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Three Hypergraph Eigenvector Centralities\ast 

Austin R. Benson\dagger 

Abstract. Eigenvector centrality is a standard network analysis tool for determining the importance of (or
ranking of) entities in a connected system that is represented by a graph. However, many complex
systems and datasets have natural multiway interactions that are more faithfully modeled by a
hypergraph. Here we extend the notion of graph eigenvector centrality to uniform hypergraphs.
Traditional graph eigenvector centralities are given by a positive eigenvector of the adjacency matrix,
which is guaranteed to exist by the Perron--Frobenius theorem under some mild conditions. The
natural representation of a hypergraph is a hypermatrix (colloquially, a tensor). Using recently
established Perron--Frobenius theory for tensors, we develop three tensor eigenvectors centralities for
hypergraphs, each with different interpretations. We show that these centralities can reveal different
information on real-world data by analyzing hypergraphs constructed from n-gram frequencies,
cotagging on stack exchange, and drug combinations observed in patient emergency room visits.
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1. Finding important entities from relations. The central question of centrality and
ranking in network analysis is ``How do we find the important entities given a set of relationships
between them?"" Make no mistake---when the relationships are pairwise and the system is
modeled by a graph, there is a plethora of definitions and methods for centrality [Borgatti and
Everett, 2006; Estrada and Higham, 2010; Boldi and Vigna, 2014], and the study of centrality in
social network analysis alone has a long-standing history [Bavelas, 1950; Katz, 1953; Sabidussi,
1966; Bonacich, 1972; de Sola Pool and Kochen, 1978; Freeman, 1977]. Somewhat more
modern developments come from Web applications, such as PageRank, which was used in the
early development of Google search results [Brin and Page, 1998; Page et al., 1999], and hub
and authority scores, which were used to find authoritative Web sources [Kleinberg, 1999].
Centrality measures are a pivotal part of the network analysis toolbox and thus get used in a
variety of applications [Gleich, 2015; Jeong et al., 2001; Bullmore and Sporns, 2009]. And in
addition to the problem of identifying important nodes, centrality is also used as a feature
in network analysis machine learning tasks such as role discovery [Henderson et al., 2012],
computing graph similarity [Koutra et al., 2013], and spam detection [Ye and Akoglu, 2015].

A major shortcoming of network centrality stems from the long-running assumption
throughout network science that relationships are pairwise measurements and hence a graph
is the appropriate mathematical model [Strogatz, 2001; Newman, 2003]. Thus, nearly all
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centrality measures are designed within this dyadic paradigm. However, many systems contain
simultaneous interactions between several entities. For example, people communicate and
collaborate in groups, chemical reactions involve several reagents, and more than two labels
may be used to classify a product. In these cases, a hypergraph is a more faithful model, but
we lack foundational mathematical analogues of centrality for this model.

This paper focuses on developing analogues of graph eigenvector centrality for hypergraphs.
The term ``eigenvector centrality"" has two meanings in network science. Sometimes, eigenvector
centrality means any set of centrality scores on nodes that is an eigenvector of some natural
matrix associated with the network at hand. These include, for example, the aforementioned
PageRank1 and hub and authority scores. Other times, eigenvector centrality refers specifically
to the principal eigenvector of the adjacency matrix of a graph [Newman, 2008] (which makes
the vernacular confusing). This eigenvector centrality was originally proposed by Bonacich
[1972], was later used to study social networks [Bonacich, 1987], and will be the notion of
eigenvector centrality used in this paper.

Background on graph eigenvector centrality. Here we provide the requisite background on
eigenvector centrality for graphs. We generalize the formulation to hypergraphs in the next
section. Assume that we have a strongly connected (possibly directed) graph G = (V,E)
with adjacency matrix \bfitA . The eigenvector centrality c may be derived via the following two
desiderata [Bonacich, 1972; Newman, 2008]:

1. The centrality score of each node u, cu, is proportional to the sum of the centrality
scores of the neighbors of u, i.e., cu \propto 

\sum 
(u,v)\in E cv.

2. The centrality scores should be positive, i.e., c > 0.
Assuming the same proportionality constant, we may auspiciously write the first condition as

(1.1) cu =
1

\lambda 

\sum 
(u,v)\in E

cj for all u \in V,

where \lambda is a constant. The matrix enthusiast quickly recognizes that c is an eigenvector of \bfitA :

(1.2) \bfitA c = \lambda c.

Equation (1.2) holds for any eigenpair of \bfitA . The second of our desiderata, along with the
Perron--Frobenius theorem, tells us which one to use.

Theorem 1.1 (Perron--Frobenius theorem for matrices as in Theorem 1.4 of [Berman and
Plemmons, 1994]). Let \bfitA be an irreducible matrix. Then there exists an eigenvector c > 0 such
that \bfitA c = \lambda 1c, \lambda 1 > 0 is an eigenvalue of largest magnitude of \bfitA , the eigenspace associated
with \lambda 1 is one-dimensional, and c is the only nonnegative eigenvector of \bfitA up to scaling.

If \bfitA is the adjacency matrix of a strongly connected graph, then \bfitA is irreducible, and we
can apply the theorem. The vector c gives the centrality scores, which are unique up to scaling.
Eigenvector centrality of this form has appeared in a range of applications, including the
analysis of infectious disease spreading in primates [Balasubramaniam et al., 2016], patterns
in fMRI data of human brains [Lohmann et al., 2010], and career trajectories of Hollywood
actors [Taylor et al., 2017].

1PageRank has been called the ``\$25,000,000,000 Eigenvector"" [Bryan and Leise, 2006].
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2. Hypergraph eigenvector centralities. Instead of a graph, we now assume that our
dataset is an m-uniform hypergraph \scrH = (V,E), which means that each hyperedge e \in E
is a size-m subset of V . If m = 3, a natural representation of \scrH is an n\times n\times n symmetric
``hypergraph adjacency tensor"":2

(2.1) Tu,v,w =

\Biggl\{ 
1 if (u, v, w) \in E,

0 otherwise.

When deriving graph eigenvector centrality above, we used an irreducible adjacency matrix
from a strongly connected graph. We need analogous notions for tensors and hypergraphs.

