Optimal Inapproximability Results for MAX-CUT
and Other 2-variable CSPs?

Subhash Khot! Guy Kindler
School of Mathematics DIMACS
Institute for Advanced Study Rutgers University
Princeton, NJ Piscataway, NJ
khot@ias.edu gkindler@Qdimacs.rutgers.edu
Elchanan Mossel* Ryan O’Donnell!
Department of Statistics School of Mathematics
U.C. Berkeley Institute for Advanced Study
Berkeley, CA Princeton, NJ
mossel@stat.berkeley.edu odonnell@ias.edu

June 19, 2004

‘ Preliminary version ‘

Abstract

In this paper we give evidence that it is NP-hard to approximate MAX-CUT
to within a factor of agw +¢€, for all € > 0. Here aqw denotes the approximation
ratio achieved by the Goemans-Williamson algorithm [22], aqw ~ .878567.
We show that the result follows from two conjectures: a) the Unique Games
conjecture of Khot [33]; and, b) a very believable conjecture we call the Majority
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Is Stablest conjecture. Our results suggest that the naturally hard “core” of
MAX-CUT is the set of instances in which the graph is embedded on a high-
dimensional Euclidean sphere and the weight of an edge is given by the squared
distance between the vertices it connects.

The same two conjectures also imply that it is NP-hard to (5+e€)-approximate
MAX-2SAT, where 8 ~ .943943 is the minimum of (2 + 26)/(3 — cos(6)) on
(5,m). Motivated by our proof techniques, we show that if the MAX-2CSP
and MAX-2SAT problems are slightly restricted — in a way that seems to re-
tain all their hardness — then they have (aqw — €)- and (8 — €)-approximation
algorithms, respectively.

Though we are unable to prove the Majority Is Stablest conjecture, we
give some partial results and indicate possible directions of attack. Our partial
results are enough to imply that MAX-CUT is hard to (% + % -+ ¢€)-approximate
(~ .909155) assuming only the Unique Games conjecture. We also discuss
MAX-2CSP problems over non-boolean domains and state some related results
and conjectures, including a hardness results which given the Unique Games
conjecture, shows that it is hard to approximate MAX-2LIN(q) to within any
constant factor.



1 Introduction

The main result in this paper is a bound on the approximability of the MAX-CUT
problem that matches the approximation ratio achieved by the well-known Goemans-
Williamson algorithm [22]. The proof of this hardness result unfortunately relies
on two unproven conjectures. These conjectures are the Unique Games conjecture
of Khot [33] and a commonly believed conjecture we call the Majority Is Stablest
congecture. For the convenience of the reader, we give a brief description of the
conjectures; formal statements appear in Sections [3| and 4] respectively.

Unique Games conjecture (roughly): Given a bipartite graph G, a large constant
size set of labels [M], and a permutation of [M] written on each edge, consider the
problem of trying to find a labeling of the vertices of G from [M] so that each edge
permutation is ‘satisfied.” The conjecture is that if M is a large enough constant then
it is NP-hard to distinguish instances which are 99% satisfiable from instances which
are 1% satisfiable.

Majority Is Stablest conjecture (roughly): Let f be a boolean function which
is equally often 0 or 1. Suppose the string = is picked uniformly at random and the
string y is formed by flipping each bit of x independently with probability 7n; we call
Pr[f(z) = f(y)] the noise stability of f. The conjecture states that among all f
in which each coordinate has o(1) ‘influence,” the Majority function has the highest
noise stability, up to an additive o(1).

We add in passing that the name Majority Is Stablest is a bit of a misnomer
in that almost all balanced boolean threshold functions are equally noise stable (see
Theorem .

Let us discuss the reasons why we believe this result is important despite its
reliance on unproven conjectures. First and foremost, we believe that it is quite
remarkable these two conjectures should yield a matching hardness of approximation
ratio for MAX-CUT, and that indeed the best factor should be the peculiar number
Qaw- It is intriguing that the precise quantity agyw should arise from a noise stability
property of the Majority function, and certainly there was previously little evidence
to suggest that the Goemans-Williamson algorithm might be optimal.

As regards the conjectures themselves, we strongly believe in the Majority Is
Stablest conjecture. The experts in “analysis of boolean functions” whom we have
consulted have agreed that the conjecture should be correct (actually, similar con-
jectures already appear in the literature. See e.g. Conjecture 5.1 in [30]), and every
relevant piece of evidence is in concordance with the conjecture. Because of this, we



believe that understanding the status of the Unique Games conjecture is the main
issue.

Unlike the Majority Is Stablest conjecture, the Unique Games conjecture is far
from certain to be true; in fact, there is no particularly strong evidence either for it
or against it. Rather than this being a problem for our studies of MAX-CUT, we can
view this paper as an investigation into the Unique Games conjecture via the lens
of MAX-CUT. First, we see that the conjecture does not give an incorrectly strong
hardness bound for MAX-CUT, and indeed (as it does for Vertex Cover [34]) it gives
an ultimately natural bound. Second, we show that the Unique Games problem is
formally easier than the problem of beating the Goemans-Williamson algorithm for
MAX-CUT (modulo the Majority Is Stablest conjecture) and thus give encouragement
for attacking Unique Games algorithmically.

Another reason we believe our result is important despite its reliance on con-
jectures is related to this last point. Since the Goemans-Williamson algorithm was
published a decade ago there has been no algorithmic progress on approximating
MAX-CUT. Since Hastad’s classic inapproximability paper [25] five years ago there
has been no progress on the hardness of approximating MAX-CUT, except for the
creation of a better reduction gadget. As one of the most natural and simple problems
to have resisted matching approximability bounds, we feel that it deserves further in-
vestigation and analysis. In particular, we think that regardless of the truth of the
Unique Games conjecture, this paper gives interesting insight into the geometric na-
ture of MAX-CUT. Indeed, insights we have gleaned from studying the MAX-CUT
problem in this light have motivated us to give new positive approximation algorithms
for variants on other 2-variable CSPs such as MAX-2SAT; see Appendix [F]

Finally, we believe that the Fourier-analytic problems we consider in this work,
and in particular the Majority Is Stablest conjecture itself, are of significant indepen-
dent interest. First, the conjecture has interesting applications outside of this work
— to the economic theory of social choice [30] for example — and will quite likely
prove useful for other PCP-based inapproximability results. Second, the conjecture is
an extension of, or is very similar to, several other important theorems in the analy-
sis of boolean functions, including the KKL theorem [29] and Bourgain’s theorem [g].
Third, the partial progress we make on proving this conjecture is independently inter-
esting for the analysis of boolean functions, and it clarifies certain aspects the papers
of Friedgut, Kalai, and Naor [21] (cf. Theorem [7)) and Talagrand [45] (cf. Theorem [9).
We note in passing that our partial progress lets us prove an inapproximability factor
of .909155 for MAX-CUT assuming only the Unique Games conjecture; this is already
stronger than the best known bound.



1.1 Overview of the paper

In Section 2| we describe the MAX-CUT problem and discuss its history. We then
state the Unique Games conjecture in Section [3] The plausibility of the conjecture
is discussed further in Appendix [Al The Majority Is Stablest conjecture is presented
in Section [] Its plausibility is discussed in Appendix [B] and some partial progress
towards its proof is discussed in Appendix [G] We discuss the geometric aspects of
the Majority Is Stablest conjecture and its connection with the Goemans-Williamson
approximation algorithm in Section[5] Our main results are stated in Section[6 Some
conclusions and directions for further research are given in Section [7]

In Appendix [C]we make some technical definitions, and give some Fourier analytic
formulas that are used later. We then reduce the Majority is Stablest conjecture into
more useful forms in Appendix [D] in Appendix [E] we prove the hardness of approx-
imating MAX-CUT, based on the conjectures mentioned above. In Appendix [F] we
investigate the approximability of other 2-CSPs, such as MAX-2SAT. In Appendix
we discuss the MAX-2LIN(q) problem (of satisfying mod ¢ linear equations with two
variables in each). We formulate some hardness results and related conjectures, and
show a computation of the noise-stability of the plurality function.

