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ABSTRACT
Data collection often involves the partial measurement of a larger

system. A common example arises in collecting network data: we

often obtain network datasets by recording all of the interactions

among a small set of core nodes, so that we end up with a measure-

ment of the network consisting of these core nodes along with a

potentially much larger set of fringe nodes that have links to the

core. Given the ubiquity of this process for assembling network data,

it is crucial to understand the role of such a “core-fringe” structure.

Here we study how the inclusion of fringe nodes affects the

standard task of network link prediction. One might initially think

the inclusion of any additional data is useful, and hence that it

should be beneficial to include all fringe nodes that are available.

However, we find that this is not true; in fact, there is substantial

variability in the value of the fringe nodes for prediction. Once an

algorithm is selected, in some datasets, including any additional

data from the fringe can actually hurt prediction performance; in

other datasets, including some amount of fringe information is

useful before prediction performance saturates or even declines;

and in further cases, including the entire fringe leads to the best

performance. While such variety might seem surprising, we show

that these behaviors are exhibited by simple random graph models.
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1 INTRODUCTION
In a wide range of data analysis problems, the underlying data typ-

ically comes from partial measurement of a larger system. This is a

ubiquitous issue in the study of networks, where the network we

are analyzing is almost always embedded in some larger surround-

ing network [17, 20, 21]. Such considerations apply to systems at all

scales. For example, when studying the communication network of

an organization, we can potentially gain additional information if

we know the structure of employee interactions with people outside

the organization as well [32]. A similar issue applies to large-scale

systems. If we are analyzing the links within a large online social

network, or the call traffic data from a large telecommunications

provider, we could benefit from knowing the interactions that mem-

bers of these systems have with individuals who are not part of the

platform, or who do not receive service from the provider.
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Figure 1: Core-fringe structure. (Left) Illustrative network
with labeled core-fringe structure (core nodes in green and
fringe nodes in orange).Weobserve all of the links involving
core nodes (in green). Each edge is between two core nodes or
between one core and one fringe node. (Right) Core-fringe
structure in the Enron email network, which results from
data collection—the core nodes in green correspond to the
roughly 150 accountswhose emailswere released as part of a
federal investigation [19]. Here, the number of fringe nodes
is orders ofmagnitude larger than the number of core nodes.

Network data can therefore be viewed as having a core-fringe
structure (following the terminology of our previous work [6]): we

collect data by measuring all of the interactions involving a core set
of nodes, and in the process we also learn about the core’s interac-

tion with a typically larger set of additional nodes—the fringe—that
does not directly belong to the measured system. Figure 1 illustrates

the basic structure schematically and also in a typical real-life sce-

nario: If we collect a dataset by measuring all email communication

to and from the executives of a company (the core), then the data

will also include links to people outside this set with whom mem-

bers of the core exchanged email (the fringe).
1
We thus have two

kinds of links: links between two members of the core, and links

between a member of the core and a member of the fringe. Links

between fringe members are not visible, even though we are aware

of both fringe nodes through their interactions with the core.

Despite the fundamental role of core-fringe structure in network

data and a long history of awareness of this issue in the social

sciences [21], there has been little systematic attention paid to its

implications in basic network inference tasks. If we are trying to

predict network structure on a measured set of core nodes, what

is the best way to make use of the fringe? Is it even clear that

incorporating the fringe nodes will help? To study these questions,

it is important to have a concrete task on the network where notions

of performance as a function of available data are precise.

The present work: Core-fringe link prediction. In this paper,

we study the role of core-fringe structure through one of the stan-

dard network inference problems: link prediction [24, 26]. Link

1
This distinction between core and fringe is fundamentally driven by measurement of

the available data; we have measured all interactions involving members of the core,

and this brings the fringe indirectly into the data. As such, it is distinct from work on

the core-periphery structure of networks, which typically refers to settings in which the

core and periphery both fully belong to the measured network, and the distinction is in

the level of centrality or status that the core has relative to the periphery [7, 16, 31, 37].
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prediction is a problem in which the goal is to predict the presence

of unseen links in a network. Links may be unseen for a variety

of reasons, depending on the application—we may have observed

the network up to a certain point in time and want to forecast new

links, or we may have collected a subset of the links and want to

know which additional ones are present.

Abstractly, we will think of the link prediction problem as op-

erating on a graph G = (V ,E) whose edges are divided into a set

of observed edges and a set of unseen edges. From the network

structure on the observed edges, we would like to predict the pres-

ence of the unseen edges as accurately as possible. A large range of

heuristics have been proposed for this problem, many of them based

on the empirical principle that nodes with neighbors in common

are generally more likely to be connected by a link [24, 26, 28].

The issue of core-fringe structure shows up starkly in the link

prediction problem. Suppose the graphG has nodes that are divided

into a core setC and a fringe set F , and our goal is to predict unseen
links between pairs of nodes in the core. One option would be to

perform this task using only the portion of G induced on the core

nodes. But we could also perform the task using larger amounts

of G by taking the union of the core nodes with any subset of the

fringe, or with all of the fringe. The key question is howmuch of the

fringe we should include if our goal is to maximize performance on

the core; existing work provides little guidance about this question.

How much do fringe nodes help in link prediction? We ex-

plore this question in a broad collection of network datasets derived

from email, telecommunication, and online social networks. For con-

creteness, our most basic formulation draws on common-neighbor

heuristics to answer the following version of the link prediction

question: given two pairs of nodes drawn from the core, {u,v} and
{w, z}, which pair is more likely to be connected by a link? (In our

evaluation framework, we will focus on cases in which exactly one

of these pairs is truly connected by a link, thus yielding a setting

with a clear correct answer.) To answer this question, we could

use information about the common neighbors that {u,v} and {w, z}
have only in the core, or also in any subset of the fringe. How

much fringe information should we use, if we want to maximize

our probability of getting the correct answer?

It would be natural to suspect that using all available data, i.e.,

including all of the fringe nodes, would maximize performance.