Definition 2.1 (irreducible tensor [Lim, 2005]). An order-m, dimension-n tensor \bfitT is
reducible if there exists a nonempty proper subset S \subset \{ 1, . . . , n\} such that for any i \in S and
j2, . . . , jm /\in S, \bfitT i,j2,...,jm = 0. If \bfitT is not reducible, then it is irreducible.

We introduce connected hypergraphs here using the language of tensors. The definition is
the same as classical notions of connectivity in hypergraphs [Berge, 1984] when the tensor is
symmetric, which is the case in (2.1).

Definition 2.2 (strongly connected hypergraph). An m-uniform, n-node hypergraph with
adjacency tensor \bfitT is strongly connected if the graph induced by the n\times n matrix \bfitM obtained
by summing the modes of \bfitT , Mij =

\sum 
j3,...,jm

Ti,j,j3,...,jm, is strongly connected.

The matrix \bfitM defined above is called the representative matrix of \bfitT , and, importantly, a
strongly connected hypergraph has an irreducible adjacency tensor [Qi and Luo, 2017]. Here
we assumed an ``undirected"" set-based definition of hypergraphs, so \bfitT is symmetric following
(2.1). This means that the graph induced by \bfitM is undirected and ``strongly connected"" really
just means ``connected."" Furthermore, the graph induced by \bfitM has the same connectivity
as the clique expansion graph of a hypergraph [Agarwal et al., 2006], where each hyperedge
induces a clique on the nodes in the graph. There are natural notions of directed hypergraphs
with non-symmetric adjacency tensors [Gallo et al., 1993], and some of the theorems we use
later still apply in these cases. Therefore, we use the term ``strongly connected"" throughout.

In the rest of this section, we develop three eigenvector centralities for strongly connected
hypergraphs. To do so, we generalize the desiderata for the eigenvector centrality scores c:

1. Some function f of the centrality of node u, f(cu), should be proportional to the sum
of some function g of the centrality score of its neighbors. In a 3-uniform hypergraph,
this means that for some positive constant \lambda ,

(2.2) f(cu) =
1

\lambda 

\sum 
(u,v,w)\in E

g(cv, cw).

2. The centrality scores should be positive, i.e., c > 0.
Different choices of f and g give new notions of centrality. Careful choices of f and g relate to
matrix and tensor eigenvectors. To keep notation simpler, we use 3-uniform hypergraphs when
introducing new concepts (as in (2.2)) and then generalize ideas to k-uniform hypergraphs.

2Technically, this object is a hypermatrix. However, ``tensor"" is synonymous with ``multidimensional array""
in the data mining community [Kolda and Bader, 2009], so we use it here. See Lim [2013] for precise distinctions.
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2.1. Clique motif eigenvector centrality (CEC). Perhaps the most innocuous choices of
f and g in (2.2) are f(cu) = cu and g(cv, cw) = cv + cw. In this case, there is a simple matrix
formulation of the eigenvector formulation. This is unsurprising since f and g are linear.

Proposition 2.3. Let \scrH be a strongly connected 3-uniform hypergraph. When f(cu) = cu
and g(cv, cw) = cv + cw in (2.2), the centrality scores are given by the eigenvector of the largest
real eigenvalue of the matrix \bfitW , where Wux is the number of hyperedges containing u and x.

Proof.

\lambda f(cu) = \lambda cu =
\sum 

(u,v,w)\in E

g(cv, cw) =
\sum 

(u,v,w)\in E

cv + cw =
\sum 

e\in E : \{ u,x\} \subset e

cx =
\sum 
x

Wuxcx.

Thus, \lambda c = \bfitW c, and we assumed above that \lambda > 0 and c > 0. If \scrH is strongly connected, then
the undirected graph induced by \bfitW is connected and \bfitW is irreducible. Applying Theorem 1.1
says that c must be the eigenvector corresponding to the largest real eigenvalue.

The matrix\bfitW was called the ``motif adjacency matrix"" by the author in previous work [Ben-
son et al., 2016; Yin et al., 2017]. Specifically, it would be the triangle motif adjacency matrix
if you interpret 3-uniform hyperedges as triangles in some graph. We give a formal definition
for the general case.

Definition 2.4 (Clique motif eigenvector centrality (CEC)). Let \scrH be a strongly connected
m-uniform hypergraph. Then the clique motif eigenvector centrality scores c are given by the
eigenvector \bfitW c = \lambda 1c, where \| c\| 1 = 1, Wuv is the number of hyperedges containing nodes u
and v, and \lambda 1 is the largest real eigenvalue of \bfitW .

One interpretation of CEC (and eigenvector centrality for undirected graphs in general) is
via a best low-rank decomposition. Assuming that the graph induced by \bfitW is nonbipartite
(which it will be if m \geq 3, since hyperedges induce cliques in \bfitW ), then \lambda 1 > 0 is the
unique largest magnitude eigenvalue of the symmetric matrix \bfitW [Lov\'asz, 2007], and c is
also the principal left and right singular vector of \bfitW . Thus, by the Eckart--Young--Mirsky
theorem [Golub and Van Loan, 2013, Theorem 2.4.8], c \propto argmin\| \bfx \| \in \BbbR n \| \bfitW  - xxT \| F . We
can also interpret CEC with averaged path counts. First, observe that

\#(length-\ell paths to u) =
\sum 

(u,v,w)\in E

\#(length-(\ell -1) paths to v) + \#(length-(\ell -1) paths to w).

Let p(\ell ) be a vector that counts the number of length-\ell paths ending at each node from any
starting node. Then

p
(1)
u = [\bfitW e]u =

\sum 
(u,v,w)\in E ev + ew = \#((u, v, w) \in E) and(2.3)

p
(\ell )
u = [\bfitW p(\ell  - 1)]u =

\sum 
(u,v,w)\in E p

(\ell  - 1)
v + p

(\ell  - 1)
w ,(2.4)

where e is the vector of all ones. If we think of the CEC vector c as the limit of the power
method algorithm, then c can be interpreted as the steady state of a weighted average of infinite
paths through the hypergraph (see Benzi and Klymko [2015] for a more formal argument).
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Computing the CEC vector is often straightforward. If \scrH is strongly connected, then the
undirected graph induced by \bfitW is connected. If this graph is also nonbipartite (which, again,
must be the case for m-uniform hypergraphs when m \geq 3), then the eigenvalue in Theorem 1.1
is the unique eigenvalue of largest magnitude. In this case, we can use the power method to
reliably compute c.