2 On MAX-CUT

The MAX-CUT problem is a classic and simple combinatorial optimization problem:
Given a graph G, find the size of the largest cut in G. By a cut we mean a partition
of the vertices of G into two sets; the size of the cut is the number of edges with one
vertex on either side of the partition. One can also consider a weighted version of the
problem in which each edge is assigned a nonnegative weight and the goal is to cut
as much weight as possible.

MAX-CUT is NP-complete (indeed, it is one of Karp’s original NP-complete prob-
lems [32]) and so it is of interest to try to find polynomial time approximation al-
gorithms. For maximization problems such as MAX-CUT we say an algorithm gives
an a-approximation if it always returns an answer which is at least a times the op-
timal value; we also often relax this definition to allow randomized algorithms which
in expectation give a-approximations. Crescenzi, Silvestri, and Trevisan [I1] have
shown that the weighted and unweighted versions of MAX-CUT have equal optimal
approximation factors (up to an additive o(1)) and so we pass freely between the two
problems in this paper.

The trivial randomized algorithm for MAX-CUT — put each vertex on either side



of the partition independently with equal probability — is a 1/2-approximation, and
this algorithm is easy to derandomize; Sahni and Gonzalez [41] gave the first 1/2-
approximation algorithm in 1976. Following this some (1/2 + o(1))-approximation
algorithms were given, but no real progress was made until the breakthrough 1994
paper of Goemans and Williamson [22]. This remarkable work used semidefinite
programming to achieve an aqw-approximation algorithm, where the constant agyw ~
878567 is the trigonometric quantity

, 0/m
Qow = min —————.
N o<o<r (1 — cosf)/2
The optimal choice of € is the solution of § = tan(6/2), namely 6* ~ 2.33 ~ 134°,
and gy = —=2 The geometric nature of Goemans and Williamson’s algorithm

7 sin 0% °
might be considered surprising, but as we shall see, this geometry seems to be an

inherent part of the MAX-CUT problem.

On the hardness of approximation side, MAX-CUT was proved MAX-SNP hard [40]
and Bellare, Goldreich, and Sudan [3] explicitly showed that it was NP-hard to ap-
proximate MAX-CUT to any factor higher than 83/84. The hardness factor was
improved to 16/17 ~ .941176 by Hastad [27] via a reduction from MAX-3LIN using a
gadget of Trevisan, Sorkin, Sudan, and Williamson [46]. This stands as current best
hardness result.

Despite much effort and many improvements in the approximation guarantees of
other semidefinite programming-based algorithms, no one has been able to improve on
the algorithm of Goemans and Williamson. Although the true approximation ratio of
Goemans-Williamson was proved to be not more than aqy [31, 17] and the integrality
gap of their semidefinite relaxation was also proved to be agyw [17], there appears on
the face of it to be plenty of possibilities for improvement. Adding triangle constraints
and other valid constraints to the semidefinite program has been suggested, alternate
rounding schemes have been proposed, and local modification heuristics that work
for special graphs have been proven (see, e.g., [22, 15, 14l BT, 47, 16l 17]). And
of course, perhaps a completely different algorithm altogether can perform better.
Several papers have either explicitly ([14]) or implicitly ([I7]) given the problem of
improving on agqw as an important research goal.

In this paper we give evidence that in fact MAX-CUT is hard to approximate
within any factor larger than agy.




3 On the Unique Games conjecture

MAX-CUT belongs to the class of constraint satisfaction problems on 2 variables
(2-CSPs). In a k-CSP we are given a set of variables and a set of constraints where
each constraint depends on exactly k variables. The goal is to find an assignment to
the variables so as to maximize the number of constraints satisfied. In case of MAX-
CUT, the vertices serve as variables and the edges as constraints. Every constraint
says that its two variables receive different boolean values.

Proving inapproximability results for a k-CSP is equivalent to constructing a k-
query PCP with a specific acceptance predicate. Usually the Label Cover problem
is a starting point for any PCP construction. Label Cover is a 2-CSP where the
variables range over a large (non-boolean) domain. An inapproximability result for
boolean CSPs is obtained by encoding the assignment to Label Cover via a binary
code and then running PCP tests on the (supposed) encodings. This approach has
been immensely successful in proving inapproximability results for k-CSPs with k£ > 3
(see for example [27, [42] 24]). However the approach gets stuck once we move to 2-
CSPs. We seem to have no techniques for constructing (boolean) 2-query PCPs and
the bottleneck seems to be the lack of an appropriate PCP outer verifier.

Khot suggested the Unique Games Conjecture in [33] as a possible direction for
proving inapproximability results for some important 2-CSPs, such as Min-2SAT-
Deletion, Vertex Cover, Graph-Min-Bisection and MAX-CUT. This conjecture asserts
the hardness of Unique Label Cover problem:

Definition 1. The Unique Label Cover problem L(V, W, E, [M],{m""}wuwecEr) is de-
fined as follows: We are given a reqular bipartite graph with left side vertices V', right
side vertices W, and a set of edges E. The goal is to assign one “label” to every
vertex of the graph, where [M] is the set of allowed labels. The labeling is supposed
to satisfy certain constraints given by bijective maps oy, : [M] — [M]. There is one
such map for every edge (v,w) € E. A labeling “satisfies” an edge (v, w) if

oyw(label(w)) = label(v).

The optimum OPT of the unique label cover problem is defined to be the maximum
fraction of edges satisfied by any labeling.

The Unique Label Cover problem is a special case of the Label Cover problem.
It can also be stated in terms of 2-Prover-1-Round Games, but the Label Cover
formulation is easier to work with. The Unique Games conjecture asserts that this
problem is hard:



Unique Games conjecture: For anyn, 6 > 0, there exists a constant M = M (n, 9)
such that it is NP-hard to distinguish whether the Unique Label Cover problem with
label set of size M has optimum at least 1 —n or at most 9.

The Unique Games conjectures asserts the existence of a powerful outer verifier
that makes only 2 queries (albeit over a large alphabet) and has a very specific
acceptance predicate: for every answer to the first query, there is exactly one answer
to the second query for which the verifier would accept, and vice versa. Once we have
such a powerful outer verifier, we can possibly construct a suitable inner verifier and
prove the desired inapproximability results. However, even the inner verifier typically
relies on rather deep theorems about the Fourier spectrum of boolean functions, e.g.
theorems of Bourgain [8] and Friedgut [19].

The Unique Games conjecture was used in [33] to show that Min-2SAT-Deletion
is NP-hard to approximate within any constant factor. The inner verifier is based
on a test proposed by Hastad [26] and on Bourgain’s theorem. It is also implicit
in this paper that the Unique Games conjecture with an additional “expansion-like”
condition on the underlying bipartite graph of the Label Cover problem would imply
that Graph-Min-Bisection is NP-hard to approximate within any constant factor.
Khot and Regev [34] showed that the conjecture implies that Vertex Cover is NP-
hard to approximate within any factor less than 2. The inner verifier in their paper is
based on Friedgut’s theorem and is inspired by the work of Dinur and Safra [13] that
showed 1.36 hardness for Vertex Cover. In the present paper we continue this line of
research and propose a plausible direction for attacking the MAX-CUT problem. We
do construct an inner verifier, but to prove its correctness, we need another powerful
conjecture about the Fourier spectrum of boolean functions. This is the subject of
the Majority Is Stablest conjecture.