What we find, however, is a wide range of behaviors. In some of our

domains—particularly the social-networking data—link prediction

performance increases monotonically in the amount of fringe data

used, though with diminishing returns as we incorporate the entire

fringe. In the other domains, however, we find a number of instances

where using an intermediate level of fringe, i.e., a proper subset of

the fringe nodes, yields a performance that dominates the option

of including all of the fringe or none of it. And there are also cases

where prediction is best when we ignore the fringe entirely. Given

that proper subsets of the fringe can yield better performance than

either extreme, we also consider the process of selecting a subset of

the fringe; in particular, we study different natural orderings of the
fringe nodes and then select a subset by searching over prefixes of

these orderings.

To try understanding this diversity of results, we turn to basic

random graph models, adapting them to capture the problem of

link prediction in the presence of core-fringe structure. We find

that simple models are rich enough to display the same diversity

of behaviors in performance, where the optimal amount of fringe

might be all, some, enough, or none. More specifically, we ana-

lyze the signal-to-noise ratio for our basic link prediction primitive

in two heavily-studied network models: stochastic block models

(SBMs), in which random edges are added with different probabili-

ties between a set of planted clusters [1, 2, 10, 27]; and small-world

lattice models, in which nodes are embedded in a lattice, and links

between nodes are added with probability decaying as a power of

the distance [18, 35]. We prove that there are instances of the SBM

with certain linking probabilities in which the signal-to-noise ratio

is optimized by including all the fringe, enough of the fringe, or

none of the fringe. For small-world lattice models, we find in the

most basic formulation that the signal-to-noise ratio is optimized

by including an intermediate amount of fringe: essentially, if the

core is a bounded geometric region in the lattice, then the optimal

strategy for link prediction is to include the fringe in a larger region

that extends out from the core; but if we grow this region too far

then performance will decline.

The analysis of these models provides us with some qualitative

higher-level insight into the role of fringe nodes in link prediction.

In particular, the analysis can be roughly summarized as follows: the

fringe nodes that are most well-connected to the core are providing

valuable predictive signal without significantly increasing the noise;

but as we continue including fringe nodes that are less and less

well-connected to the core, the signal decreases much faster than

the noise, and eventually the further fringe nodes are primarily

adding noise in a way that hurts prediction performance.

More broadly, the results here indicate that the question of how

to handle core-fringe structure in network prediction problems is a

rich subject for investigation, and an important one given how com-

mon this structure is in network data collection. An implication of

both our empirical and theoretical results is that it can be important

for problems such as link prediction to measure performance with

varying amounts of additional data, and to accurately evaluate the

extent to which this additional data is primarily adding signal or

noise to the underlying decision problem.

Finally, software and data associated with this paper are available

at https://github.com/arbenson/cflp.

2 EMPIRICAL NETWORK ANALYSIS
We first empirically study how including fringe nodes can affect

link prediction on a number of datasets. While we might guess that

any additional data we can gather would be useful for prediction,

we see that this is not the case. In different datasets, incorporating

all, none, some, or enough fringe data leads to the best performance.

We then show in Section 3 that this variability is also exhibited in

the behavior of simple random graph models.

Evaluating link prediction with core-fringe structure. There
are several ways to evaluate link prediction performance [24, 26].

We set up the prediction task in a natural way that is also amenable

to theoretical analysis in Section 3. We assume that we have a graph

G = (V ,E) with a known set of core nodes C ⊆ V and fringe nodes

F = V −C . The edge set is partitioned into Etrain and Etest, where
Etest is a subset of the edges that connect two nodes in the core

C . The form of Etest depends on the dataset, which we describe in
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the following sections. In general, our core-fringe link prediction

evaluation is based on how well we can predict elements of Etest

given the graph Gtrain = (V ,Etrain).
Our atomic prediction task considers two pairs of nodes {u,v}

and {w, z} such that (i) all four nodes are in the core (i.e.,u,v,w, z ∈
C); (ii) neither pair is an edge in Etrain; (iii) the edge (u,v ) is a
positive sample, meaning that (u,v ) ∈ Etest; and (iv) the edge

(w, z) is a negative sample, meaning that (w, z) < Etest. We use an

algorithm that takes as input Gtrain
and outputs a score function

s (x ,y) for any pair of nodes x ,y ∈ C; the algorithm then predicts

that the pair of nodes with the higher score is more likely to be

in the test set. Thus, the algorithm makes a correct prediction if

s (u,v ) > s (w, z). We sample many such 4-tuples of nodes uniformly

at random and measure the fraction of correct predictions.

We evaluate two score functions that are common heuristics for

link prediction [24]. The first is the number of common neighbors:

s (x ,y) = |N (x ) ∩ N (y) |, (1)

where N (z) is the set of neighbors of node z in the graph. The

second is the Jaccard similarity of the neighbor sets:

s (x ,y) =
|N (x ) ∩ N (y) |

|N (x ) ∪ N (y) |
. (2)

We choose these score functions for a few reasons. First, they are

flexible enough to be feasibly deployed even if only minimal in-

formation about the fringe is available; more generally, their ro-

bustness has motivated their use as heuristics in practice [14, 15]

and throughout the line of research on link prediction [24]. Second,

they are amenable to analysis: we can explain some of our results

by analyzing the common neighbors heuristic on random graph

models, and they are rich enough to expose a complex landscape of

behavior. This is sufficient for the present study, but it would be in-

teresting to examine more sophisticated link prediction algorithms

in our core-fringe framework as well.

We parameterize the training data by how much fringe informa-

tion is included. To do this, we construct a nested sequence of sets of

vertices, each of which induces a set of training edges. Specifically,

the initial set of vertices is the core, and we continue to add fringe

nodes to construct a nested sequence of vertices:

C = V0 ⊆ V1 ⊆ · · · ⊆ VD = V . (3)

The nested sequence of vertex sets then induces a nested sequence

of edges that are the training data for the link prediction algorithm;

for a value of d between 0 and D, we write

Etraind = {(u,v ) ∈ E | u,v ∈ Vd } ∩ E
train. (4)

From Eqs. (3) and (4), Etraind ⊆ Etraind+1 , and EtrainD = Etrain. The
parameterization of the vertex sets will depend on the dataset,

and we examine multiple sequences {Vd } to study how different

interpretations of the fringe give varying outcomes. Our main point

of study is link prediction performance as a function of d .

2.1 Email networks
Our first set of experiments analyzes email networks. The core

nodes in these datasets are members of some organization, and the

fringe nodes are those outside of the organization that communi-

cate with those in the core. We use four email networks; in each,

Table 1: Summary statistics of email datasets.