One subtlety is that the eigenvector is only defined up to its magnitude. Usually, this issue
is ignored under the argument that only relative order matters for ranking problems. However,
we should be conscientious when centrality scores are used as features in machine learning.
For example, the scale of a centrality vector as a node feature would affect common tasks
such as principal component analysis, where scale changes variance. (These issues can also be
alleviated by preprocessing techniques, such as normalizing features to have zero mean and
unit variance, although such preprocessing is not always employed.) In this paper, to make
the presentation simple, we assume that centrality vectors are scaled to have unit 1-norm.

2.2. \bfitZ -eigenvector centrality (ZEC). To actually incorporate nonlinearity, we can keep
the innocuous choice f(cu) = cu but change g to the product form g(cv, cw) = cvcw in (2.2).
Now, the contribution of the centralities of two nodes in a 3-node hyperedge is multiplicative for
the third. This leads to the following system of nonlinear equations for a 3-uniform hypergraph:

(2.5) cu =
1

\lambda 

\sum 
(u,v,w)\in E

cvcw, u \in V \Leftarrow \Rightarrow \bfitT c2 = 2\lambda c.

Here, \bfitT c2 is shorthand for a vector with [\bfitT c2]i \equiv 
\sum 

j,k Ti,j,kcjck (similarly, for an order-

m tensor, [\bfitT cm - 1]i \equiv 
\sum 

j2,...,jm
Ti,j2,...,jmcj2 \cdot \cdot \cdot cjm). The extra factor of 2 comes from the

symmetry in the adjacency tensor (for an order-m tensor, this extra factor is (m - 1)!).
A real-valued solution (c, \lambda ) with c \not = 0 to (2.5) is called a tensor Z-eigenpair [Qi, 2005]

or a tensor l2-eigenpair [Lim, 2005] (we will use the ``Z"" terminology). At first glance, it is
unclear if such an eigenpair even exists, let alone a positive one. Assuming the hypergraph is
strongly connected, Chang et al. [2008] proved a Perron--Frobenius-like theorem that gives us
the existence of a positive solution c.

Theorem 2.5 (Perron--Frobenius for Z-eigenvectors---Corollary 5.10 of [Chang et al., 2008]3).
Let \bfitT be an order-m irreducible nonnegative tensor. Then there exists a Z-eigenpair (x, \lambda 1)
satisfying \bfitT xm - 1 = \lambda 1x such that \lambda 1 > 0 and x > 0.

Unlike the case with matrices, there can be multiple positive Z-eigenvectors, even for the
same eigenvalue [Chang et al., 2013, Example 2.7]. With this tensor Perron--Frobenius theorem
in hand, we can define Z-eigenvector centrality for hypergraphs. To manage the uniqueness
issue, we consider any positive solution to be a centrality vector.

Definition 2.6 (Z-eigenvector centrality (ZEC)). Let \scrH be a strongly connected m-uniform
hypergraph with adjacency tensor \bfitT . Then a Z-eigenvector centrality vector for \scrH is any
positive vector c satisfying \bfitT cm - 1 = \lambda c and \| c\| 1 = 1 for some eigenvalue \lambda > 0.

3An erratum was published for this result, but the error does not affect our statement or analysis. See
Chang et al. [2013, Theorem 2.6] from the same authors for the corrected result.
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Analogous to the CEC (or standard graph) case, there is a ZEC vector that is a best
low-rank approximation. To prove this, we first need the following lemma.

Lemma 2.7. Let \bfitT be an irreducible symmetric nonnegative tensor, and suppose that x is
a nonnegative Z-eigenvector of \bfitT with positive eigenvalue \lambda > 0. Then x is positive.

Proof. The proof technique follows Qi et al. [2016, Lemma 21]. Since \lambda > 0 and x \geq 0,
there must be some coordinate i such that xi > 0. By (2.5) and nonnegativity of \bfitT ,

(2.6) 0 < \lambda xi =
\sum 

j2,...,jm : Ti,j2,...,jm
>0

Ti,j2,...,jmxj2 \cdot \cdot \cdot xjm =\Rightarrow xj2 , . . . , xjm > 0.

Therefore, xr > 0 for any index r \in \{ (i, j2, . . . , jm) | Ti,j2,...,jm > 0\} . Iterating this argument
shows that xs > 0 for any index s reachable from i in the graph induced by the representation
matrix Mij =

\sum 
j2,...,jn

Ti,j,j2,...,jn . Since \bfitT is irreducible, this is all indices, so x > 0.

The following theorem says that there the ZEC vector is proportional to a best rank-1
approximation vector of the hypergraph adjacency tensor. However, neither ZEC vectors nor
best rank-1 approximations need be unique [Friedland and Ottaviani, 2014].

Theorem 2.8. Let \scrH be an m-uniform strongly connected hypergraph with symmetric adja-
cency tensor \bfitT . Then there is a ZEC vector c \propto v, where v \in argmin\bfx \in \BbbR n \| \bfitT  - \otimes mx\| F and
\otimes mx is the order-m symmetric tensor \bfitS defined by Si1,...,im = xi1 \cdot \cdot \cdot xim.

Proof. The proof combines several prior results on tensors with Lemma 2.7. First, any
best symmetric rank-1 approximation to a symmetric tensor is a tensor Z-eigenvector with
largest magnitude eigenvalue [Kofidis and Regalia, 2002, Theorem 3]. Second, the best rank-1
approximation to a symmetric tensor can be chosen symmetric [Chen et al., 2012, Theorem
4.1]. Thus, a best rank-1 approximation can be chosen to be the Z-eigenvector with largest
magnitude eigenvalue. Third, the coordinate values of any best rank-1 approximation to a
nonnegative tensor can be chosen so that its entries are nonnegative [Qi et al., 2016, Theorem
16], so there is a nonnegative eigenvector with largest magnitude eigenvalue. Fourth, the
largest Z-eigenvalue in magnitude is positive [Chang et al., 2013, Theorem 3.11 and Corollary
3.12]. Finally, Lemma 2.7 says that the corresponding eigenvector must be positive.