In Appendix [A] we discuss the plausibility of the Unique Games conjecture. We
also consider in Appendix [H| the analogue of the Majority function over non-boolean
g-ary domains, which we call the Plurality function. We show that its noise stability
tends to 0 as ¢ becomes large. We believe that all balanced g-ary functions with small
influences should have o(1) noise sensitivity as ¢ — oo, and perhaps even a “Plurality
Is Stablest” result should hold. This could be a step towards showing equivalence
between the Unique Games conjecture and hardness of two-variable linear equations
mod ¢, or even towards proving the Unique Games conjecture itself.



4 On the Majority Is Stablest conjecture

To state the Majority Is Stablest conjecture, we need to begin with some definitions.
For these definitions it is traditional and convenient to regard the boolean values
TRUE and FALSE as —1 and 1 rather than 0 and 1. So let f: {—1,1}" — {—1,1}
be an arbitrary boolean function. In all of what follows we consider the set of strings
{=1,1}" to be a probability space under the uniform distribution.

Definition 2. The influence of x; on f is

Inf,(f) = Pr [f(z1,...,20) # f(@1, ., Ti1, —Zi, Tigay - - -, Tn) .

ze{-1,1}"

Thus Inf;(f), a number between 0 and 1, measures the relevance of the ith coor-
dinate to the boolean function f.

Instead of picking x at random, flipping one bit, and seeing if this changes the
value of f, we can instead flip a constant fraction of the bits.

Definition 3. Let 0 < n < 1. The noise stability of f for noise rate n is defined as
follows: Let x be a uniformly random string in {—1,1}" and form y by flipping each
bit of x independently with probability n. Then the noise stability of f for n-noise is

defined to be Pr, ,[f(z) = f(y)].

With bits defined as {—1, 1}, instead of looking at the probability that f(z) equals
f(y), it will be more natural to look at the correlation between the two. If X and
Y are bit-valued random variables with E[X] = E[Y] = 0, then their correlation is
E[XY7; this quantity is 1 if the variables are always equal, 0 if they are uncorrelated,
and —1 if they are always unequal. Note that E[XY] = 2Pr[X = Y] — 1. With
correlation in mind, we will rephrase the previous definition.

Definition 4. Let —1 < p < 1. The noise correlation of f at p is defined as follows:
Let x be a uniformly random string in {—1,1}" and let y be a “p-correlated” copy;

i.e., pick each bit y; independently so that E[x;y;] = p. Then the noise correlation is
defined to be

So(f) = Bay[f () f(y)]-

Finally, we need to extend all of these definitions to real-valued boolean functions
f:{—=1,1} — R. The definition of noise correlation does not require any change. The
way to define influence is as follows:



Definition 5. For f: {—1,1} — R, define Inf;(f) = Eyms 1msmn) [Var, [f]] .

We may now state the Majority Is Stablest conjecture. Informally, the conjecture
says that among all balanced boolean functions with small influences, the Majority
function has the highest noise correlation. Note that the assumption of small influ-
ences is necessary since the ‘dictator’ function f(z) = x; provably has the highest
noise correlation among all balanced boolean functions, for every p. Note that when
n tends to infinity, the noise correlation at p of the n-bit Majority function approaches
(1 — 2 arccos p) (this fact was stated in a paper of Gulibaud from the 1960’s [23] and
is ultimately derived from the Central Limit theorem plus a result from an 1890’s
paper of Sheppard [43]). Thus we have the formal statement of the conjecture:

Majority Is Stablest conjecture: Fiz p € [0,1). Then for any € > 0 there is
a small enough 6 = (e, p) > 0 such that if f : {—1,1}" — [-1,1] is any function
satisfying E[f] = 0 and Inf;(f) < for alli=1...n, then

Sp(f) <1 —2arccosp + .

The plausibility of the conjecture. We strongly believe that the Majority Is
Stablest conjecture is true, as do the experts in the field whom we consulted. We
note that similar, though weaker conjectures, already appear in the literature (see
e.g. section 5 in [30]). Further discussion of the plausibility of the conjecture appears

in Appendix

4.1 Why does it arise?

As described in the previous section, inapproximability results for many problems
are obtained by constructing a tailor-made PCP: usually, the PCP is obtained by
composing a so-called outer verifier with a so-called inner verifier. The outer veri-
fier for our reduction came from the Unique Label Cover problem, and indeed the
outer verifier is almost always a Label Cover problem. It is the inner verifier that is
application-specific and its acceptance predicate is tailor-made for the problem one
is interested in.

A codeword test is an essential submodule of the inner verifier. It is a probabilistic
procedure for checking whether a given string is a codeword, most commonly a Long
Code (see [3]) word.



Definition 6 (Long Code). The Long Code over domain [n] is a binary code, where
each code-word is in fact the truth-table of a boolean function f : {—1,1}" — {—1,1}.
The codeword encoding the ‘message’ i € [n] is given by the ith dictator function; i.e.,
the function f(x1,22,...,T,) = x;.

A codeword test for the Long Code can often be extended to a full-fledged inner
verifier. So in the following, we will focus only on a Long Code test. The choice of
the test is determined by the problem at hand, in our case MAX-CUT. The test must
read two bits from a Long Code and accept if and only if the values read are distinct.
Note that a legal Long Code word is precisely the truth table of a boolean function,
in which some coordinate has influence 1. Let us say that a function f is far from
being a Long Code if all the coordinates have o(1) influences.

We expect the following from a codeword test: a Long Code passes the test with
probability ¢ (called the ‘completeness’ parameter of the test) whereas any function
far from being a Long Code passes the test with probability at most s (called the
‘soundness’ parameter). Once we construct a full-fledged inner verifier, the ratio s/c
is exactly the inapproximability factor for MAX-CUT.

The Long Code test. As mentioned before, the test checks a given boolean func-
tion f: {—1,1}" — {—1,1} at two random but correlated inputs = and y and checks
that f(z) # f(y). The test will be precisely a “noise stability” test for some fixed
noise rate; i.e., x will be chosen uniformly at random and y will be formed by flipping
each bit of x independently with probability (1— p)/2. Here p will be a value between
—1 and 0, and therefore y is a highly noisy version of x, or alternatively, a moder-
ately noisy version of —z. Thus (at least for legal Long Code words) we expect f(x)
to be quite anticorrelated with f(y); i.e., it should pass the test with relative high
probability. Specifically, the probability that the test passes is precisely % — %Sp( 1)

A legal Long Code word (namely a dictator function) has noise correlation pre-
cisely p and thus the completeness of the Long Code test is ¢ = % — %p. The crucial
part is in analyzing the soundness parameter.

This is where the Majority Is Stablest conjecture comes in. Suppose f: {—1,1}" —
{—1,1} is any function that is far from being a Long Code word. By a simple
trick (see Proposition we can show that the Majority Is Stablest conjecture —
which is stated only for p > 0 — implies that for p < 0 the noise correlation of f
at p is at least (1 — 2 arccosp) (a negative number). Hence it follows that func-
tions that are far from being a Long Code pass the test with probability at most

2

s =3 — 5(1 — 2arccos p) = (arccos p) /7.



This leads to an inapproximability ratio of

7
5 (arccos p)/m _ o /7

¢ —l<p<0 2 —1p 0<¢<r (1 — cosf)/2

= Qgaw,

precisely the Goemans-Williamson constant.

5 On the geometry of MAX-CUT

We shall now try to (non-rigorously!) explain the connection between the Major-
ity Is Stablest conjecture and the geometric picture that arises from the Goemans-
Williamson algorithm. But before going further, let us first note that the approxi-
mation ratio achieved by the Goemans-Williamson algorithm arises as the solution
for a trigonometric minimization problem, which in turn originates from a geometric
setting. To obtain a matching inapproximability constant, it seems essential to in-
troduce some similar geometric structure. Such a structure is present (although it is
implicit in the actual proofs) in the construction of our Long Code test.