# core # fringe # core-core # core-fringe

Dataset nodes nodes edges edges

email-Enron 148 18,444 1,344 41,883

email-Avocado 256 27,988 7,416 50,048

email-Eu 1,218 200,372 16,064 303,793

email-W3C 1,995 18,086 1,777 30,097

email-Enron-1 37 7,511 86 11,862

email-Enron-2 37 6,440 81 10,648

email-Enron-3 37 6,379 80 10,390

email-Enron-4 37 6,587 95 10,987

the nodes are email addresses, and the time that an edge formed is

given by the timestamp of the first email between two nodes. For

simplicity, we consider all graphs to be undirected, even though

there is natural directionality in the links. Thus, each dataset is a

simple, undirected graph, where each edge has a timestamp and

each node is labeled as core or fringe. The four datasets are (i) email-
Enron: the network in Figure 1, where the core nodes correspond to

accounts whose emails were released as part of a federal investiga-

tion [6, 19]; (ii) email-Avocado: the email network of a now-defunct

company, where the core nodes are employees (we removed ac-

counts associated with non-people, such as conference rooms).
2

(iii) email-Eu: a network that consists of emails involving members

of a European research institution, where the core nodes are the

institution’s members [23, 36]; and (iv) email-W3C: a network from

W3C email threads, where core nodes are those addresses with a

w3.org domain [6, 9]. Table 1 provides basic summary statistics.

An entire email network dataset is a graph G = (V ,E), where
C ⊆ V is a set of core nodes, and each edge e ∈ E is associated

with a timestamp te . Here, our test set is derived from the temporal

information. Let t∗ be the 80th percentile of timestamps on edges

between core nodes. Our test set of edges is the final 20% of edges

between core nodes that appear in the dataset:

Etest = {(u,v ) ∈ E | u,v ∈ C and t(u,v ) ≥ t∗}. (5)

The training set is then given by edges appearing before t∗, i.e., the
edges appearing in the first 80% of time spanned by the data:

Etrain = {(u,v ) ∈ E | t(u,v ) < t∗}. (6)

Fringe ordering. Next, we form the nested sequence of train-

ing set edges (Eq. (4)) by sequentially increasing the amount of

fringe information (Eq. (3)). Recall that Etraind is simply the set of

edges in Etrain in which both end points are in the vertex set Vd .
To build {Vd }, we start with V0 = C , the core set, and then add the

fringe nodes one by one in order of decreasing degree in the graph

Gtrain = (V ,Etrain). By definition, fringe nodes cannot link between
themselves, so this ordering is equivalent to adding fringe nodes

in order of the number of core nodes to which they connect. For

purposes of comparison, we also evaluate this ordering relative to

a uniformly random ordering of the fringe nodes. To summarize,

given an ordering σ of the fringe nodes F , we create a nested se-

quence of node sets Vd = C ∪ {σ1, . . . ,σd } in two ways: (i) Most
connected: σ is the ordering of nodes in the fringe F by decreasing

2
https://catalog.ldc.upenn.edu/LDC2015T03
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Figure 2: Link prediction performance of the Common Neighbors (top) and Jaccard similarity (bottom) score functions on
four email networks as a function of d , the number of fringe nodes included. Two orderings of fringe nodes are considered:
one by the most connections to the core (red) and one random (blue). A circle marks the best performance. There is a striking
variety in how the fringe affects performance. In some cases, we should ignore the fringe entirely (C); in others, performance
increases with the size of the fringe (F, H); and in still others, some intermediate amount of fringe is optimal (E, G).

C D

E F G

A B

H

Figure 3: Link prediction performance experiments analogous to those in Figure 2 but on four subsets of email-Enron. Inmost
cases, including some interior amount of fringe nodes—between 10 and a few hundred—yields the optimal performance.

degree in the graph induced by Etrain (Eq. (6)); and (ii) Random: σ
is a random ordering of the nodes in F .
Link prediction. We use themost connected and random ordering

to predict links in the test set of edges, as described at the beginning

of Section 2. Recall that we needed a set of candidate comparisons

between two potential edges (one of which does appear in the

test). We guess that the pair of nodes with the larger number of

common neighbors or larger Jaccard similarity score will be the set

that appears in the test set. We sample 10 · |Etest | pairs from Etest

(allowing for repeats) and combine each of them with two nodes

selected uniformly at random that never form an edge. Prediction

performance is measured in terms of the fraction of correct guesses

as a function of d , the number of fringe nodes included. This entire

procedure is repeated 10 times (with 10 different sets of random

samples) and the mean accuracy is reported in Figure 2.

The results exhibit a wide variety of behavior. In some cases,

performance tends to increase monotonically with the number of

fringe nodes (Figures 2F and 2H). In one case, we achieve optimal

performance by ignoring the fringe entirely (Figure 2C). In yet

another case, some interior amount of fringe is optimal before pre-

diction performance degrades (Figure 2E). In several cases, we see a

saturation effect, where performance flattens as we increase more

fringe nodes (e.g., Figures 2A and 2D). This is partly a consequence

of how we ordered the fringe—nodes included towards the end of

the sequence are less connected and thus have relatively less impact

on the score functions. In these cases, one practical consequence is
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Table 2: Summary statistics of telecommunications datasets.
Core nodes are participants in the Reality Mining study.

# core # fringe # core-core # core-fringe

Dataset nodes nodes edges edges

call-Reality 91 8,927 127 10,512

text-Reality 91 1,087 32 1,920

that we could ignore large amounts of the data and get roughly the

same performance, which would save computation time. In another

case, the first few hundred most connected fringe nodes leads to

worse performance, but eventually having enough fringe improves

performance (Figure 2B). Finally, there are also cases where the

optimal performance over d is better for a random ordering of the

fringe than for the most connected ordering (Figures 2D and 2G).

We repeated the same set of experiments on subgraphs of email-

Enron by partitioning the core set of nodes C into four groups to

induce four different datasets. In each dataset, the other members

of the core are removed from the graph entirely (the bottom part

of Table 1 lists basic summary statistics). The results in Figure 3

provide further evidence that it is a priori unclear how much fringe

information one should include to achieve the best performance.