Computing tensor Z-eigenvectors is much more challenging than computing matrix eigen-
vectors; computing a best symmetric rank-1 approximation to a tensor is NP-hard [Hillar and
Lim, 2013, Theorem 10.2]. Adjacency tensors of hypergraphs are symmetric tensors, so we
might first try the symmetric higher-order power method, an analogue of the power method
for matrices; however, such methods are not guaranteed to converge [Lathauwer et al., 2000;
Regalia and Kofidis, 2000; Kofidis and Regalia, 2002]. A shifted symmetric higher-order power
method with an appropriate shift guarantees convergence to some Z-eigenpair [Kolda and
Mayo, 2011, 2014] but can only converge to a class of so-called stable eigenpairs.4 It turns out
that ZEC vectors can be unstable, which hinders our reliance on these algorithms.

4Let (\lambda ,\bfx ) be an eigenpair of an order-m symmetric tensor \bfitT with \| \bfx \| 2 = 1 and \bfitU be an orthonormal basis
of the subspace orthogonal to \bfx . Then the eigenpair is unstable if \bfitU T ((m - 1)\bfitT [\bfx ] - \lambda \bfx )\bfitU is indefinite, where
\bfitT [\bfx ] is the matrix with (i, j) entry

\sum 
j3,...,jn

Ti,j,j3,...,jnxj3 \cdot \cdot \cdot xjn . An eigenpair is stable if it is not unstable.
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Example 2.9. The following strongly connected 3-uniform hypergraph has a ZEC vector c
that is an unstable eigenvector in the sense of Kolda and Mayo [2011]:

1

2

3

4

5

6

7

Indeed, one can verify that (x,
\surd 
2) is a Z-eigenpair, where \| x\| 2 = 1 with x1 = x2 = x5 =

x6 =
\surd 
6/6, x4 = x7 =

\surd 
2/6, and x3 =

\surd 
2/3. Some simple calculations following Kolda and

Mayo [2011, Definition 3.4] show that x is an unstable Z-eigenvector.

There are algorithms based on semidefinite programming hierarchies that are guaranteed
to compute the eigenvectors [Cui et al., 2014; Nie and Wang, 2014; Nie and Zhang, 2018], but
these methods do not scale to the data problems we explore in section 3. Recent work by
the author develops a method to compute Z-eigenpairs using dynamical systems, which can
scale to large tensors and also compute unstable eigenvectors [Benson and Gleich, 2018], albeit
without theoretical guarantees on convergence. In fact, we used this method to discover the
example in Example 2.9. We use this algorithm for our computational experiments.

2.3. \bfitH -eigenvector centrality (HEC). A reasonable qualm with ZEC is that the dimen-
sional analysis is nonsensical---if centrality is measured in some ``unit,"" then (2.5) says that a
unit of centrality is equal to the sum of the product of that same unit. With this in mind, we
might choose f(cu) = c2u and g(cv, cw) = cvcw in (2.2) to satisfy dimensional analysis:

(2.7) c2u =
1

\lambda 

\sum 
(u,v,w)\in E

cvcw, u \in V \Leftarrow \Rightarrow \bfitT c2 = 2\lambda c[2].

Here, c[k] is shorthand notation for the entrywise kth power of a vector.5 Again, the extra
factor of 2 comes from the symmetry in the adjacency tensor.

A real-valued solution (c, \lambda ) to (2.7) with c \not = 0 is called a tensor H-eigenpair [Qi, 2005] or
a tensor lk-eigenpair [Lim, 2005] (we will use the ``H"" terminology). Again, we can employ
tensor Perron--Frobenius theory for the existence of a positive solution with positive eigenvalue.

Theorem 2.10 (Perron--Frobenius for H-eigenvectors---Theorem 1.4 of [Chang et al., 2008]).
Let \bfitT be an order-m irreducible tensor. Then there exists an H-eigenpair (x, \lambda 1) with x > 0
and \lambda 1 > 0. Moreover, any nonnegative H-eigenvector also has eigenvalue \lambda 1, such vectors are
unique up to scaling, and \lambda 1 is the largest eigenvalue in magnitude.

The result is stronger than for Z-eigenvectors (Theorem 2.5)---the positive H-eigenvector
is unique up to scaling. With this result, we define our third hypergraph eigenvector centrality.

Definition 2.11 (H-eigenvector centrality (HEC)). Let \scrH be a strongly connected m-uniform
hypergraph with adjacency tensor \bfitT . Then the H-eigenvector centrality vector for \scrH is the
positive real vector c satisfying \bfitT cm - 1 = \lambda cm and \| c\| 1 = 1 for some eigenvalue \lambda > 0.

Computing the HEC vector is considerably easier than computing a ZEC vector. Simple
power-method-like algorithms are guaranteed to converge and work well in practice [Liu et al.,

5Written as c .\^ k in Julia or MATLAB.
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u

Centrality cu/cv limm\rightarrow \infty cu/cv

CEC 2r(m - 1)\surd 
m2+4(m - 1)(r - 1)+m - 2

2r

ZEC r1/2 \ast r1/2

HEC r1/m 1

Figure 1. Hypergraph eigenvector centralities on sunflowers with singleton cores. Left: A 4-uniform, 5-petal
sunflower hypergraph with core C = \{ u\} . Each petal is a hyperedge, marked here with a yellow-shaded ellipse
around the nodes. Right: Finite and asymptotic ratios of the centrality of the center node u to any other node v
(which all have the same centrality) in a general m-uniform, r-petal sunflower hypergraph with singleton core.
The ZEC scores have no dependence on m, and the HEC scores tend to uniform as m grows.
\ast This ratio holds when m > 3 and can hold when m = 3 (see Proposition 2.13).

2010; Ng et al., 2009; Zhou et al., 2013; Gautier et al., 2017, 2018].

2.4. Analysis of an illustrative example: The sunflower with singleton core. A sunflower
hypergraph has a hyperedge set E with a common pairwise intersection. Formally, for any
hyperedges (called petals) A,B \in E, A \cap B = C. The common intersection C is called the
core. The sunflower is similar to the star graph, which has been used to evaluate centralities
in social networks [Ruhnau, 2000]. Here, we use sunflowers as an illustrative example for the
behavior of our three hypergraph eigenvector centralities. We specifically consider sunflowers
with r petals where the core is a singleton, i.e., A \cap B = \{ u\} for any A,B \in E (Figure 1, left).
Below, we derive analytic solutions for the centrality of each method (see also Figure 1, right).
In all cases, the hypergraph centralities ``do the right thing""; namely the center node u has
the largest centrality. However, the behavior of the three centralities differ.

