Mechanized Verification of Graph-manipulating Programs

Shengyi Wang†, Qingxiang Cao‡, Anshuman Mohan†, Aquinas Hobor†

Object-Oriented Programming, Systems, Languages & Applications
October 24, 2019
Our Focus

We would like to verify graph-manipulating programs written in real C with end-to-end machine-checked correctness proofs.

- Hard to reason about
- Occur in critical areas
- C is hard
- Machine-checked proofs are hard
Our Strategy

Use CompCert and Verified Software Toolchain (VST) to certify code against strong specifications expressed with mathematical graphs.

- CompCert + VST = 50+ person-years
- No changes to CompCert
- Add 1% to VST
- Vanilla separation logic (using →∗ and quantifiers).
- This framework is powerful enough to verify real code.
Our Workflow

Spatial Graph Library

Verification of a Graph-Manipulating Function

Mathematical Graph Library

Verified Software Toolchain (VST)

The CompCert Project

\{P_0\} C_1 \{P_1\} C_2 \{P_2\} C_3 \{P_3\} ...
Our Results

We have verified half a dozen graph algorithms, including:

- Graph visiting/coloring; ditto for DAG
- Graph reclamation (\textit{i.e.} spanning tree followed by tree reclamation)
- Graph copy
- Union-find (both for heap- and array-represented nodes)
- Garbage collector for CertiCoq project
 - Generational OCaml-style GC for a purely functional language
 - \(\approx 400\) lines of (rather devilish) C
 - We find two places where C is too weak to define an OCaml-style GC
Statistics

<table>
<thead>
<tr>
<th>Component</th>
<th>Files</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Utilities</td>
<td>10</td>
<td>2,842</td>
</tr>
<tr>
<td>Math Graph Library</td>
<td>19</td>
<td>12,723</td>
</tr>
<tr>
<td>Memory Model & Logic</td>
<td>13</td>
<td>2,373</td>
</tr>
<tr>
<td>Spatial Graph Library</td>
<td>10</td>
<td>6,458</td>
</tr>
<tr>
<td>Integration into VST</td>
<td>12</td>
<td>1,917</td>
</tr>
<tr>
<td>Examples (excluding GC)</td>
<td>13</td>
<td>3,290</td>
</tr>
<tr>
<td>GC, subdivided into</td>
<td>18</td>
<td>14,170</td>
</tr>
<tr>
<td>• mathematical graph</td>
<td>1</td>
<td>5,764</td>
</tr>
<tr>
<td>• spatial graph</td>
<td>1</td>
<td>1,618</td>
</tr>
<tr>
<td>• function specifications</td>
<td>1</td>
<td>461</td>
</tr>
<tr>
<td>• function Hoare proofs</td>
<td>14</td>
<td>3,062</td>
</tr>
<tr>
<td>• isomorphism proof</td>
<td>1</td>
<td>3,265</td>
</tr>
<tr>
<td>Total Development</td>
<td>95</td>
<td>43,773</td>
</tr>
</tbody>
</table>
Union-Find Algorithm: Problem
Union-Find Algorithm: Problem
Union-Find Algorithm: Problem
struct Node {
 unsigned int rank;
 struct Node *parent;
};

struct Node* find(struct Node* x) {
 struct Node *p, *p0;
 p = x -> parent;
 if (p != x) {
 p0 = find(p);
 p = p0;
 x -> parent = p;
 }
 return p;
};
Union-Find Algorithm: Find

```c
struct Node {
    unsigned int rank;
    struct Node *parent;
};

struct Node* find(struct Node* x) {
    struct Node *p, *p0;
    p = x -> parent;
    if (p != x) {
        p0 = find(p);
        p = p0;
        x -> parent = p;
    }
    return p;
};
```
Union-Find Algorithm: The Specification of Find

PRE: \(\text{graph_rep}(\gamma) \land \text{vvalid}(\gamma, x)\)

POST: \(\exists \gamma', ret. \text{graph_rep}(\gamma') \land \text{uf_eq}(\gamma, \gamma') \land \text{root}(\gamma', x, ret)\)