In nearly all cases, the optimal performance when including fringe

nodes in order of connectedness is somewhere between 10 and a

few hundred nodes, out of a total of several thousand. And we again

see that including initial fringe information by connectedness has

worse performance than ignoring the fringe entirely, until even-

tually incorporating enough fringe information provides enough

signal to improve prediction performance (Figures 3C and 3D).

2.2 Telecommunications networks
Next, we study telecommunications datasets from cell phone usage

amongst individuals participating in the Reality Mining project [12].

This project recorded cell phone activity of students and faculty in

the MIT Media Laboratory, including calls and SMS texts between

phone numbers. We consider the participants (more, specifically,

their phone numbers) as the core nodes in our network. Edges

are phone calls or SMS texts between two people, some of which

are fringe nodes corresponding to people who were not recruited

for the experiment. We process the data in the same way as for

email networks—directionality was removed and the edges are

accompanied by the earliest timestamp of communication between

the two nodes. We study two datasets: (i) call-Reality: the network
of phone calls [6, 12]; and (ii) text-Reality: the network of SMS

texts [6, 12]. Table 2 provides some basic summary statistics.

Fringe ordering. The structure of these networks is the same as

the email networks—the dataset is a recording of the interactions

of a small set of core nodes with a larger set of fringe nodes. We use

the same two orderings—most connected to core and random—as

we did for the email datasets. Thus, the nested sequence of node

sets {Vd } is again constructed by adding one node at a time.

Link prediction. Figure 4 shows the link prediction performance

on the telecommunications datasets. With the Common Neighbors

score function, we again find that the optimal amount of fringe is

a small fraction of the entire dataset—around 100 of nearly 9,000

nodes in call-Reality (Figure 4A) and around 10 of over 1,000 nodes

in text-Reality (Figure 4B). The performance of the Jaccard similarity

C D

A B

Figure 4: Link prediction performance in the telecommu-
nications datasets as a function of d , the number of fringe
nodes used for prediction. Circles mark the largest value.
With the Common Neighbors score function, a small num-
ber of fringe nodes is optimal for these datasets.

also has an interior optimum for the call-Reality dataset, although

the optimum size here is larger—around half of the nodes.

Prediction performance with the fringe nodes ordered by con-

nectedness to the core is in general quite erratic for the call-Reality

dataset. This is additional evidence that the fringe nodes can be a

noisy source of information. For instance, just including the first

fringe node results in a noticeable drop in prediction performance

for both the Common Neighbors and Jaccard score functions.

2.3 Online social networks
We now turn to links in an online social network of bloggers from

the LiveJournal community [25]. Edges are derived from users list-

ing friends in their profile (here, we consider all links as undirected).

Users also list their geographic location, and for the purposes of this

study, we have restricted the dataset to users reporting locations

in the United States and Puerto Rico. For each user, we have both

their territory of residence (one of the 50 U.S. states, Washington

D.C., or Puerto Rico; henceforth simply referred to as “state”) as

well as their county of residence, when applicable.

Table 3: Summary statistics of LiveJournal networks. The
sets of core nodes are users in particular states or counties.

# core # fringe # core-core # core-fringe

Dataset nodes nodes edges edges

Wisconsin 16,842 58,965 48,078 87,723

Texas 65,617 155,357 256,174 312,746

New York 82,275 208,516 281,981 477,845

California 152,171 244,605 712,803 722,835

Marathon 223 1,032 390 1,363

Eau Claire 295 1,392 252 1,635

Dane 2,281 15,580 5,192 21,156

Milwaukee 3,743 19,934 10,750 30,955
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Figure 5: Link prediction performance of the CommonNeighbors (top) and Jaccard similarity (bottom) score functions on four
LiveJournal datasets where the core consists of users in a state. Performance is measured as a function of d , the number of
fringe states included for prediction (for four different orderings of the fringe). The most connected ordering performs the
best, monotonically increases with d , and saturates when d ≥ 20.

C D

E F G

A B

H

Figure 6: Link prediction analogous to Figure 5 but where the core is a Wisconsin county and the fringe is the rest of the
state. Performance is measured as a function of d , the number of fringe counties included for prediction. The most connected
ordering performs the best, and performance with this ordering quickly saturates.

We construct core-fringe networks in two ways. First, we form

a core from all user residing in a given state S . The core-fringe

network then consists of all friendships where at least one node

is in state S . We construct four such networks, using the states

Wisconsin, Texas, California, and New York. Second, we form a core

from users residing in a county and construct a core-fringe network

in the same way, but we only consider friendships amongst users in

the state containing the county. We construct four such networks,

using Marathon, Eau Claire, Dane, and Milwaukee counties (all in

Wisconsin). Table 3 lists summary statistics of the datasets.

Unlike the email and telecommunications networks, we do not

have timestamps on the edges. We instead construct Etest from a

random sample of 20% of the edges between core nodes, i.e., from

{(u,v ) ∈ E | u,v ∈ C}, and set Etrain = E −Etest. Predicting on such

held out test sets is used for predicting missing links [8, 13]; here,

we use it for link prediction, as is standard practice [26].

Fringe ordering. We again incorporate fringe nodes from a nested

sequence of node sets {Vd }, where Vd ⊆ Vd+1 and V0 = C , the
set of core nodes. The nested sequence of training sets is then

Etraind = {(u,v ) ∈ Etrain | u,v ∈ Vd }. With email and telecom-

munications, we considered fringe nodes one by one to form the

sequence {Vd }. For LiveJournal, each successive node set instead

corresponds to adding all nodes in a state or a county. For the cores

constructed from users in a state (Wisconsin, Texas, New York, or

California), we form orderings σ of the remaining states in four

ways: (i) Most connected: σ is the ordering of states by decreasing
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number of links to the core state; (ii) Most users: σ is the ordering

by decreasing number of users; (iii) Proximity: σ is the ordering of

states by closest proximity to the core state (measured by great-

circle distance between geographic centers); and (iv) Random: σ is

a random ordering of the states.

LetUS be the users in state S . The sequence of vertex sets is all
users in the core and first d states in the ordering σ . Formally,Vd =

C ∪ (∪dt=1Uσt ). For networks whose core are users in a Wisconsin

county, we use the same orderings, except we order counties instead

of states and the fringe is only counties in Wisconsin.