For the purposes of the following explanation, let us consider the n-dimensional
discrete cube {—1,1}" as a subset of the n-dimensional Euclidean unit sphere (we
normalize the Fuclidean norm accordingly). The Majority Is Stablest conjecture
essentially states that the discrete cube is a good approximation of the sphere in a
certain sense.

The Goemans-Williamson algorithm. We start with a brief description of how
the approximation ratio agyw arises in the Goemans-Williamson algorithm. To find
a large cut in a given graph G = (V, E) with n vertices, the Goemans-Williamson
algorithm embeds the graph in the unit sphere of R", identifying each vertex v € V'
with a unit vector x, on the sphere. The embedding is selected such that the sum

> 5 gt ()

(u,v)EE

involving the inner products of vectors associated with the endpoints of edges of G,
is maximized. The maximal sum bounds from above the size of the maximum cut,
since the size of every cut can be realized by associating all the vertices from one side
of the cut with an arbitrary point x on the sphere, and associating all other vertices
with —x.

10



Once the embedding is set, a cut in GG is obtained by choosing a random hyperplane
through the origin and partitioning the vertices according to the side of the hyperplane
on which their associated vectors falls. For an edge (u,v) in G, the probability that
u and v lie on opposite sides of the random cut is proportional to the angle between
x, and x,. More precisely, letting p = (x,,x,) denote the inner product between
the vectors associated with w and v, the probability that the edge (u,v) is cut is
(arccos p) /7.

The approximation ratio agyw of the Goemans-Williamson algorithm is obtained
by noting that

. (arccos p)/m

Gew = T { 1/2—-1/2p

is the smallest ratio possible between the probability of an edge to be cut and its

contribution to . Hence the expected size of the cut obtained by the Goemans-

Williamson algorithm is at least an agw-fraction of (1)), and therefore it is also at
least an agw-fraction of the maximum cut in G.

} ~ 878567 (2)

Cutting the sphere. In [I7], Feige and Schechtman considered the graph G,
whose vertices are all the vectors on the unit sphere, and two vertices are connected
by an edge in G, iff their inner product is roughly p (we do not get into the precise
details). It is shown in [I7] that in this graph the largest cut is obtained by any
hyperplane through the origin (to state this rigorously one should define appropriate
measures etc., but let us remain at a simplistic level for now). Such a hyperplane
cuts an (arccos p)-fraction of the edges in the graph.

Restricting to the cube. We would like to consider an edge-weighted graph H,
which is, in a non-rigorous sense, the graph induced by G, on the discrete hypercube.
For two vectors x,y on the discrete cube, we define the weight of the edge (x,y) to
be

Pr(X =xand Y =y],

where X and Y are p-correlated random elements of the discrete cube. The graph
H, resembles G, in the sense that almost all the edge-weight in H, is concentrated
on edges (x,y) for which (x,y) = p; we call such edges typical edges. Let us examine
how good H, is as an “approximation” of the graph G,,.

Note that the structure of H, is very reminiscent of our Long Code test, mentioned
above. To make the similarity even clearer, note that a cut C in H, immediately
defines a Boolean function fo over the discrete cube. It is easy to observe that the

11



size of C' (namely the sum of weights of the edges that are cut) is exactly the noise
stability of f — i.e., the acceptance probability of the Long Code test with parameter
p when applied to fc.

The size of the cut. So how large can the size of C' be? If (' is determined by a
random hyperplane, then a typical edge is cut with probability ~ (arccos p)/m. The
expected size of such a cut is therefore roughly the same as the weight of the maximal
cut in G, (when the total weight of the edges in G, is normalized to 1).

There are, however, cuts in H, whose weight is larger than (arccosp)/m. For
example, one can partition the vertices in H, according to their first coordinate,
taking one side of the cut C to be the set of vectors in the discrete cube whose first
coordinate is 1 and the other side of C' to be the set of vectors whose first coordinate
is —1. Note that this is the cut defined by the hyperplane which is perpendicular to
the first coordinate. When interpreted as a function, C' corresponds to the function
fo(z) = x1, namely it is a correct Long Codeword. One can easily observe that the
size of C'is % — %p — i.e., it is exactly the completeness of the Long Code test with
parameter p.

The conjecture comes in. The size of one-coordinate cuts in H, is larger than
the best cuts achievable in GG,. The Majority Is Stablest conjecture implies, however,
that essentially those are the only special cases, and that all other cuts in H, are
no larger than the maximum cut in G,. That is, it implies that unless fo depends
significantly on one of the coordinates, then the size of C' is at most (arccos p)/7 + €.
Stated formally, Proposition [16] in Appendix [D] implies the following.

Proposition If the Majority Is Stablest conjecture is true, then the following holds
for every p € (—1,0]. For any € > 0 there is a small enough 6 = (e, p) > 0 such that
if C is a cut in H, such that Inf;(fc) < 6 for every i, then the size of C' is at most
(arccos p)/m + €

In Appendix we prove that the statement of the above Proposition holds
with respect to all hyperplane cuts even without assuming the Majority Is Stablest
conjecture.

12



6 Our results

6.1 Main results
Our main results regarding MAX-CUT are the following:

Theorem 1. Assume the Unique Games conjecture and the Majority Is Stablest con-
jecture. Then it is NP-hard to approrimate MAX-CUT to within any factor greater
than the Goemans-Williamson constant,

0/m . (arccosp)/m

Aagw = mn  ————— — min
0<p<r (1 —cosf)/2  -1<p<o 1 —1p

Theorem 2. Assume only the Unique Games conjecture. Then it is NP-hard to
approximate MAX-CUT to within any factor greater than 3/4 + 1/2m.

We prove these results in Appendix [E]

In Appendix [F] we discuss how our results are relevant for other 2-bit CSPs besides
MAX-CUT. In particular we prove:

Theorem 3. Assume the Unique Games conjecture and the Majority Is Stablest con-
jecture. Then it is NP-hard to approximate MAX-2SAT to within any factor greater
than B =~ .943943, the number defined in the abstract of this paper and in Equation (E‘S])

Inspired by this, we are led to consider a slightly weaker version of MAX-2SAT
called Balanced-MAX-2SAT, in which each variable appears equally often positively
and negatively (see Appendix [F]for more details). We show that this problem can be
approximated to within 3:

Theorem 4. Balanced-MAX-25SAT is polynomial-time approzimable to within any
factor less than 3.

6.2 Partial progress on the Majority Is Stablest conjecture

We now state some partial progress we have made towards proving the Majority Is
Stablest conjecture.

First, as mentioned we have shown that the conjecture holds for the subclass of
balanced threshold functions; this follows from the following two results:
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Theorem 5. Let f:{—1,1}" — {—1,1} be any balanced threshold function, f(x) =
sgn(ai1z1 + - - - anx, I, where Y- a? = 1. If § = max{|a;|}, then for all p € [—1,1],

Sp(f) =1 — Zarccos p £ O(8(1 — |p])3/?).

Proposition 6. Let f : {—1,1}" — {—1,1} be any balanced threshold function,
f(x) = sgn(a1xy + -+ - apry,), where S a? = 1. If § = max{|a;|}, then the variable
achieving the mazimum has influence at least ().

Next, we can prove that any function with small influences has no more Fourier
weight at level 1 than does Majority:

Theorem 7. Suppose f: {—1,1}" — [—1,1] satisfies Inf;(f) < & for alli. Then

A 2
> f8) < -+,

1S|=1

where C' = 2(1 — /2/7).