CEC. Let v be some other node than u. We assume that the centrality cv is equal to some
constant z for all nodes v and show that we get a positive eigenvector. The Perron--Frobenius
theorem then gives us uniqueness. Recall that r is the number of petals in the hypergraph.
Under these assumptions, the CEC equations satisfy

\lambda cu =
\sum 

(u,v1,...,vm - 1)\in E
\sum m - 1

j=1 cvj =\Rightarrow \lambda cu = r(m - 1)z,

\lambda cv = cu + (m - 2)z =\Rightarrow \lambda 2z = r(m - 1)z + \lambda (m - 2)z

=\Rightarrow \lambda = 1
2

\sqrt{} 
m2 + 4(m - 1)(r  - 1) +m - 2 =\Rightarrow cu = 2r(m - 1)\surd 

m2+4(m - 1)(r - 1)+m - 2
cv.

Since m \geq 2 and cv > 0, cu and \lambda are both positive for any positive value cv. Some algebra
shows that cu > cv for finite m and r \geq 2:

cu
cv

= 2r(m - 1)\surd 
m2+4(m - 1)(r - 1)+m - 2

= r\sqrt{} 
1
4(

m
m - 1)

2
+ r - 1

m - 1
+ 1

2
\cdot m - 2
m - 1

> r\sqrt{} 
1+ r - 1

m - 1
+ 1

2

\geq 

\left\{   
r\surd 
2+ 1

2

> 1, m \geq r,

r\surd 
r+ 1

2

> 1, m < r.

Finally, we only need to choose cv > 0 and normalize so that \| c\| 1 = 1.
ZEC. The Perron--Frobenius theorem for tensor Z-eigenvectors does not preclude the

existence of multiple positive eigenvectors with positive eigenvalues. We indeed see the
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nonuniqueness for the sunflower, but only in the 3-uniform case. We first show the following
lemma, which states that the centrality of the noncore nodes in any petal must be the same.

Lemma 2.12. In any sunflower whose common intersection is a singleton \{ u\} , the ZEC
scores of all nodes in the same petal---except for u---are the same.

Proof. Let cu be the centrality score of node u. Let w be any other node in an arbitrary
petal P , whose centrality score is cw. The ZEC equations satisfy

(2.8) \lambda cw = cu
\prod 

v\in P\setminus \{ u,w\} cv =\Rightarrow \lambda c2w = cu
\prod 

v\in P\setminus \{ u\} cv = \lambda c2w\prime for any w\prime \in P .

We next characterize exactly when the sunflower has a unique ZEC vector.

Proposition 2.13. Let \scrH be an m-uniform sunflower with singleton core \{ u\} and petals \{ P\} .
1. If m \not = 3, the unique Z-eigenvector centrality score c for \scrH is given by cu/cv =

\surd 
r, where

v is any node other than u and cv is a constant over nodes v \not = u.
2. If m = 3, there are infinite Z-eigenvector centrality scores for \scrH ; any vector with cv = cP

for v \in P, v \not = u, and cu =
\sqrt{} \sum 

P c2P are Z-eigenvector centrality scores.

Proof. By Lemma 2.12, each node other than u has centrality cP , where P is the petal to
which the node belongs. Rewriting (2.8) in terms of cP gives

(2.9) \lambda c2P = cu
\prod 

v\in P\setminus \{ u\} cP = cuc
m - 1
P =\Rightarrow \lambda /cu = cm - 3

P .

This implies that cm - 3
P = cm - 3

P \prime for any petals P and P \prime . Assume m \not = 3. Then cP = cP \prime since
cP > 0. Let z be the centrality of any node v \not = u. The ZEC equations satisfy

\lambda cu =
\sum 

P zm - 1 = rzm - 1 and \lambda z = cuz
m - 2.(2.10)

Combining these equations gives \lambda 2 = rz2(m - 2), or \lambda =
\surd 
rzm - 2. Plugging this expression for

\lambda into (2.10) gives

cu/cv = rzm - 1/(\lambda z) = rzm - 1/(
\surd 
rzm - 1) =

\surd 
r.(2.11)

Now assume m = 3. Then \lambda = cu by (2.9). Let cP > 0 be an arbitrary constant for each
petal P , and define c2u =

\sum 
P c2P . We now just check that the Z-eigenvector equations hold.

(2.12) c2u = \lambda cu =
\sum 

P

\prod 
v\in P\setminus \{ u\} cv =

\sum 
P c2P ,

which holds by the definition of c2u. Our choice of cP was any positive real number, and for any
node w \not = u in petal P = \{ u, v, w\} , the ZEC equation is cucP = cucv = \lambda cw = cucw = cucP .

Surprisingly, when m = 3, the noncenter nodes can have different ZEC scores, even though
the symmetry of the problem would suggest that they would be the same. Also surprisingly, all
scores are independent of m, the number of nodes in a hyperedge. However, ZEC is consistent
in the sense that the center node always has the largest centrality score.
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Table 1
Summary statistics of datasets. The number of nodes is the dimension of the cubic adjacency tensor \bfitT of

the largest component of the hypergraph, and nnz(\bfitT ) is the number of nonzeros in \bfitT , which we divide by the
number of symmetries in the symmetric tensor.

3-uniform 4-uniform 5-uniform

dataset \# nodes
\mathrm{n}\mathrm{n}\mathrm{z}(\bfitT )

6
\# nodes

\mathrm{n}\mathrm{n}\mathrm{z}(\bfitT )

24
\# nodes

\mathrm{n}\mathrm{n}\mathrm{z}(\bfitT )

120

N-grams 30,885 888,411 23,713 957,904 24,996 995,952
tags-ask-ubuntu 2,981 279,369 2,856 145,676 2,564 25,475

DAWN 1,677 41,225 1,447 29,829 1,212 15,690

H-eigenvector centrality. Theorem 2.10 gives us uniqueness of a positive vector with positive
eigenvalue. We again assume that cv = z for any node v \not = u. The HEC equations satisfy

\lambda cm - 1
u =

\sum 
(u,v1,...,vm - 1)

\prod m - 1
j=1 cvj =\Rightarrow \lambda cm - 1

u = rzm - 1,(2.13)

\lambda cm - 1
v = cuz

m - 2 =\Rightarrow \lambda zm - 1 = cuz
m - 2 =\Rightarrow cu = \lambda z.(2.14)

Plugging cu = \lambda z into (2.13) gives \lambda (\lambda z)m - 1 = rzm - 1 =\Rightarrow \lambda = r1/m. Thus, cu/cv = r1/m for
v \not = u, and cu/cv \rightarrow 1 if the number of petals r is fixed and the uniformity m grows large.

