = max
(

max
i

∣∣log r
′(t)
i

∣∣,max
j

∣∣log s
′(t)
j

∣∣) ,
w(t+1) = max

k

∣∣log p
′(t+1)
k

∣∣ for t = t0, t0 + 2, . . . .

Lemma 20. The following bounds hold:

w(t) ≤ w(t−1) ,

w(t+1) ≤ 0.5w(t) for t = t0 + 2, t0 + 4, . . . .

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
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1412 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Proof. Assume that t = t0 + 2, t0 + 4, . . . . Because step t− 2 is an O step, there

is a column g so that
∣∣a(t−2)ig

∣∣ = 1, and therefore,

r
′(t)
i = max

k

∣∣a(t−1)ik

∣∣ = max
k

∣∣a(t−2)ik p
′(t−1)
k

∣∣ ≥ ∣∣a(t−2)ig p′(t−1)g

∣∣ = p′(t−1)g .

Taking logarithms yields

log r
′(t)
i ≥ log p′(t−1)g .

Both sides of this inequality are nonpositive because r
′(t)
i ≤ 1 by (27), and so∣∣log r

′(t)
i

∣∣ = − log r
′(t)
i ≤ − log p′(t−1)g =

∣∣log p′(t−1)g

∣∣ .
A similar analysis shows that∣∣log s

′(t)
j

∣∣ ≤ ∣∣log p
′(t−1)
f

∣∣
for a suitably defined row f , and these two inequalities imply the first bound in the
statement of the lemma.

Next, let us prove the second bound. We have that

(
p
′(t+1)
k

)2
=

maxj
∣∣b(t)kj ∣∣

maxi
∣∣a(t)ik ∣∣ =

maxj
∣∣b(t−1)kj

/
s
′(t)
j

∣∣
maxi

∣∣a(t−1)ik

/
r
′(t)
i

∣∣ ≤ maxj
∣∣b(t−1)kj

∣∣ maxj
(
1
/
s
′(t)
j

)
maxi

∣∣a(t−1)ik

/
r
′(t)
i

∣∣ .

Inequality (27) states that r
′(t)
i ≤ 1, and therefore

max
i

∣∣a(t−1)ik

/
r
′(t)
i

∣∣ ≥ max
i

∣∣a(t−1)ik

∣∣ ,
which we substitute into the previous inequality, obtaining

(
p
′(t+1)
k

)2 ≤ maxj
∣∣b(t−1)kj

∣∣ maxj
(
1
/
s
′(t)
j

)
maxi

∣∣a(t−1)ik

∣∣ .

By (25) and (26),

max
i

∣∣a(t−1)ik

∣∣ = ‖a(t−1):,k ‖ = ‖b(t−1)k,: ‖ = max
j

∣∣b(t−1)kj

∣∣ ,
which implies (

p
′(t+1)
k

)2 ≤ maxj
(
1
/
s
′(t)
j

)
.

A similar analysis shows that(
p
′(t+1)
k

)2 ≥ 1

maxi
(
1
/
r
′(t)
i

) .
Taking the logarithm of these two bounds and interchanging the positions of the
logarithms with those of the max operators yields

−max
i

(
log
(
1
/
r
′(t)
i

))
≤ 2 log p

′(t+1)
k ≤ max

j

(
log
(
1
/
s
′(t)
j

))
.
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1413

Because r
′(t)
i ≤ 1, we have that log

(
1
/
r
′(t)
i

)
=
∣∣log r

′(t)
i

∣∣, and similarly for s
′(t)
j . Ap-

plying this to the previous inequality yields

−max
i

∣∣log r
′(t)
i

∣∣ ≤ 2 log p
′(t+1)
k ≤ max

j

∣∣log s
′(t)
j

∣∣ ,
and therefore

2
∣∣log p

′(t+1)
k

∣∣ ≤ max
(

max
i

∣∣log r
′(t)
i

∣∣,max
j

∣∣log s
′(t)
j

∣∣) ,
which implies the second bound in the statement of the lemma.

The following lemma proves linear convergence, and therefore completes the proof
of Theorem 13.

Lemma 21. There is a sequence ν(t) so that

µ
(t)
ij ≤ ν

(t) , µ
(t+1)
ij ≤ ν(t+1) ,

and

ν(t+1) = ν(t) , ν(t+2) ≤ 0.5 ν(t) for t = t0, t0 + 2, . . . .

Proof. Assume that t = t0, t0 + 2, . . . . Rearranging the definition of µ
(t)
ij , we may

write
µ
(t)
ij =

(
r
(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖
) (
r
(?)
i s

(?)
j ‖A

(?)‖‖B(?)‖
)−1 − 1 .

We have that

r
(t)
i = r

′(t0)
i r

′(t0+2)
i · · · r′(t)i , s

(t)
j = s

′(t0)
j s

′(t0+2)
j · · · s′(t)j , ‖A(t)‖ = ‖B(t)‖ = 1 ,

and therefore

r
(?)
i = r

′(t0)
i r

′(t0+2)
i · · · , s

(?)
j = s

′(t0)
j s

′(t0+2)
j · · · , ‖A(?)‖ = ‖B(?)‖ = 1 .