As a simple corollary we get a weakened version of the Majority Is Stablest con-
jecture:

Corollary 8. Suppose f: {—1,1}" — [—1,1] satisfies Inf;(f) < 0 for all i. Let

C=2(1—+/2/n).

For p >0 and E[f] = 0 we have

S,(f) < (2/m+C8)p+ (1 -2/ — C8)p*.
For p < 0 we have

S,(f) > (2/7 + Co)p+ (1 —2/7 — C8)p®.

Finally, we note that one of the most effective techniques in bounding S, or Fourier
weights at low levels is to first bound the Fourier weight at level 1 and then apply ran-
dom restrictions; c.f. [L0, 45, §]. When performing a random restriction, the resulting
function may not be balanced. Thus, in order to apply the “random restriction”
technique, a bound for non-balanced functions with small influences is needed. We
give the following generalization of Theorem [7 This theorem should be compared to
the theorem Talagrand [45] stating that for every function f : {—1,1}" — {—1,1}
with Pr[f = 1] = p < 1/2 it holds that 3" 5_, f(5)* < O(p*log(1/p)).

'Without loss of generality we assume the linear form is never 0.
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Theorem 9. Let ¢ be the Gaussian density function and ® be the Gaussian distri-
bution function. Let U(z) = ¢(® ' (z)) : [0,1] — [0,1/v/27] denote the so-called
“Gaussian isoperimetric function.”
Suppose [ : {—=1,1}" — [—1,1] satisfies Inf;(f) < & for all i. Letting p = %+
sE[f], we have
Y (S <4Uw) +e),

IS]=1

where the error term e is given by e = max{1, \/|®=1(u)[}O(\/3).

6.3 Multi-valued functions.

It is interesting to study the extensions of the Majority is Stablest conjecture to the
case of multi-valued functions of the form f : [¢]™ — [¢]. Such a function f is balanced,
if it obtains every element i € [g] equally often.

One natural candidate for being the generalization of Majority to the g-ary domain
is the Plurality function [¢|" — [g], whose output is the most commonly appearing
input. (See Appendix [H| for more details.) When ¢ — oo with n “unbounded,” we
are able to get an asymptotically sharp formula for the noise stability of Plurality:

Theorem 10. The noise stability of the Plurality function for n = oo and ¢ — 0o s
g~ (1=0)/ (ko) +o(1).

(Note that for any constant p < 1, this approaches 0 as ¢ tends to cc.)

We are unable to show that the plurality function is the stablest, or even that the
stability of balanced g-ary function where the influence of each coordinate is small
tends to zero as g grows. However we do conjecture it. Every function f : [¢]* — R
can be written in a unique way as [ = ZSC[R] fs, where fs(z) depends only on

{z;:i€ S} and E[fsfr] =0if S # 72’ We define noise correlation by S pl*l| £/
and the ¢'th influence by > ¢, o fs|l3-

Conjecture Let p, =1 < p < 1 be some fixed parameter. Then there exist positive
functions 6,,C, : N — R such that lim, .., C,[q] = 0 and such that the following
holds. For every function f : [q|" — [0,1] with E[f] = 1/q, all of whose influences
are smaller than 6,(q),

S ol < Culdl/a.

S#0
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This conjecture leads to an inapproximability result for MAX-2LIN(q) — the prob-
lem of maximizing the number of satisfied equations, in a system of linear equations
mod ¢ with two variables appearing in each equation.

Theorem The Unique Games conjecture and Conjecture together imply the
following. Let € > 0 be any fized parameter. Then there exists a large enough q, such
that given an instance of MAX-2LIN(q) is it NP-hard to distinguish between the case
where it is e-satisfiable and the case where it is (1 — €)-satisfiable.

We have some partial results in the direction of Conjecture bounding the
first level weight in the generalized Fourier representation of balanced g-ary functions
(details and definitions appear in Appendix. This bound, together with the Unique
Games conjecture, already gives an inapproximability result for MAX-2LIN(q).

Theorem [26|There exists a constant K and a positive function 6 : N — R, such that
for all functions f : [q]* — {0,1} with Pr[f = 1] = 1/q and which satisfy || fi||5 < 6(q)

for all @, it holds that
Klogq
2 Nill < =5

Theorem [27|Assuming the Unique Games conjecture, the following holds. For every
€ > 0 there exists a positive d and an integer q, such that given an instance of

MAX-2LIN(q), it is NP-hard to distinguish between the case where the instance is
0-satisfiable, and the case where it is ed-satisfiable.

7 Conclusions

We have shown that together the Unique Games conjecture and the Majority Is
Stablest conjecture imply an optimal hardness of approximation constant for MAX-
CUT and new hardness results for other 2-bit CSPs. Assuming that the Majority Is
Stablest conjecture is true, this means that approximating the Unique Label Cover
problem is formally easier than improving the approximation constant for the MAX-
CUT problem. The problem of approximating the best solution (in terms of the
number of satisfied equations) for a system of linear equations modulo ¢, over 2
variables each, is a restricted version of the Label Cover problem and is therefore
even easier. This suggests that to improve the approximation constant for MAX-
CUT, one should first try to tackle this MAX-2LIN(q) problem.

On the other hand, it would be interesting to prove that MAX-2LIN(q) is as hard
to approximate as the Unique Label Cover problem. Theorem [27]and Theorem [25] are
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partial results in that direction. A reduction from the Unique Label Cover problem to
MAX-2LIN(q) may increase our understanding of the Unique Games conjecture. But
before such a reduction is obtained, it seems that a statement of the form “Plurality
is Stablest” is needed.

As for the Majority is Stablest conjecture, proving it seems to be a formidable
challenge, but a proof should have many applications other approximability problems
besides MAX-CUT.
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A Is the Unique Games conjecture true?

The Unique Games conjecture seems very difficult to prove or disprove and there is
not much evidence either in support of it or against it. It might even be the case
that the gap-version of Unique Label Cover problem is not NP-hard, but rather lies
somewhere between P and the class of NP-hard problems.

Consider the following intuition in support of the conjecture: We are given a
system of linear equations modulo a prime M such that there is an assignment that
satisfies 99% of the equations. Every equation has two variables (this is a natural
example of a constraint satisfaction problem with a bijective predicate). How good
an assignment can a polynomial time algorithm find? It is natural to expect that
a polynomial time algorithm can find assignments that satisfy only ¢(M) fraction
of equations and ¢(M) — 0 as M — oo. It would be quite counterintuitive if in
polynomial time, one could find an assignment satisfying, say 5% of the equations
wrrespective of how large M is. Roughly speaking, the Unique Games conjecture says
that this intuition is correct and it may be an argument in its support. The conjecture
has very strong consequences and it would be a pity if it were false.

We also note that it is essential that the (constant) alphabet size M of a Unique
Label Instance be a large enough function of 1 and ¢, since [33] gives a polynomial
time algorithm that finds a labeling satisfying 1—O(M?n'/%log(1/n)) fraction of edges
in the case that 1 — n are satisfiable.

B Is the Majority is Stablest conjecture true?

There has been a long line of work in the analysis of boolean functions study-
ing the noise sensitivity of functions and the associated Fourier-theoretic quanti-
ties [29, @, 44, 20], 45] [10] 19 5, 7, 8 211, B0, B8, 12, B9] all of the evidence therein
seems to corroborate the conjecture. Unfortunately, proving the Majority Is Stablest
conjecture seems like a non-trivial task; there are very few theorems in the analysis
of boolean functions for which sharp constants are known. However, we can discuss
the evidence in favor of the conjecture.