2.5. Recap: Which centrality should we use? We derived three hypergraph eigenvector
centralities. The appeal of CEC is that we only need to rely on the familiar; i.e., we can just
use nonnegative matrix theory. However, CEC does not incorporate any interesting nonlinear
structure, whereas ZEC and HEC incorporate nonlinearity. HEC is certainly attractive
computationally---simple algorithms can compute a unique eigenvector centrality vector. We
do not have scalable algorithms guaranteed to compute a ZEC vector, and even worse, the ZEC
vector may not be unique. Moreover, the nonuniqueness can show up on simple hypergraphs, as
we saw with the sunflower. Both CEC and HEC have a proper dimensional analysis, while ZEC
does not. On the other hand, ZEC can carry the same rank-1 approximation interpretation
as standard graph eigenvector centrality. Also, in the asymptotics of the sunflower analysis
(Figure 1, right), the HEC score of the center node approaches that of the other nodes, while
the relative CEC and ZEC scores of the center node to the others are constants that only
depend on the number of hyperedges.

So which centrality should we use? Our analysis suggests that none is superior to all others.
As is the case with graph centralities in general, the scores are not useful in a vacuum. Instead,
we can use various centralities to study data. For example, multiple centralities provide more
features that can be used for machine learning tasks. In the next section, we show that the
three hypergraph centralities can provide qualitatively different results on real-world data.

3. Computational experiments and data analysis. We now analyze our proposed eigen-
vector centralities on three real-world datasets. We construct a 3-uniform, 4-uniform, and
5-uniform hypergraph from each of the three datasets (summary statistics are in Table 1), so
there are 9 total hypergraphs for our analysis. For each of the 9 hypergraphs, we computed the
CEC, ZEC, and HEC scores on the largest connected component of the hypergraph. We used
Julia's eigs routine to compute the CEC scores, the dynamical systems algorithm by Benson
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and Gleich [2018] to compute the ZEC scores, and the NQI algorithm [Ng et al., 2009] to
compute the HEC scores. The software used to compute the results in this section is available
at https://github.com/arbenson/Hyper-Evec-Centrality.

As discussed above, the ZEC vector need not be unique. We computed 100 ZEC vectors
using random starting points and found that, for some datasets, the algorithm always converges
to the same eigenvector, and in others, the algorithm converges to a few different eigenvectors.
For the purposes of our analysis, we use the ZEC vector to which convergence was most
common. However, any of the ZEC vectors is a valid centrality. (One could also possibly take
the mean of several ZEC vectors, but linear combinations of Z-eigenvectors are not necessarily
Z-eigenvectors, unlike the matrix case.)

N-grams. These hypergraphs are constructed from the most frequent N -grams in the
Corpus of Contemporary American English (COCA) [Davies, 2011].6 An N -gram is a sequence
of N words (or parts of words, but we will just say ``words"") that appear contiguously in
text. Here, we use the million most frequent N -grams dataset from COCA for N = 3, 4, 5 to
compose hyperedges. We construct m-uniform hypergraphs (m = 3, 4, 5) as follows. The set of
nodes in the m-uniform hypergraph corresponds to all words appearing in at least one of the
m-grams in the corpus. There is a hyperedge between m nodes if the corresponding m words
(appearing in any permutation order) make up one of the m-grams appearing in the corpus.
For each hypergraph, we analyze its largest connected component, which is given by taking
the node set L from the largest connected component of the graph discussed in Definition 2.2,
and only keeping the hyperedges comprised entirely of nodes in L.

Table 2 lists the top 20 ranked words according to the CEC, ZEC, and HEC scores for each
of the three hypergraphs. Many of the top-ranked words are so-called stop words, such as ``the,""
``and,"" and ``to""; furthermore, nearly all of the top 20 ranked words for CEC and HEC are stop
words or conjunctions, regardless of the size of the N -gram. This is perhaps not surprising,
given that stop words are by definition common in natural language (stop words also form
important clusters in tensor-based clustering of N -gram data [Wu et al., 2016]). The same is
true of the ZEC scores, but only for the 3-grams and 4-grams. In the 5-uniform hypergraph,
the word ``world"" has rank 12 with ZEC, rank 64 with CEC, and rank 84 with HEC; and the
word ``people"" has rank 14 with ZEC, rank 39 with CEC, and rank 44 with HEC.

To better quantify the relationship between the centralities, we computed the Spearman
rank correlation coefficient between components of each centrality vector. Specifically, for each
of CEC, ZEC, and HEC, we find the top k ranked nodes and compute the rank correlation on
the subvectors consisting of these nodes with the other two centrality vectors. For example, if
k = 100, we compute the top 100 nodes according to the CEC vector, take the length-100 sub-
vector corresponding to the same nodes in the ZEC vector, and compute the rank correlation
between the vectors. This is repeated for all six possible pairs of vectors and plotted as a
function of k (Figure 2).

As a function of k, the rank correlations in this dataset tend to have local minima for k
between 20 and a few hundred. Larger values of k catch the tail of the distribution for which
there is less difference in ranking, which leads to the increase in the correlation for large k. We
also see that the correlations tend to decrease as we increase the uniformity of the hypergraph.

6https://www.ngrams.info
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In other words, the three centrality measures become more different when considering larger
multiway relationships. Finally, the rank correlations reveal that ZEC ranks the top nodes
(beyond the top 20) substantially differently than CEC and HEC.

tags-ask-ubuntu. Ask Ubuntu7 is a Stack Exchange forum, where Ubuntu users and
developers ask, answer, and discuss questions. Each question may be annotated with up to five
tags to aid in classification. We construct 3-uniform, 4-uniform, and 5-uniform hypergraphs
from a previously collected dataset of tag coappearances in questions [Benson et al., 2018].
Specifically, the nodes of the hypergraphs represent tags. We add each possible hyperedge
to the m-uniform hypergraph if the corresponding m tags were all simultaneously used to
annotate at least one question on the web site (the question could also have contained other
tags; for constructing the hyperedge, we only care if the m tags were used for the question).
Finally, as before, we use the largest component of the hypergraph.