Substituting this into the above yields

µ
(t)
ij =

(
r
′(t0)
i s

′(t0)
j r

′(t0+2)
i s

′(t0+2)
j · · · r′(t)i s

′(t)
j

) (
r
′(t0)
i s

′(t0)
j r

′(t0+2)
i s

′(t0+2)
j · · ·

)−1 − 1

=
(
r
′(t+2)
i s

′(t+2)
j r

′(t+4)
i s

′(t+4)
j · · ·

)−1 − 1 .

Applying the definition of w(t) to this, we obtain

µ
(t)
ij =

(
r
′(t+2)
i s

′(t+2)
j r

′(t+4)
i s

′(t+4)
j · · ·

)−1 − 1

= exp
(
− log r

′(t+2)
i − log s

′(t+2)
j − log r

′(t+4)
i − log s

′(t+4)
j − · · ·

)
− 1

= exp
(∣∣log r

′(t+2)
i

∣∣+
∣∣log s

′(t+2)
j

∣∣+
∣∣log r

′(t+4)
i

∣∣+
∣∣log s

′(t+4)
j

∣∣+ · · ·
)
− 1

≤ exp
(
2w(t+2) + 2w(t+4) + · · ·

)
− 1 .

We define

ν(t) = exp
(
2w(t+2) + 2w(t+4) + · · ·

)
− 1 , ν(t+1) = ν(t) ,

thereby guaranteeing that µ
(t)
ij ≤ ν(t), as the lemma states. Since r

(t)
i s

(t)
j ‖A

(t)‖‖B(t)‖
is monotonically nonincreasing, so is its relative distance to its limit, meaning that

µ
(t+1)
ij ≤ µ(t)

ij ,
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1414 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

and hence

µ
(t+1)
ij ≤ µ(t)

ij ≤ ν
(t) = ν(t+1) .

This proves another condition in the statement of the lemma, leaving us with only
the condition ν(t+2) ≤ 0.5 ν(t) to prove.

By Lemma 20,

w(t+3) ≤ 0.5w(t+2), w(t+4) ≤ w(t+3) ≤ 0.5w(t+2),

w(t+5) ≤ 0.5w(t+4) ≤ 0.25w(t+2), w(t+6) ≤ w(t+5) ≤ 0.25w(t+2)

...
...

...
...

Therefore,

w(t+2) = (0.5 + 0.25 + · · ·)w(t+2)

= 0.5w(t+2) + 0.25w(t+2) + · · ·
≥ w(t+4) + w(t+6) + · · · ,

and thus

exp
(
2w(t+2)

)
≥ exp

(
2w(t+4) + 2w(t+6) + · · ·

)
.

Applying this bound to the definition of ν(t), we obtain

ν(t) = exp
(
2w(t+2) + 2w(t+4) + · · ·

)
− 1

= exp
(
2w(t+2)

)
exp
(
2w(t+4) + 2w(t+6) + · · ·

)
− 1

≥
(

exp
(
2w(t+4) + 2w(t+6) + · · ·

))2
− 1 .

We define x = exp
(
2w(t+4) +2w(t+6) + · · ·

)
, so that the above expression has the form

x2 − 1 and ν(t+2) = x− 1. Then we have

ν(t) ≥ x2 − 1 = (2 + x− 1)(x− 1) =
(
2 + ν(t+2)

)
ν(t+2) ≥ 2 ν(t+2) ,

which implies that ν(t+2) ≤ 0.5 ν(t) as the lemma states.

Finally, we show that the analysis in Lemma 21 is asymptotically sharp.

Lemma 22. There are matrices A and B and indices i and j so that

µ
(t+1)
ij = µ

(t)
ij , µ

(t+2)
ij

/
µ
(t)
ij → 0.5 for t = t0, t0 + 2, . . . .

Proof. Let

A =

[
1 0
1 2−2

v

]
, B =

[
1 0
0 1

]
for some integer v. Let us start the iteration with an O step, and assume that
t = t0, t0 + 2, . . . . A straightforward calculation, which we omit for brevity, shows
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NUMERICAL STABILITY OF FAST MATRIX MULTIPLICATION 1415

that

A(t) =

[
1 0

1 2−2
v−(t−t0)/2

]
,

[
r
(t)
1

r
(t)
2

]
=

[
1

1

]
,

B(t) =

[
1 0
0 1

]
,

[
s
(t)
1

s
(t)
2

]
=

[
1

2−2
v(1−2−(t−t0)/2)

]
,

A(t+1) =

[
1 0

1 2−2
v−(t−t0)/2−1

]
,

[
r
(t+1)
1

r
(t+1)
2

]
=

[
r
(t)
1

r
(t)
2

]
,

B(t+1) =

[
1 0

0 2−2
v−(t−t0)/2−1

]
,

[
s
(t+1)
1

s
(t+1)
2

]
=

[
s
(t)
1

s
(t)
2

]
,

and therefore

A(?) =

[
1 0
1 1

]
, B(?) =

[
1 0
0 1

]
,

[
r
(?)
1

r
(?)
2

]
=

[
1

1

]
,

[
s
(?)
1

s
(?)
2

]
=

[
1

2−2
v

]
,

and

‖A(t)‖ = ‖B(t)‖ = ‖A(t+1)‖ = ‖B(t+1)‖ = ‖A(?)‖ = ‖B(?)‖ = 1 .