Link prediction. We measure the mean prediction performance

over 10 random trials as a function of the number d of fringe states

or counties included in the training data. When states form the

core, prediction performance is largely consistent (Figure 5). For

both score functions, ordering by number of connections tends to

perform the best, with a rapid performance increase from approxi-

mately the first 10 states and then saturation with a slowmonotonic

increase. The prediction by states with the most users performs

nearly the same for the three largest states (Texas, New York, and

California; Fiugres 5B to 5D). In Wisconsin and New York, ordering

by proximity shows a steep rise in performance for the first few

states but then levels off (Figures 5A, 5C, 5E and 5G). On the other

hand, in California and Texas, ordering by proximity performs

roughly as well as a random ordering.

The networks where the cores are users from counties inWiscon-

sin have similar characteristics to the networks where the cores are

users from particular states (Figure 6). The ordering by county with

the most connections performs the best. Prediction performance

quickly saturates in the two larger counties (Figures 6C and 6D),

and the proximity ordering can be good in some cases (Figure 6A).

Summary. Usually, collecting additional data is thought to im-

prove performance in machine learning. Here we have seen that

this is not the case in some networks with core-fringe structure. In

fact, including additional fringe information can affect link predic-

tion performance in a number of ways. In some cases, it is indeed

true that additional fringe always helps, which was largely the case

with LiveJournal (Figure 5). In one email network, including any

fringe data hurt performance (Figure 2C). And yet in other cases,

some intermediate amount of fringe data gave the best performance

(Figures 4A and 4B; Figure 3). We also observed saturation in link

prediction performance as we increased the fringe size (Figure 6)

and that sometimes we need enough fringe before prediction be-

comes better than incorporating no fringe at all (Figures 2B and

3C). While this landscape is complex, we show in the next section

how these behaviors can emerge in simple random graph models.

3 RANDOM GRAPH MODEL ANALYSIS
We now turn to the question of why link prediction in core-fringe

networks exhibits such a wide variation in performance. To gain

insight into this question, we analyze the link prediction problem

on basic random graph models that have been adapted to contain

core-fringe structure.

Recall how our link prediction problem is evaluated: we are

given two pairs {u,v} and {w, z}; our algorithm predicts which of

the two candidate edges is the one that appears in the data through

a score function; and the values of the score function (and hence

the predictions) can change based on the inclusion of fringe nodes.

In a random graph model, we can think about using the same score

functions for the candidate edges (u,v ) and (w, z), but now the

score functions and the existence of edges are random variables.

As we will show, the signal-to-noise ratio of the difference in score

functions is a key statistic to optimize in order to make the most

accurate predictions, and this can vary in different ways when

including fringe nodes.

The signal-to-noise ratio (SNR). Suppose our data is generated

by a random graph model and that the indicator random variables

X ,Y ∈ {0, 1} correspond to the existence of two candidate edges

{u,v} and {w, z}, respectively, where nodes u, v , w , and z are dis-
tinct and chosen uniformly at random amongst a set of core nodes.

Without loss of generality, we assume that Pr[X ] > Pr[Y ] so that
(u,v ) is more likely to appear.

We would like our algorithm to predict that the edge {u,v} is the
one that exists, since this is the more likely edge (by assumption).

However, our algorithm does not observe X and Y directly; instead,

it sees proxy measurements (X̂ , Ŷ ), which are themselves random

variables. These proxy measurements correspond to the score func-

tion used by the algorithm; in this section, we focus on the number

of common neighbors score. Our algorithm will (correctly) predict

that edge {u,v} is more likely if and only if X̂ > Ŷ .
Furthermore, the proxy measurements are parameterized by

the amount of fringe information we have. Following our previous

notation, we call these random variables X̂d and Ŷd . These variables
represent the same measurements as X̂ and Ŷ (such as the number

of common neighbors), just on a set of graphs parameterized by

the amount of fringe information d .
Our goal is to optimize the amount of fringe to get the most

accurate predictions. Formally, if we let Zd ≜ X̂d − Ŷd , this means:

maximize

d
Pr[X̂d > Ŷd ] ⇐⇒ maximize

d
Pr[Zd > 0].

We assume that we have access to E[Zd ] and V[Zd ] for all values
of d . Our approach will be to maximize the signal-to-noise ratio

(SNR) statistic of Zd , i.e.,

maximize

d

E[Zd ]√
V[Zd ]

≜ SNR[Zd ].

We motivate this approach as follows. Absent any additional infor-

mation beyond the expectation and variance, we must use some

concentration inequality. Under the reasonable assumption that

E[Zd ] > 0 (which we later show holds in our models), the proper in-

equality is Cantelli’s: Pr[Zd ≥ 0] ≥ 1−
V[Zd ]

V[Zd ]+E[Zd ]2
=

SNR[Zd ]2

1+SNR[Zd ]2
.

Thus, the lower bound on correctly choosing X is monotonically

increasing in the SNR of our proxy measurement. Using this prob-

abilistic framework, we can now see how some of the empirical

behaviors in Section 2 might arise.

3.1 Stochastic block models
In the stochastic block model, the nodes are partitioned into K
blocks, and for parameters Pi, j (with 1 ≤ i, j ≤ K), each node in

block i is connected to each node in block j independently with

probability Pi, j . (Since our graphs are undirected, Pi, j = Pj,i .) In
our core-fringe model here, K = 4, the core corresponds to blocks

1 and 2, and the fringe corresponds to blocks 3 and 4. This model

turns out to be flexible enough to demonstrate a wide range of
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behaviors observed in Section 2. We use the following notation for

block probabilities:

P =

[ p q r s
q p s r
r s 0 0

s r 0 0

]
. (7)

Our assumptions on the probabilities are that q < p and s ≤ r . We

also assume that the first two blocks each contain nc nodes and

that the last two blocks each contain nf nodes.

We further assume we are given samples of four distinct nodes u,
v ,w , and z chosen uniformly at random from the core blocks such

that u, v , and w are in block 1 and z is in block 2. Following our

notation above, let X be the random variable that (u,v ) is an edge

and Y be the random variable that (w, z) is an edge (Pr[X ] > Pr[Y ]
since p > q). Our proxy measurements X̂ and Ŷ are the number

of common neighbors of candidate edges {u,v} and {w, z}. Our
algorithm will correctly predict that (u,v ) is more likely if X̂ > Ŷ .