Table 3 lists the top 10 nodes ranked by CEC, ZEC, and HEC for each of the three
hypergraphs. With the 3-uniform hypergraph, these top-ranked nodes are roughly the same for
each centrality measure, with major Ubuntu version numbers (``12.04,"" ``14.04,"" and ``16.04"")
near or at the top of each list. When moving to 4-uniform and 5-uniform hypergraphs, the
version numbers remain highly ranked, but not the most highly ranked. ZEC finds tags
related to the Windows operating system relatively more important. For example, the tags
``windows-8,"" ``windows,"" and ``windows-7"" are ranked 8, 9, and 10 with ZEC for the 5-uniform
hypergraph but ranked 28, 22, and 26 with CEC and 21, 18, and 20 with HEC. Furthermore,
ZEC ranks ``windows,"" ``windows-xp,"" ``windows-vista,"" ``windows-7,"" ``windows-8,"" and
``windows-10"" higher than CEC and HEC for all three hypergraphs. We conclude that ZEC
provides complimentary information to the centralities for this dataset.

Figure 3 lists the same rank correlations as described above. We again see that all centrality
vectors are relatively correlated for the 3-uniform hypergraph but less so as we increase the
order of the hypergraph. The subvector corresponding to the top 10 ranked CEC nodes has
only 0.05 rank correlation with the same ZEC subvector for the 4-uniform hypergraph.

DAWN. The Drug Abuse Warning Network (DAWN) is a national health surveillance
system in hospitals throughout the United States that records the drug use reported by patients
visiting emergency rooms. Here, drugs include illicit substances, prescription medication, over-
the-counter medication, and dietary supplements. We use a dataset that aggregates 8 years of
DAWN reports [Benson et al., 2018] to construct m-uniform hypergraphs for m = 3, 4, 5. The
nodes in each hypergraph correspond to drugs. We add a hyperedge on m nodes if there is at
least one patient that reports using exactly that combination of m drugs. Again, we use the
largest component of the hypergraph.

We again list the top 10 ranked nodes by the three centrality vectors for each of the three
hypergraphs (Table 4) as well as the same rank correlation statistics (Figure 4). In this dataset,
we see near agreement between the three centrality vectors across the 4-uniform and 5-uniform
hypergraphs. For example, the rank correlations remain above 0.75 for the entire 4-uniform
hypergraph for all measured top k subvectors. Alcohol is consistently ranked near the top,
which is unsurprising given its pervasiveness in emergency department visits, especially in
combination with other drugs [Crane, 2013].

7https://askubuntu.com
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Table 2
Top 20 nodes with largest centralities for CEC, ZEC, and HEC for the three hypergraphs constructed from

the frequent n-grams. Many stop words appear as the top-ranked nodes, but ZEC picks up on nonstop words
such as ``world"" and ``people"" on the hypergraph constructed from frequent 5-grams.

3-uniform 4-uniform 5-uniform

CEC ZEC HEC CEC ZEC HEC CEC ZEC HEC

1 the the the the the the the the the
2 of to to of of to of of to
3 in and a to to of to in of
4 and a and in in a in and a
5 to that of a and in a to that
6 a in in and that that and that in
7 that of that that a and that on and
8 on is for on is is is is i
9 for for is is on it on a it
10 with it on for for was be one n't
11 is on was was was i for for is
12 was was with be it you was world you
13 from with it with you have it with have
14 at you as it with be have people was
15 by this you at one for i end be
16 as as i have be on with part do
17 his i this i have he at at he
18 it have be as all n't you first for
19 be at have he this with n't rest on
20 are not at you at not as was we
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Figure 2. Spearman's rank correlation coefficient between the top k ranked nodes from one centrality measure
with the same nodes from the other two centrality measures on the N-grams dataset (the one used to determine
the nodes is listed first in the legend). The rank correlation for the top few hundred nodes with ZEC and the
other centralities decreases as the uniformity of the hypergraph increases and dips below 0.4 for the 5-uniform
hypergraph.

The ranking from the ZEC vector is substantially different from HEC and CEC for the
3-uniform hypergraph. Leading subvectors of ZEC actually have negative rank correlation with
the corresponding HEC and CEC subvectors. As with the N-grams and tags-ask-ubuntu
datasets, we again conclude that ZEC provides complimentary information for the centralities.
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Table 3
Top 10 nodes with largest centralities for CEC, ZEC, and

HEC for three hypergraphs constructed from the cotagging
dataset tags-ask-ubuntu. These highly ranked nodes are largely
the same in the 3-uniform hypergraph. For the 4-uniform
and 5-uniform hypergraphs, ZEC picks up on Windows-related
tags. Tags related to version numbers are ranked lower as the
uniformity of the hypergraph increases.

CEC ZEC HEC

3
-u
n
if
o
rm

1 14.04 14.04 14.04
2 12.04 12.04 12.04
3 16.04 boot 16.04
4 server 16.04 boot
5 command-line drivers drivers
6 boot nvidia command-line
7 networking dual-boot server
8 drivers server networking
9 unity command-line unity
10 gnome upgrade gnome

CEC ZEC HEC

4
-u
n
if
o
rm

1 14.04 dual-boot 14.04
2 boot boot boot
3 drivers grub2 drivers
4 12.04 partitioning 12.04
5 16.04 uefi 16.04
6 networking system-installation dual-boot
7 server 14.04 nvidia
8 dual-boot windows grub2
9 nvidia installation networking
10 grub2 12.04 partitioning

CEC ZEC HEC
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o
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1 boot dual-boot boot
2 dual-boot boot dual-boot
3 14.04 grub2 grub2
4 drivers partitioning drivers
5 grub2 uefi 14.04
6 networking system-installation partitioning
7 16.04 14.04 nvidia
8 partitioning windows-8 16.04
9 nvidia windows 12.04
10 12.04 windows-7 networking
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Figure 3. Spearman's rank correlation coef-
ficient between the top k ranked nodes from one
centrality measure with the same nodes from the
other two centrality measures on the Ask Ubuntu
cotagging dataset (the one used to determine the
nodes is listed first in the legend). For the 3-
uniform hypergraph, all centralities are relatively
correlated for k \geq 30. For the 4-uniform and
5-uniform hypergraphs, ZEC tends to be less cor-
related with CEC and HEC, which is also seen in
the rankings of the top 10 nodes (Table 3, left).
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Table 4
Top 10 nodes with largest centralities for CEC, ZEC, and

HEC for three hypergraphs constructed from the reported sets
of drugs used by patients in emergency room visits in the
DAWN dataset. The highly ranked nodes in the 4-uniform and
5-uniform hypergraphs are largely the same and are consistent
across the centrality measures.