Substituting the above into the definition of µ
(t)
ij yields

(28)

µ
(t)
22 = µ

(t+1)
22 =

∣∣r(t)2 s
(t)
2 ‖A

(t)‖‖B(t)‖ − r(?)2 s
(?)
2 ‖A

(?)‖‖B(?)‖
∣∣∣∣r(?)2 s

(?)
2 ‖A

(?)‖‖B(?)‖
∣∣

=

∣∣2−2v(1−2−(t−t0)/2) − 2−2
v ∣∣∣∣2−2v ∣∣

= 22
v−(t−t0)/2

− 1 .

Let x = 22
v−(t−t0)/2−1

, so that the above expression has the form x2 − 1. Then

µ
(t+2)
22 = x− 1, and we have that

µ
(t)
22 = x2 − 1 = (2 + x− 1)(x− 1) =

(
2 + µ

(t+2)
22

)
µ
(t+2)
22 ,

and therefore

µ
(t+2)
22

/
µ
(t)
22 = 1

/(
2 + µ

(t+2)
22

)
.

From (28) we conclude that µ
(t+2)
22 → 0, and therefore µ

(t+2)
22

/
µ
(t)
22 → 0.5.

Appendix E. Proof of Theorem 14.

Proof. In the proof of Lemma 21 (see Appendix D), we show that for all i, j and
t = t0, t0 + 2, . . . ,

µ
(t+1)
ij ≤ µ(t)

ij ,

µ
(t)
ij ≤ exp

(
2w(t+2) + 2w(t+4) + · · ·

)
− 1 ,

exp
(
2w(t+4) + 2w(t+6) + · · ·

)
≤ exp

(
2w(t+2)

)
.
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1416 BALLARD, BENSON, DRUINSKY, LIPSHITZ, AND SCHWARTZ

Putting these three statements together yields

µ
(t+1)
ij ≤ µ(t)

ij ≤ exp
(
2w(t+2) + 2w(t+4) + · · ·

)
− 1

= exp
(
2w(t+2)

)
exp
(
2w(t+4) + 2w(t+6) + · · ·

)
− 1

≤ exp
(
2w(t+2)

)
exp
(
2w(t+2)

)
− 1

= exp
(
4w(t+2)

)
− 1 .

Lemma 20 guarantees that w(t+2) ≤ w(t+1), and substituting this into the above yields

µ
(t+1)
ij ≤ exp

(
4w(t+1)

)
− 1 .(29)

Similarly,

µ
(t+2)
ij ≤ exp

(
2w(t+4) + 2w(t+6) + · · ·

)
− 1 ≤ exp

(
2w(t+2)

)
− 1 .(30)

Next, let us prove the first statement of the theorem. Assume that

(1 + τ)−
1
4 ≤ p′(t+1)

k ≤ (1 + τ)
1
4

for all k. Taking logarithms yields

−0.25 log(1 + τ) ≤ log p
′(t+1)
k ≤ 0.25 log(1 + τ)

or, equivalently, ∣∣log p
′(t+1)
k

∣∣ ≤ 0.25 log(1 + τ) ,

and therefore
w(t+1) = max

k

∣∣log p
′(t+1)
k

∣∣ ≤ 0.25 log(1 + τ) .

Substituting this into (29), we find that

µ
(t+1)
ij ≤ exp

(
4w(t+1)

)
− 1 ≤ exp

(
4 · 0.25 log(1 + τ)

)
− 1 = τ

for all i, j, which proves the first statement of the theorem.
Let us prove the second statement of the theorem. Assume that

(1 + τ)−
1
2 ≤ r′(t+2)

i , (1 + τ)−
1
2 ≤ s′(t+2)

j

for all i and j. Taking logarithms yields

−0.5 log(1 + τ) ≤ log r
′(t+2)
i , −0.5 log(1 + τ) ≤ log s

′(t+2)
j .

We show in the proof of Lemma 19 that r
′(t+2)
i ≤ 1, and therefore log r

′(t+2)
i ≤ 0 and

similarly for s
′(t+2)
j . Hence∣∣log r
′(t+2)
i

∣∣ ≤ 0.5 log(1 + τ) ,
∣∣log s

′(t+2)
j

∣∣ ≤ 0.5 log(1 + τ) ,

and hence

w(t+2) = max
(

max
i

∣∣log r
′(t+2)
i

∣∣,max
j

∣∣log s
′(t+2)
j

∣∣) ≤ 0.5 log(1 + τ) .

Substituting this into (30) yields

µ
(t+2)
ij ≤ exp

(
2w(t+2)

)
− 1 ≤ exp

(
2 · 0.5 log(1 + τ)

)
− 1 = τ

for all i, j, which proves the second statement of the theorem.

c© 2016 Sandia Corporation, operator of Sandia National Laboratories for the U.S. Department of
Energy
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