- How to define \(\gamma\), the mathematical graph?
- How to define \(\text{graph_rep}(\gamma)\), the spatial representation of the graph in memory?
- How to define other predicates, such as \(\text{uf_eq}(\gamma, \gamma')\), the graph equivalence and \(\text{root}(\gamma', x, ret)\), the root of \(x\) in \(\gamma'\) is \(ret\)?
Graph Library: Definition of Graph and Path

\[
\text{PreGraph} \overset{\text{def}}{=} \{ V, E, v\text{valid}, e\text{valid}, \\
\quad \text{src, dst} \}
\]

\[
\text{LabeledGraph} \overset{\text{def}}{=} \{ \text{PreGraph}, L_V, L_E, L_G, \\
\quad v\text{label}, e\text{label}, g\text{label} \}
\]

\[
\text{GeneralGraph} \overset{\text{def}}{=} \{ \text{LabeledGraph}, \text{sound}_gg \}
\]

\[
\text{Path} \overset{\text{def}}{=} (v_0,[e_0,e_1,\ldots,e_k])
\]

\[
\gamma \models s \xrightarrow{p} t \overset{\text{def}}{=} \text{valid_path}(\gamma,p) \land \\
\quad \text{fst}(p) = s \land \text{end}(\gamma,p) = t
\]

\[
\gamma \models s \rightsquigarrow t \overset{\text{def}}{=} \exists p \text{ s.t. } \gamma \models s \xrightarrow{p} t
\]
Architecture

The diagram illustrates the architecture of the Mathematical Graph Library (MGL) with three main stages:

1. **PreGraph**
 - Leads to **LabeledGraph** via a **Label** operation.
 - Leads to **Property** via a **PreGraph Lemmas** operation.

2. **LabeledGraph**
 - Leads to **GeneralGraph** via a **Condition** operation.
 - Leads to **Property Lemmas** via an **Inheritance** operation.

3. **GeneralGraph**
 - Leads to **Property Lemmas** via a **Soundness Condition** operation.

The diagram also shows additional connections and operations:

- **Dependence** between **PreGraph** and **LabeledGraph**
- **Instantialize** between **Property Lemmas** and **GeneralGraph Lemmas**
Spatial Representation of Graphs

```c
struct Node {
    unsigned int rank;
    struct Node *parent;
};
```

```
graph_rep(\gamma) \overset{\text{def}}{=} \bigstar \ v_{\text{rep}}(\gamma, v)_{v_{\text{valid}}(\gamma, v)}

\bigstar \ P \overset{\text{def}}{=} P(v_1) \ast P(v_2) \ast \cdots \ast P(v_n)

\{v_1,v_2,...,v_n\}

v_{\text{rep}}(\gamma, v) \overset{\text{def}}{=} v \mapsto v_{\text{label}}(\gamma, v) \ast

(v + 4) \mapsto p_{\text{rt}}(\gamma, v)

p_{\text{rt}}(\gamma, v) \overset{\text{def}}{=} \begin{cases} 
\text{dst}(\gamma, \text{out}(v)) \neq \text{null} \\
v \end{cases}
```

\(W = \text{null} \)
Ramify Rule

\[\{G_1\} \cup \{G_2\} \]

(Hobor and Villard)
Ramify Rule

\[\{L_1\} \overset{C}{\rightarrow} \{L_2\} \quad \{G_1\} \overset{C}{\rightarrow} \{G_2\} \]

(Hobor and Villard)
Ramify Rule

\[
\frac{\{L_1\} C\{L_2\} \quad G_1 \vdash L_1 \ast (L_2 \ast G_2)}{\{G_1\} C\{G_2\}}
\]

\[
(mod(C) \cap \text{fv}(L_2 \ast G_2) = \emptyset)
\]

(Hobor and Villard)
Our Localize Rule

\[
\frac{\{L_1\} \ C \{\exists x \cdot L_2\}}{\{G_1\} \ C \{\exists x \cdot G_2\}} \quad \frac{G_1 \vdash L_1 \ast R \quad R \vdash \forall x . (L_2 \rightarrow \ast G_2)}{\{G_1\} \ C \{\exists x \cdot G_2\}} \quad (\dagger)
\]

\[
(\dagger) \ \text{mod}(C) \cap \text{fv}(R) = \emptyset
\]

Comparing to Hobor and Villard’s Ramify rule:

\[
\frac{\{L_1\} \ C \{L_2\} \quad G_1 \vdash L_1 \ast (L_2 \rightarrow \ast G_2)}{\{G_1\} \ C \{G_2\}} \quad (\ddagger)
\]

\[
(\ddagger) \ \text{mod}(C) \cap \text{fv}(L_2 \rightarrow \ast G_2) = \emptyset
\]
The Specification of Find