The Majority and weighted majority (or balanced threshold) functions play an
important role in the study of noise sensitivity of boolean functions. The set of these
functions is in a sense the set of all “uniformly noise-stable” functions. In [5], it is
shown that a family of monotone functions is asymptotically noise sensitive if and
only if it is asymptotically orthogonal to the family of balanced threshold functions;
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by asymptotically noise sensitive functions it is meant those that have S,(f) = o(1)
for any constant p. Moreover, in Theorem [5] and Proposition [6] we prove that the
Majority Is Stablest conjecture holds for all balanced threshold functions. These two
facts together support the Majority Is Stablest conjecture.

Stated in terms of Fourier coefficients (see Appendix, the Majority Is Stablest
conjecture says that among all “non-junta-like” functions, the one which has most
Fourier mass on the lower levels is the Majority function. This is because S,(f) is
a just a weighted sum of the squared Fourier coefficients of f, where coefficients at
level k£ have weight p*. Very strong support for the Majority Is Stablest conjecture
is given by Bourgain [§], who showed that non-junta functions f have their Fourier
tails 37 g5 £(S)? lower bounded by k=272 As Bourgain noted, the Majority
function has precisely this tail decay and thus his theorem is “basically” optimal. In
other words, Majority has the “least” Fourier weight on higher levels and therefore
the “most” Fourier weight on lower levels.

It is interesting to note that the expression S_i/3(f) plays a central role in a
Fourier-theoretic approach to the Condorcet Paradox and Arrow’s Theorem given by
Kalai [30]. This expression determines the probability of an “irrational outcome” in
a certain voting scheme. Much of [30] is devoted to the study of S_;/3(f) and some
of the arguments in [30] are similar to the argument presented here. In particular,
Conjecture 5.1 of [30] states that for ‘transitive’ functions, which have the property
that all influences are the same, the sum Z‘ S|<k f (9)? is maximized by the majority
function for all k£ as n — oo.

Next, in [39] it is shown that Majority is essentially the maximizer for another
noise stability problem, namely maximizing the kth norm of 7),f, where T}, is the
Bonami-Beckner operator (see Appendix among balanced functions f for large k
and n = oo. This too is just one more piece of evidence in favor of the Majority Is
Stablest conjecture.

Finally we would like to point out two consequences of Majority Is Stablest con-
jecture that can actually be proved. The first is Theorem , proved in this paper (see
the following subsection for more details): For all functions with small influences, the
Fourier mass at level 1 is bounded by the Fourier mass at level 1 of the Majority
function. In particular, this theorem already implies a weakened formulation of the
Majority Is Stablest conjecture, and this weakened formulation is enough to give an
improved hardness of approximation result for MAX-CUT conditional only on the
Unique Games conjecture.

The second consequence of Majority Is Stablest is obtained by the well known
procedure of inferring results for the Ornstein-Uhlenbeck process from results for
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Beckner operators (see, e.g., [2]). Let U, be the Ornstein-Uhlenbeck operator in R;
ie., U,f(x) =E[f(pr+ /1 — p?N)], where N is a standard Gaussian. The Majority
Is Stablest conjecture implies that for p > 0 and among all functions f : R —
{—1,41} with Gaussian expected value 0, the f which maximizes E[f(N)U,f(N)]
is the function f(x) = sgn(x). Motivated by our Majority Is Stablest, Wenbo Li
(private communication) recently proved that indeed f(x) = sgn(x) is the maximizer
in the Ornstein-Uhlenbeck case. Li’s result may be interpreted in the discrete world
as saying that among all symmetric functions with further smoothness properties the
most stable function is the Majority function.

C Some technical matters

Let us make some required definitions and technical observations.

C.1 MAX-CUT and MAX-2SAT

In this paper we deal mainly with the MAX-CUT and the MAX-2SAT problems. We
give the formal definitions of these problems below.

Definition 7 (MAX-CUT). Given an undirected graph G = (V, E), the MAX-CUT
problem is that of finding a partition C' = (V1,V3) which mazximizes the size of the
set (Vi x Vo) N E. Given a weight-function w : E — RT, the weighted MAX-CUT
problem is that of maximizing

Z w(e).

ee(VixVa)NE

Definition 8 (MAX-2SAT). An instance of the MAX-2SAT problem is a set of
boolean variables and a set of disjunctions over two literals each, where a literal is
either a variable or its negation. The problem is to assign the variables so that the
number of satisfied literals is maximized. Given a nonnegative weight function over
the set of disjunctions, the weighted MAX-2SAT problem is that of maximizing the
sum of weights of satisfied disjunctions.

As we noted earlier [I1] implies that the achievable approximation ratios for the
weighted versions of the above two problems are the same, up to an additive o(1),
as the approximation ratios of the respective non-weighted versions. Hence in the
following, we do not make a distinction between the weighted and the non-weighted
versions.
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C.2 Analytic notions

In this paper we treat the bit TRUE as —1 and the bit FALSE as 1; we consider
functions f: {—1,1}" — R and say a function is boolean-valued if its range is {—1, 1}.
The domain {—1,1}" is viewed as a probability space under the uniform measure and
the set of all functions f: {—1,1}" — R as an inner product space under (f,g) =
E[fg]. The associated norm in this space is given by ||f|2 = /E[f?]. We also

define the ¢ norm for every ¢, 1 < ¢ < oo, by ||fll; = (E[|f|q])1/q. In addition, let
[ flloo = max {|f(x)}.

Fourier expansion. For S C [n], let xg denote the parity function on S, xs(z) =
[Licg®i- It is well known that the set of all such functions forms an orthonormal
basis for our inner product space and thus every function f : {—1,1}" — R can be

expressed as
f=>_f(s

SCln]

Here the real quantities f(S) = (f, xs) are called the Fourier coefficients of f and the
above is called the Fourier expansion of f. Parseval s identity states that (f,g) =
S¢ £(S)4(S) and in particular, ||f[|3 = 3¢ f(S)% Thus if f is boolean-valued then
S f(8)2 =1, and if f: {~1,1}" — [~1,1] then 3¢ f(5)? < 1. We speak of f’s
squared Fourier coefficients as weights, and we speak of the sets S being stratified
into levels according to |S|. So for example, by the weight of f at level 1 we mean

> 511 f ()%

The Bonami-Beckner operator. For any p € [—1,1] we define the Bonami-
Beckner operator T,, a linear operator on the space of functions {—1,1}" — R, by
T,(f)(xz) = E[f(y)]; where each coordinate y; of y is independently chosen to be z;
with probability % + % p and —z; with probablhty = — —p It is easy to check that

T,(f) = > g P51 F(S)xs. Tt is also easy to verify the following relation between 7,
and the noise stability (see Definition [4]).

Proposition 11. Let f: {—1,1}" = R and p € [-1,1]. Then

Spe(f) = (£ T,f) = > pIf(S
SCln]
The following identity is a well-known one, giving a Fourier analytic formula for the

influences of a coordinate on a function (see Definition [5)).
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Proposition 12. Let f: {—1,1}" — R. Then for every i € [n],
e, (f) = 3 F(5)2
S3i

Once we have the Fourier analytic formula for the influence, we can consider the
contribution to the influence of characters of bounded size.

Definition 9. Let f: {—1,1}" — R, and let i € [n]. The k-degree influence of
coordinate 7 on f is defined by

me () = 30 f(s)
E)

J
IS|<k

D Different forms of the Majority is Stablest Con-
jecture

Recall the Majority Is Stablest conjecture:

Majority Is Stablest conjecture: Fiz p € [0,1). Then for any ¢ > 0 there is
a small enough 6 = (e, p) > 0 such that if f : {—1,1}" — [—1,1] is any function
satisfying

E[f] =0, and

Inf;(f) <§ foralli=1...n,

then
Sp(f) <1 — 2arccos p+e.