Our proxy measurements are parameterized by the amount of

fringe information that they incorporate. Here, we arbitrarily or-

der the nodes in the two equi-sized fringe blocks and say that the

random variable X̂d is the number of common neighbors between

nodesu andv when including the firstd nodes in both fringe blocks.

Similarly, the random variable Ŷd is the number of common neigh-

bors of nodesw and z. By independence of the edge probabilities,

some straightforward calculations show that

E[X̂d ] = 2(nc − 1)p
2 + dr2 + ds2, E[Ŷd ] = 2(nc − 1)pq + 2drs

V[X̂d ] = 2(nc − 1)p
2 (1 − p2) + dr2 (1 − r2) + ds2 (1 − s2)

V[Ŷd ] = 2(nc − 1)pq(1 − pq) + 2drs (1 − rs ).

With no fringe information, it is immediate that the SNR is positive,

i.e., SNR[Z0] > 0: E[X̂0 − Ŷ0] = 2(nc − 1)p[p − q] > 0 as p > q. If
the two fringe blocks connect to the two core blocks with equal

probability, then the SNR with no fringe is optimal.

Lemma 3.1 (No-fringe optimality). If r = s in the core-fringe
SBM, then SNR[Zd ] decreases monotonically in d .

Proof. When r = s , by independence of X̂d and Ŷd ,

E[Z0] = E[X̂d − Ŷd ] = 2(nc − 1)p
2 + dr2 + ds2 − 2(nc − 1)pq − 2drs

= 2(nc − 1)p
2 − 2(nc − 1)pq = E[X̂0 − Ŷ0],

and V[Zd ] = V[X̂d ] + V[Ŷd ] > V[X̂0] + V[Ŷ0] = V[Z0]. □

This result is intuitive. If the two fringe blocks connect to the core

nodes with equal probability, then the node pairs (u,v ) and (w, z)
receive additional extra common neighbors according to exactly the

same distributions. Thus, these fringe nodes provide noise but no

signal. We confirm this result numerically with parameter settings

p = 0.5, q = 0.3, s = r = 0.2, and nc = 10 (Figure 7A). Indeed, the

SNR monotonically decreases as we include more fringe.

In Section 2, we saw cases where including any additional fringe

information always helped. The following lemma shows that we

can set parameters in our core-fringe SBM such that including any

additional fringe information always increases the SNR.

Lemma 3.2 (All-fringe optimality). Let r > 0, s = 0 and 4(nc −
1) (p2 −p4) > 1 in the core-fringe SBM. Then SNR[Zd ]monotonically
increases in d and limd→∞ SNR[Zd ] = ∞.

A B

Figure 7: SNR for the difference in the common neighbors
in our stochastic block model of core-fringe structure with
nc = 10. (A)When the fringe blocks have equal probability of
connecting to the two core blocks (r = s), the SNR decreases
monotonically with fringe size by Lemma 3.1. When fringe
blocks only connect to one of the core blocks (s = 0.0), the
SNR increasesmonotonicallywith fringe size Lemma3.2. (B)
For an intermediate parameter setting, including the fringe
hurts the SNR until enough fringe is included, at which
point the SNR increases monotonically (Lemma 3.3).

Proof. We have that

SNR[Zd ] =
2(nc−1)p (p−q )+dr 2√

2(nc−1) (p2 (1−p2 )+pq (1−pq ))+dr 2 (1−r 2 )
.

We can treat this function as continuous in d . Then

limd→∞ SNR[Zd ] = limd→∞
dr 2√

dr 2 (1−r 2 )
= ∞.

Similarly, we can compute the derivative with respect to d :

∂
∂d SNR[Zd ] =

r 2
√
V[Zd ]− 1

2
r 2 (1−r 2 )/

√
V[Zd ]

V[Zd ]

The derivative is positive provided that r2V[Zd ] >
1

2
r2 (1 − r2),

which is true if V[Z0] >
1

2
since V[Z0] is monotonically increasing

in d . We have that

V[Z0] = 2(nc − 1) (p
2 (1 − p2) + pq(1 − pq)) > 2(nc − 1) (p

2 − p4).

Thus, the result holds provided 4(nc − 1) (p
2 − p4) > 1. □

The result is again intuitive. By setting s = 0, the pair of nodes

in different blocks (w and z) get no additional common neighbors

from the fringe, whereas the pair of nodes in the same block (u
and v) get additional common neighbors. This should only help

our prediction performance, which is why the SNR monotonically

increases. We confirm this result numerically (Figure 7A), where

we use the same parameters as the experiment described above. We

can also check that the conditions of Lemma 3.2 are met: nc = 10

and p = 0.5, so 4(nc − 1) (p
2 − p4) = 6.75 > 1.

The SBM can also exhibit additional behaviors that we observed

in Section 2. For example, with the email-Enron-4 dataset, predic-

tion performance initially decreased as we included more fringe

and then began to increase (Figures 3D and 3H). The following

lemma says that the core-fringe SBM can capture this behavior.

Lemma 3.3 (Enough-fringe optimality). Let p, q, and r be
given. Then there exists a value of s in the core-fringe SBM such that
SNR[Zd ] initially decreases and then increases without bound.

Proof. To simplify notation, consider the following constants:

α = E[Z0] = 2(nc − 1) (p
2 − pq), β = (r − s )2, γ = V[Z0] = 2(nc −

1)[p2 (1−p2)+pq(1−pq)], and δ = r2 (1−r2)+s2 (1−s2)+2rs (1−rs ).
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With this notation, SNR[Zd ] = (α + βd )/
√
γ + δd . Treating this as

a continuous function in d , the derivative is: ∂
∂d SNR[Zd ] = (−αδ +

2βγ + βδd )/(2(γ + δd )3/2). For any s , we can choose a sufficiently

large D such that the derivative is positive when d > D, meaning

that SNR[Zd ] is increasing. Furthermore, SNR[Zd ] grows asO (
√
d ).