CEC ZEC HEC

3
-u
n
if
o
rm

1 alcohol cephalothin alcohol
2 cocaine naloxone alprazolam
3 marijuana meclizine acet.-hydrocodone
4 acet.-hydrocodone cyclosporine clonazepam
5 alprazolam desipramine cocaine
6 clonazepam donnatal elixir marijuana
7 ibuprofen pyridostigmine quetiapine
8 quetiapine amoxapine lorazepam
9 acetaminophen aspirin ibuprofen
10 lorazepam bicalutamide zolpidem

1 alcohol alcohol alcohol
2 cocaine cocaine cocaine
3 marijuana marijuana marijuana
4 alprazolam alprazolam alprazolam
5 acet.-hydrocodone acet.-hydrocodone acet.-hydrocodone
6 clonazepam clonazepam clonazepam
7 quetiapine heroin quetiapine
8 heroin oxycodone oxycodone
9 oxycodone methadone heroin
10 lorazepam acet.-oxycodone acet.-oxycodone

1 alcohol cocaine alcohol
2 cocaine alcohol cocaine
3 marijuana marijuana marijuana
4 alprazolam heroin alprazolam
5 acet.-hydrocodone alprazolam acet.-hydrocodone
6 clonazepam benzodiazepines heroin
7 heroin oxycodone clonazepam
8 benzodiazepines acet.-hydrocodone benzodiazepines
9 oxycodone methadone oxycodone
10 narcotic analgesics narcotic analgesics narcotic analgesics
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Figure 4. Spearman's rank correlation co-
efficient between the top k ranked nodes from
one centrality measure with the same nodes from
the other two centrality measures on the DAWN
dataset (the one used to determine the nodes
is listed first in the legend). ZEC is negatively
or nearly uncorrelated with CEC and HEC for
the 3-uniform hypergraph, but all centralities are
quite positively correlated for the 4-uniform and
5-uniform hypergraphs, which can also be ob-
served from the similar top 10 nodes listed in
Table 4 (left).
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4. Discussion. Centrality is a pillar of network science, and emerging datasets containing
supradyadic relationships offer new challenges in understanding centrality in complex systems.
Here, we proposed three eigenvector centralities for hypergraph models of such multirelational
data. Two of these incorporated nonlinear structure and relied on fairly recent developments
in the spectral theory of tensors to create a sensible definition. None of the three centralities is
``best"" and we saw empirically that the eigenvectors can provide qualitatively different results.
There are several other types of tensor eigenvectors [Qi and Luo, 2017], as well as other types
of Perron--Frobenius theorems for hypergraph data [Michoel and Nachtergaele, 2012], which
could be adapted for new centrality measures. However, Z- and H-eigenvectors are arguably
the most well-understood and commonly used tensor eigenvectors.

There are other centrality measures and ranking methods for higher-order relational data.
For example, multilinear PageRank generalizes PageRank to tensors [Gleich et al., 2015; Benson
et al., 2017]. Tudisco et al. [2018] developed eigenvector centrality for multiplex networks
using new Perron--Frobenius theory of multilinear maps [Gautier et al., 2017]; this is most
similar to HEC. There are also several ranking methods for multirelational data represented as
tensors [Kolda et al., 2005; Kolda and Bader, 2006; Franz et al., 2009; Ng et al., 2011], as well
as notions of centrality based on simplicial complexes [Estrada and Ross, 2018]. Finally, there
are other centralitities for hypergraphs [Kapoor et al., 2013; Busseniers, 2014; Bonacich et al.,
2004; Rodr\'{\i}guez et al., 2007; Estrada and Rodr\'{\i}guez-Vel\'azquez, 2006], but these do not relate
to the multilinear structure of tensors that we studied.

We used a set-based definition of hypergraphs that made the adjacency tensor symmetric.
In network science, directed graphs with nonsymmetric adjacency matrices are a common
model, and eigenvector centrality is still well defined if the graph is strongly connected. There
are similar notions of directionality in hypergraphs. For example, the N-grams dataset could
have been interpreted as ``directed"" since the ordering of the words matters for its frequency.
Trajectory or path-based data appearing in transportation systems [Xu et al., 2016], citation
patterns [Rosvall et al., 2014], and human contact sequences [Scholtes, 2017] can be encoded
as directed hypergraphs in similar ways. Theorems 2.5 and 2.10 hold for arbitrary irreducible
nonnegative tensors, which includes adjacency tensors of strongly connected hypergraphs.
Therefore, the hypergraph centralities we developed remain well defined in these more general
cases. However, computation becomes a bigger challenge.

There are many choices in deciding how to construct hypergraphs from data. As one
example, we made our adjacency tensors binary (i.e., an unweighted hypergraph). This was not
necessary mathematically, and all of the proposed methods work seamlessly if the hypergraph
is weighted. The Ask Ubuntu and DAWN datasets also demonstrated two different ways of
constructing hyperedges---in the former we included hyperedges induced by larger sets, and in
the latter we did not. This choice was made to illustrate the point that there are several ways
one could construct hypergraphs from data. Our methods also relied on theory for symmetric
tensors, so we studied uniform hypergraphs. One could incorporate nonuniformity in several
ways. A simple approach could combine the scores for hypergraphs of different uniformity.
We could also ``embed"" smaller hyperedges into a larger adjacency tensor. For example, a
mixture of 3-node and 4-node hyperedges could be incorporated into an order-4 adjacency
tensor, where a 3-node hyperedge \{ i, j, k\} adds nonzeros in the indices that only contain i, j,
and k (e.g., setting \bfitT ijkk = 1 would create one such nonzero). In general, hypergraphs can be
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a convenient abstraction, and understanding the right way of constructing a hypergraph from
data is a general research challenge.
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thank the reviewers for carefully reading this manuscript.
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