Some simple reductions give formally weaker versions of the conjecture that are
actually equivalent:

Proposition 13. To prove the Magjority Is Stablest conjecture, it suffices to prove
that, for ally > 0, the conjecture holds for all functions f satisfying | f(S)] < (1—~)!*!
for all S C [n].

Proof. Fix p € [0,1) and € > 0. Let k" be the minimal k such that p* < e/4. Choose
v > 0 to satisfy (1 — )2 <1+ ¢/4.
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Assuming the majority is stablest conjecture holds for all g satisfying [§(S)]| <
(1 — )8l for all S C [n] it follows that there exists a ¢ such that for all such g if
Inf;(g) < ¢ for all i then S,(g) < 1 — 2 arccos p + €/4.

Now let f be any function satisfying Inf,(f) < ¢ and let ¢ = T7_,f. Clearly
Inf;(g) < 6 for all i. By the assumption above, S,(g) < 1— 2 arccos p+€/4. Moreover
for all S with |S| < & we have §%(S) = (1 — ~)251f2(S) and therefore f2(S) <

(1+¢/4)3%(5).
Now

S,(f) = D> A8 =D S+ Y. A9

S:|S|<k! S:|S| >k’

IA

S PSS /A< (Lte/d) Y ()" +e/4

S:|S| <k’ S:[S|<k’
< Sp(g9) +¢€/2 <1 — 2arccosp + 3e/4.

O

Proposition 14. To prove the Majority Is Stablest conjecture, it suffices to prove it
in the case that f is monotone.

Proof. Tt is known that monotone combinatorial shifting in the sense of Kleitman [35]
preserves expectation, and only decreases influences [4] and noise stability [5]. O

The Majority Is Stablest conjecture also has the following simple consequences.
First, we can replace influences by low-degree influences:

Proposition 15. If the Majority Is Stablest conjecture is true, it remains true if the
assumption that Inf;(f) < & for alli is replaced by the assumption that Inff’“ (f) <¢,
where §' and k' are universal functions of € and p.

Proof. The proof is similar to the proof of Proposition [13; Fix p < 1 and ¢ > 0.
Choose 7 such that p*(1 — (1 — v)?) < €/4 for all k. Let § be chosen such that if
Inf;(g) < 6 for all i then S,(g) < 1 — 2arccosp + ¢/4. Choose § = §/2 and k' such
that (1 — )% < §'.

Let f be a function satisfying Inf?kl(f) < ¢ and let g =T;_,f. Note that

W) < 3 PEF0-* Y S <848 =0

S:ES,|S|<k! S:eS,|S|<k
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for all i.
It now follows that S,(g) < 1 — 2 arccos p + €/4 and therefore

S,(f) = Sylg) + 3 F(S) (M1 — (1= 7)) < 1 — 2 arceos p + 3 /4.
S

Second, we get a “Reverse” Majority Is Stablest conjecture:

Proposition 16. If the Majority Is Stablest conjecture is true, then for p € (—1,0],
the same conjecture holds in reverse: S,(f) > 1— % arccos p — €, and furthermore, the
assumption E[f] = 0 becomes unnecessary.

Proof. Let f:{—1,1}" — [~1,1] satisfy Inf;(f) < 6 for all i. Let g be the odd part
of f, g(x) = (f(z) = f(=2))/2 = X5 oaa f(F)zs. Then E[g] = 0, Infi(g) < Inf;(f)
for all 7, and S,(f) > S,(9) = —S_,(g), which exceeds —(1 — 2 arccos p + €) by the
Majority Is Stablest conjecture applied to g. O

Finally, we can combine the above two consequences to get a result that will be
necessary for the reduction from Unique Label Cover to 2-bit CSPs:

Proposition 17. If the Majority Is Stablest conjecture is true, then so is the follow-
mg:
Fiz p € (—1,0]. Then for any € > 0 there is a small enough 6 = d(e,p) > 0 and a
large enough k = k(e, p) such that if f: {—1,1}" — [—1,1] is any function satisfying

Inf=*(f) <6 foralli=1...n,
then

Sp(f) = 1— 2arccosp —e.

E Reduction from Unique Label Cover to MAX-
CuUT

In this section we prove Theorems [I] and [2]
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E.1 The PCP

We construct a PCP that reads two bits from the proof and accepts if and only if
the two bits are unequal. The completeness and soundness are ¢ and s respectively.
This implies that MAX-CUT is NP-hard to approximate within any factor greater
than s/c. The reduction from the PCP to MAX-CUT is straightforward and can be
considered standard. Let the bits in the proof be vertices of a graph and the tests of
the verifier be the edges of the graph. The {—1, 1} assignment to bits in the proof
corresponds to a partition of the graph into two parts and the tests for which the
verifier accepts correspond to the edges cut by this partition.

The completeness and soundness properties of the PCP rely on the Unique Games
conjecture and the Majority Is Stablest conjecture. The Unique Label Cover instance
given by the Unique Games conjecture serves as the PCP Outer Verifier. The sound-
ness of the Long Code-based inner verifier is implied by the Majority Is Stablest

conjecture.
Before we explain the PCP test, we need some notation. For z € {—1,1}* and
a bijection o : [M| — [M], let x o o denote the string (z,(1), Zs(2), - - -, To(ar)). For z,

y € {—1,1}M let 2y denote the M-bit string that is the coordinatewise product of x
and .

The PCP verifier is given the Unique Label Cover instance L(V, W, E, [M], {0} (v,w)cE)
given by the Unique Games conjecture. The values of n and § will be chosen to be
sufficiently small later. The verifier expects as a proof the Long Code of the label of
every vertex w € W. The verifier is parameterized by p € (—1,0).

The PCP verifier with parameter —1 < p <0

Pick a vertex v € V' at random and two of its neighbors w,w’ € W at random.
Let 0 = 0, and ¢’ = 0,,s be the respective bijections for edges (v, w) and
(v, w").

Let f and g be the supposed Long Codes of labels of w and w’ respectively.

Pick z € {—1,1}™ at random.

Pick u € {—1,1} by choosing each coordinate independently to be 1 with
probability % + %p < % and —1 with probability % — %p > %

Accept iff
flxoo)# g((xoo’)p).
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E.2 Completeness

It is easy to see that the completeness of the verifier is (1 —2n)(3 — 3p). Assume that
the Label Cover instance has a labeling that satisfies a 1 — n fraction of edges. Take
this labeling and encode the labels via Long Codes. We will show that the verifier
accepts with probability at least (1 —2n)(3 — 3p).

With probability 1 — 2n, both the edges (v,w) and (v,w’) are satisfied by the
labeling. Let the labels of v, w,w be i, j, 5’ € [M] respectively such that o(j) =i =
o'(j"). The functions f, g are the Long Codes of j, j' respectively. Hence

flxoo)=m,5) =i, g((x 00 )u) =Ty = Tipty

Thus the two bits are unequal (and the test accepts) iff j1;; = —1 which happens with
probability 3 — 3p.

E.3 Soundness

We will show that the verifier accepts with probability at most (arccos p)/m + €. The
analysis is standard: we use Fourier methods to show that if the test accepts with
probability (arccosp)/m + €, then it is possible to “decode” the Long Codes and
“extract” a labeling for the Label Cover instance that satisfies a significant fraction
of the edges. This is a contradiction provided we choose the soundness of Label Cover
to be small enough.