PRE: \(\text{graph}_\text{rep}(\gamma) \land \text{vvalid}(\gamma, x) \)

POST: \(\exists \gamma', \text{ret} . \text{graph}_\text{rep}(\gamma') \land \text{uf}_\text{eq}(\gamma, \gamma') \land \text{root}(\gamma', x, \text{ret}) \)

\[
\text{graph}_\text{rep}(\gamma) \overset{\text{def}}{=} \star \text{v}_\text{rep}(\gamma, v) \\
\text{vvalid}(\gamma, v) \\
\text{root}(\gamma, x, \text{ret}) \overset{\text{def}}{=} \gamma \models x \leadsto \text{ret} \land \forall y. \gamma \models \text{ret} \leadsto y \Rightarrow y = \text{ret} \\
\text{uf}_\text{eq}(\gamma_1, \gamma_2) \overset{\text{def}}{=} (\forall x. \text{vvalid}(\gamma_1, x) \Leftrightarrow \text{vvalid}(\gamma_2, x)) \land \\
\forall x, r_1, r_2. \text{root}(\gamma_1, x, r_1) \Rightarrow \\
\text{root}(\gamma_2, x, r_2) \Rightarrow r_1 = r_2 \]
Proof Skeleton of Find

\{\text{graph_rep}(\gamma) \land \text{vvalid}(\gamma, x)\}

\begin{align*}
p &= x \rightarrow \text{parent}; \\
\{\text{graph_rep}(\gamma) \land \text{vvalid}(\gamma, x) \land p = \text{prt}(\gamma, x)\}
\end{align*}

\begin{align*}
p0 &= \text{find}(p); \\
\{\text{graph_rep}(\gamma_1) \land \text{uf_eq}(\gamma, \gamma_1) \land \text{root}(\gamma_1, p, p0) \land p = \text{prt}(\gamma, x)\}
\end{align*}

\begin{align*}
\downarrow \{x \mapsto \text{vlabel}(\gamma_1, x), \text{prt}(\gamma_1, x)\} \\
x &\rightarrow \text{parent} = p0 \\
\downarrow \{x \mapsto \text{vlabel}(\gamma_1, x), p0\}
\end{align*}

\begin{align*}
\{\text{graph_rep}(\gamma_2) \land \gamma_2 = \text{redirect_parent}(\gamma_1, x, p0) \land \ldots\}
\end{align*}

\begin{align*}
\{\text{graph_rep}(\gamma_2) \land \text{uf_eq}(\gamma, \gamma_2) \land \text{root}(\gamma_2, x, p0)\}
\end{align*}

\begin{align*}
\{\exists \gamma'. \text{graph_rep}(\gamma') \land \text{uf_eq}(\gamma, \gamma') \land \text{root}(\gamma', x, p0)\}
\end{align*}
Proof Obligation of Find

\[
\text{graph_rep}(\gamma_1) \vdash (x \mapsto \text{vlabel}(\gamma_1, x), \text{prt}(\gamma_1, x)) \ast \\
\left((x \mapsto \text{vlabel}(\gamma_1, x), \text{p0}) \rightarrow \\
\text{graph_rep}(\text{redirect_parent}(\gamma_1, x, \text{p0})) \right)
\]

\[
\text{uf_eq}(\gamma, \gamma_1) \Rightarrow \text{root}(\gamma_1, p, \text{p0}) \Rightarrow \text{dst}(\gamma, \text{out}(x)) = p \\
\gamma_2 = \text{redirect_parent}(\gamma_1, x, \text{p0}) \Rightarrow \\
\text{uf_eq}(\gamma, \gamma_2) \land \text{root}(\gamma_2, x, \text{p0})
\]
• 12 generations; mutator allocates only into the first
• Functional mutator, so no backward pointers
• Cheney’s mark-and-copy collects generation to its successor
• Receiving generation may exceed fullness bound, triggering cascade of further pairwise collections
• Most tasks are handled by two key functions: `forward` (to copy individual objects) and `do_scan` (to repair the copied objects)
Separation between pure and spatial reasoning
Undefined behavior in C

- Double-bounded pointer comparisons:
  ```c
  int Is_from(value * from_start, 
              value * from_limit, value * v) {
    return (from_start <= v && v < from_limit); }
  ```
 Resolved using CompCert’s “extcall_properties”.

- A classic OCaml trick:
  ```c
  int test_int_or_ptr (value x) {
    return (int)(((intnat)x)&1); }
  ```
 Discussing char alignment issues with CompCert.