It is easy to check that the derivative also has at most one root,

d0 = α/β−2γ/δ .We claim thatd0 can bemade as large as desired. By

setting s sufficiently close to r , β approaches 0, while δ is bounded

away from 0. The remaining terms are positive constants. Finally,

when d = 0, the value of the derivative is (−αδ + 2βγ )/(2γ 3/2).
Again, we can make s sufficiently close to r so that β approaches 0

and the derivative is negative at d = 0. Therefore, there exists an s
such that its derivative has one root d0 ≥ 1, SNR[Zd ] decreases for
small enough d and eventually increases without bound. □

By setting nc = 10, p = 0.5, q = 0.3, r = 0.2, and s = 0.1, we see

the behavior described by Lemma 3.3—the SNR initially decreases

with additional fringe but then increases monotonically (Figure 7B).

By extending the SBM to include a third fringe block, we can also

have a case where an intermediate amount of core is optimal. We

argue informally as follows. We begin with a setup as in Lemma 3.2,

where s = 0. Including all of the fringe available in these blocks is

optimal. We then add a third fringe block that connects with equal

probability to the two core blocks. By the arguments in Lemma 3.1,

this only hurts the SNR. Thus, it is optimal to include two of the

three fringe blocks, which is an intermediate amount of fringe.

3.2 Small-world lattice models
In the one-dimensional small-world lattice model [18], there is a

node for each integer in Z and a parameter α ≥ 0. The probability

that edge (i, j ) exists is

Pr[(i, j ) ∈ E] = 1

|j−i |α . (8)

We start with a core of size 2c + 1, centered around 0: V0 = C =
{−c, . . . , c}. We then sample two nodes v andw such that

u = −c < v < w < c = z and 2 ≤ v − u < z −w . (9)

In our language at the beginning of Section 3, X is still the random

variable that edge (u,v ) exists and Y is the random variable that

edge (w, z) exists. By our assumptions and Eq. (8), we know that

Pr[X ] > Pr[Y ]. However, we will again assume that we are only

given access to the number of common neighbors through the proxy

random variables X̂ and Ŷ .
Our parameterization of the proxymeasurements are a distanced

that we examine beyond the core. Specifically, the nested sequence

of vertex sets that incorporate fringe information is given by Vd =
{−(c + d ), . . . , c + d }, and our proxy measurements are

X̂d = |{s ∈ Vd | (u, s ) and (v, s ) are edges}|

Ŷd = |{s ∈ Vd | (w, s ) and (z, s ) are edges}|.

We will analyze the random variable Zd = X̂d − Ŷd . We correctly

predict that (u,v ) is more likely than (w, z) to exist if Zd > 0. As

argued above, our goal is to find a d that maximizes SNR[Zd ].
We focus our analysis on the case of α = 1 in Eq. (8). Let As be

the indicator random variable that node s is a common neighbor

of nodes u and v , for s ∈ Z\{u,v}, and let Bs be the indicator

random variable that node s is a common neighbor ofw and z, for
s ∈ Z\{w, z}. Since u = −c and z = c , our proxy measurements are

X̂d =
∑−(c+1)
s=−(c+d ) As +

∑v−1
s=−c+1As +

∑c+d
s=v+1As (10)

Ŷd =
∑w−1
s=−(c+d ) Bs +

∑c−1
s=w+1 Bs +

∑c+d
s=c+1 Bs (11)

Define the independent indicator random variables Is,r and Js,r
where Pr[Is,r = 1] = 1/(s (s + r )) and Pr[Js,r = 1] = 1/(s (r − s )).

Now we can re-write the expressions for X̂d and Ŷd as follows:

X̂d =
∑d
s=1 Is,v−u +

∑c+d−v
s=1 Is,v−u +

∑v−u−1
s=1 Js,v−u (12)

Ŷd =
∑d
s=1 Is,z−w +

∑w−c−d
s=1 Is,z−w +

∑z−w−1
s=1 Js,z−w . (13)

The expectations are given by

E[X̂d ] =
∑d
s=1

1

s (s+v−u ) +
∑c+d−v
s=1

1

s (s+v−u ) +
∑v−u−1
s=1

1

s (v−u−s )

E[Ŷd ] =
∑d
s=1

1

s (s+z−w ) +
∑w−c−d
s=1

1

s (s+z−w ) +
∑z−w−1
s=1

1

s (z−w−s ) .

With these expressions, we can now analyze how Zd behaves

as we vary d . The following lemma establishes that Zd converges

to a positive value. Later, we use this to show that the SNR also

converges to a positive value.

Lemma 3.4. limd→∞ E[Zd ] = Z ∗ > 0.

Proof. Let a = v − u. Then limd→∞ E[X̂d ] = 2

∑∞
s=1

1

s (s+a) +∑a−1
s=1

1

s (a−s ) = 2(ψ (a + 1) +ψ (a) + 2γ )/a = 2(2ψ (a) + 1/a + 2γ )/a,

whereψ (·) is the digamma function. Similarly, if b = z −w , then

lim

d→∞
E[Ŷd ] = 2(2ψ (b) + 1/b + 2γ )/b .

Thus, Z ∗ = limd→∞ E[X̂d ]−E[Ŷd ] exists, and Z
∗ > 0 if and only if

b (ψ (a) + 1/(2a) + γ ) − a(ψ (b) + 1/(2b) + γ ) > 0 (14)

Recall that by Eq. (9), 2 ≤ a < b. Numerically, Eq. (14) holds for

(a,b) = (2, 3). Since the left-hand-side monotonically increases in

b, this inequality holds for a = 2.

Now assume b > a ≥ 3. The Puiseux series expansion of ψ at

∞ givesψ (x ) + 1/(2x ) ∈ log(x ) ± 1

12(x 2−1)
. Thus, it is sufficient to

show that b (log(a) − 1/96) + (b − a)γ > a(log(b) + 1/180), or that
0.99b log(a) + γ > 1.01a log(b), which holds for b > a ≥ 3. □

The next theorem shows that the signal-to-noise ratio converges

to a positive value. Thus, by measuring enough fringe, our proxy

measurements are at least providing the correct direction of in-

formation. However, the SNR converges, so at some point, our

information saturates.

Theorem 3.5 (SNR saturation). limd→∞ SNR[Zd ] = S∗ > 0.

Proof. By Lemma 3.4,E[Zd ] converges to a positive value. Thus,
it is sufficient to show that V[Zd ] converges. Following Eq. (12),

V[
∑∞
s=1 Is,v−u ] =

∑∞
s=1 V[Is,v−u ] =

∑∞
s=1

1

s (s+v−u ) −
1

(s (s+v−u ))2

by independence, and converges. □

The random variableWd+1, J ≜ Zd+J − Zd =
∑k=d+1+J
k=d+1 Ik,v−u −

Ik,z−w will be useful for our subsequent analysis. This is the ad-

ditional measurement available to us if we measured at distance

d + J instead of d . The next lemma says that, as we increase d , the
expectation ofWd, J goes to zero faster than its variance.
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Figure 8: Saturation and interior optima of the SNR the one-
dimensional small-world lattice model. Nodes v and w are
sampled from {u = −c, . . . , c = z} with 2 ≤ v − u < z − w .
The random variable Zd is the difference in the number
of common neighbors of {u,v} and {w, z} on the node set
{−(c + d ), . . . , c + d }. Since SNR[Z1] > SNR[Z0], an intermedi-
ate amount of fringe produces the optimal SNR (Corollary
3.8); these optima are circled in black. The SNR converges by
Theorem 3.5, and we indeed see the consequent saturation.

Lemma 3.6. For any J , limd→∞ E[Wd, J ]/V[Wd, J ] = 0.

Proof. Let a = v − u and b = z −w . By independence,

E[Wd, J ] =
∑k=d+J
k=d

1

k (k+a) −
1

k (k+b )

=
∑k=d+J
k=d

b−a
k (k+a) (k+b ) = O (

∑k=d+J
k=d 1/k3).

For large enoughd ,V[Wd, J ] =
∑k=d+J
k=d

1

k (k+a)+
1

k (k+b )−
1

(k (k+b ))2−

1

(k (k+a))2 , which is O (
∑k=d+J
k=d 1/k2). □

The next theorem now shows that in the one-dimensional lattice

model, the signal-to-noise ratio eventually begins to decrease. This

means that at some point, the noise overwhelms the signal. Thus,

it will never be best to gather as much fringe as possible.

Theorem 3.7. There exists aD for which SNR[ZD ] > SNR[ZD+j ]
for any j > 0.

Proof. We have that SNR[Zd ] > SNR[Zd+j ] if and only if

E[Zd ]√
V[Zd ]

>
E[Zd+Wd+1, j ]√
V[Zd+Wd+1, j ]

⇐⇒
E[Zd ]2
V[Zd ]

>
2E[Zd ]E[Wd+1, j ]+E[Wd+1, j ]

2

V[Wd+1, j ]
.

The second inequality above comes from squaring both sides of

the first inequality; both terms in the first inequality are positive

for large enough d by Lemma 3.4, so we can keep the direction of

the inequality. By Theorem 3.5, the left-hand-side of the inequality

converges to a positive constant. We claim that the right-hand-side

converges to 0.

By Lemma 3.4, E[Zd ] converges, so it must be bounded by

a positive constant constant. Furthermore, since Zd+j = Zd +
Wd+1, j , we have that E[Wd+1, j ] → 0. Combining these results,

2E[Zd ]E[Wd+1, j ] + E[Wd+1, j ]
2 = O (E[Wd+1, j ]), and we have that

E[Wd+1, j ]/V[Wd+1, j ]→ 0 by Lemma 3.6. □

A consequence of this theorem is that if the SNR initially in-

creases, then an intermediate amount of fringe is optimal. The

reason is that the SNR initially increases but at some point begins

to decrease monotonically (Theorem 3.7) before converging to a

positive value (Theorem 3.5). We formalize this as follows.

Corollary 3.8 (Intermediate-fringe optimality). If SNR[Z0] <
SNR[Z1], then d∗ = argmaxd SNR[Zd ] satisfies 0 < d∗ < ∞.

Numerically, SNR[Z0] < SNR[Z1] in several cases (Figure 8). In

this experiment, we fix c = 10 andw = 1 (so z−w = 9) and vary the

amount of fringe from 0 to 12 nodes on either end of the core. We

also varyv so thatv−u ∈ {2, 3, 4, 5, 6}. We observe two phenomena

consistent with our theory. First, by Corollary 3.8, an intermediate

amount of fringe information should be optimal; indeed, this is the

case. Second, by Theorem 3.5, the SNR converges, indicating that

saturation should kick in at some finite fringe size. This is true in

our experiments, where saturation occurs after around d = 8.

4 DISCUSSION
Link prediction is a cornerstone problem in network science [24, 26],

and the models for prediction include those that are mechanistic [5],

statistical [8], or implicitly captured by a principled heuristic [3, 4].

The major difference in our work is that we explicitly study the

consequences of a common dataset collection process that results in

core-fringe structure. Most related to our analysis of random graph

models are theoretical justifications of principled heuristics such

as the number of common neighbors in latent space models [34]

and in general stochastic block models [33].

The core-fringe structure that we study can be interpreted as an

extreme case of core-periphery structure in complex networks [7,

16, 31, 37]. In more classical social and economic network analy-

sis, core-periphery structure is a consequence of differential sta-

tus [11, 22]. In this paper, the structure emerges from data collection

mechanisms, which raises new research questions of the kind that

we have addressed. However, our results hint that periphery nodes

could also be noisy sources of information and possibly warrant

omission in standard link prediction. Our fringe measurements can

also be viewed as adding noisy training data, which is related to

training data augmentation methods [29, 30].

Conventional machine learning wisdom says that more data

generally helps make better predictions. We showed that this is

far from true in the common problem of network link prediction,

where additional data comes from observing how some core set

of nodes interacts with the rest of the world, inducing core-fringe

structure. Our empirical results show that the inclusion of additional

fringe information leads to substantial variability in prediction

performance with common link prediction heuristics. We observed

cases where fringe information is (i) always harmful, (ii) always

beneficial, (iii) beneficial only up to a certain amount of collection,

and (iv) beneficial only with enough collection.

At first glance, this variability seems difficult to characterize.

However, we showed that these behaviors arise in some simple

graph models—namely, the stochastic block model and the one-

dimensional small-world lattice model—by interpreting the benefit

of the fringe information as changing the signal-to-noise ratio in

our prediction problem. Our datasets are certainly more complex

than these models, but our analysis suggests that variability in

prediction performance when incorporating fringe data is much

more plausible than one might initially suspect. Even when fringe
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data is available in network analysis, we must be careful how we

incorporate this data into the prediction models we build.
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