The probability of acceptance can be arithmetized as

Priac] = E F = Lt oo)gl@o o))

v,w,w’,x,u 2 2

Fix v, w,w’ for the time being and analyze the expectation over x, u. The functions
f, g can be expanded using their Fourier representations. We get

Lle | S A8 nstoo)s(@oo)xs )
Noting that

we have
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The expectation over x vanishes unless o(S) = ¢/(5’); note that in this case S and
S” have the same size. Also, E,[xs (1)] = pI*'l = p!¥l. Hence we get

Soy S RES)

2 2
S,S": o(S)=0'(5")
If Prlacc] > (arccos p)/m+e, then for at least an €/2 fraction of v € V| the expectation
(over the choice of w,w’) of the above expression is at least (arccosp)/m + €/2. Fix
any such “good” v € V. Note that after fixing v, the vertices w,w’ are identically
distributed. Taking expectation over w,w’ and rewriting,

w/

% - % >_PTEf (T (S)E [§("(S)] = (arccos p) /7 + ¢/2
S

This is same as saying

— 3 3 (Bl ($))]) 2 (arccosp)fn-+f2

2
S

N | —

which implies that

> o (]«3[ f<a—1(5))]) <1 - 2arccosp — e. (3)

Now define a function h : {—1,1}™  [—1,1] as follows:

h(z) = E[f(z 0 0)].

w

A~

Clearly, h(S) = E,[f(c7'(5))] and therefore (3) can be written as

Zp'S%(S)Q < 1 — 2arccosp — €.
S

We now assume the Majority Is Stablest conjecture and apply Proposition [17] to
conclude that h has at least one coordinate, say j, with k-degree influence at least 9.
We shall give the label j to v. In this way, all “good” v € V are labeled. Now since
Inffk(h) > 0, we have

5< Y S = Y Bl ()< Y Elfe7 () = E [t (0] @)
S S S
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For any w € W, define the set of candidate labels for w to be
Cand[w] = {i € [M]: Inf="(f) > §/2}.

Since .. Inf="(f) < k, we conclude that |Cand[w]| < 2k/d. Equation implies
that for at least a §/2 fraction of neighbors w of v we have Infffl(j)( f) > §/2 and
therefore 071(j) € Cand[w]. Now we label each vertex w € W by choosing a random
element of Cand[w] (or any label if this set is empty). It follows that among the set of
edges adjacent to “good” vertices v, at least a (§/2)(d/2k) are satisfied in expectation.
Thus it follows that there is labeling for all vertices which satisfies an (¢/2)(5/2)(d/2k)
fraction of all edges. Choosing the soundness of the Label Cover instance to be small
enough gives a contradiction.

E.4 Hardness of MAX-CUT

Theorem [I] follows easily from the completeness and soundness properties of the PCP.
The completeness is (1 — 2n)(3 — 3p) and the soundness is (arccos p)/m — €. Here 1
and e can be made arbitrarily small. Thus MAX-CUT is NP-hard to approximate
within factor

(arccosp)/m g

T

where we can choose any p € (—1,0) and ¢ can be made arbitrarily small. The
minimum of the above quantity is precisely the Goemans-Williamson constant oy .

Using the second result in Corollary [§| — which is unconditional — we can get
a weaker hardness of approximation result for MAX-CUT that doesn’t depend on
the Majority Is Stablest conjecture and only uses the Unique Games conjecture.
Repeating the analysis from Appendix[E.3]it is easy to see that the resulting hardness
factor is

N

53— 5l@/m)p+ (1 —2/m)p%
min 1 1
—1<p<0 5~ ip

= 3/4+1/271 ~ .909155.

We thus obtain Theorem [l

F  Other 2-bit CSPs

The same method used to prove hardness of approximation for MAX-CUT can be
used to give improved hardness of approximation for another important 2-bit CSP,

32



namely MAX-2SAT. Recall that the input to a MAX-2SAT problem is a collection
of clauses, i.e. disjunctions, of at most 2 variables; the goal is to find an assignment
that satisfies as many clauses as possible.

Assume the Unique Games and Majority Is Stablest conjectures. The natural
inner verifier test for MAX-2SAT is this: With probability 1/2 test f(zoo) V g((x o
o')u); with probability 1/2 test —f(xoo)V —g((xoo’)u). It is easy to check that this
leads to an acceptance probability of % — iSp(h). The dictator passes this test with
probability % — 411 p; the Majority Is Stablest conjecture implies that no function with
small low-degree influences can pass this test with probability exceeding % — }L(l —

2 arccos p) + €. This leads to a hardness of approximation ration of

™

>l

— (1 — 2 arccos p)

p

~ 943943, (5)

= min
ﬁ —1<p<0

(N[
N

This is our Theorem [l

Note that [ is smaller than the best unconditional hardness factor known for
MAX-2SAT, 21/22 ~ .954545, due to Hastad [27] (using the gadget of Bellare, Gol-
dreich, and Sudan [3]); as well, the best algorithm known for MAX-2SAT, due to
Lewin, Livnat, and Zwick [37], achieves an approximation ratio of .9401 which is
close to and smaller than (.

Our conjectures and methodology do not seem to improve the hardness factors for
other 2-bit CSPs beyond agyw. Consider the MAX-2ConjSAT problem, in which the
input is a collection of conjunctions of (at most) 2 variables and the goal is to satisfy as
many conjunctions as possible. The natural inner verifier test is this: With probability
1/2 test f(zoo)Ag((zoo’)u); with probability 1/2 test —f(xoo)A—g((xoo’)u). This
leads to an acceptance probability of %L — %lSp(h). Assuming the Majority Is Stablest
conjecture, we get the same hardness of approximation for MAX-DICUT as we do for
MAX-CUT, agw, since (§ — 3(1— 2 arccosp))/(3 — 3p) = ((arccos p)/7) /(5 — 3p). In
some sense this may not be surprising since the best algorithm known for this problem
([37] again) already achieves an approximation ratio of .8740, which is nearly agy. In
fact, the same paper achieves .8740 even for the most general problem, MAX-2CSP
in which arbitrary 2-bit constraints are allowed.

Motivated by these results we are led to conjecture that MAX-2SAT is polynomial-
time approximable to within any factor less than # and that MAX-2CSP, MAX-
DICUT, MAX-2ConjSAT, MAX-2LIN, etc. are all polynomial-time approximable to
within any factor less than agyw. We will now show that these bounds are achievable
for a slight weakening of the problems.
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Definition 10. Given a 2-bit CSP, by its balanced version we mean the problem with
the restriction that every input instance {Cy,...,Cy,} has the following property: for
each i = 1...n, the expected number of constraints satisfied when x; is set to 1 and
the other variables are set uniformly at random is equal to the expected number of
constraints satisfied when x; is set to —1 and the other variables are set uniformly at
random.

As an example, Balanced-MAX-2SAT is the MAX-2SAT problem with the addi-
tional constraint that each variable appears positively and negatively in equally many
clauses (in the weighted case, with equal total weight).

We contend that the balanced versions of 2-bit CSPs ought to be equally hard
as their general versions; the intuition is that if more constraints are expected to be
satisfied if x; is set to, say, 1 rather than —1, it is a “free hint” that the z; should
be set to TRUE. Note that the reductions we suggest from Unique Label Cover to
MAX-2SAT, MAX-2ConjSAT, etc. produce balanced instances, and thus we get the
same hardness of approximation bounds, § and agyy, for the balanced problems (con-
ditional on the two conjectures).

We can prove unconditionally that Balanced-MAX-2SAT is polynomial-time ap-
proximable to within any factor less than (3, and that MAX-2CSP, MAX-DICUT,
MAX-2ConjSAT, MAX-2LIN, etc. are all polynomial-time approximable to within
any factor less than agy. By way of illustration, we prove Theorem [4}

Proof. The algorithm is essentially the same as that used by Goemans-Williamson.
The input is a collection of clauses C' of the form (yV z), where y = 0,2, and z = 0;z;
for some variables x; and z; and signs o; and o;. Arithmetizing each clause with

_ _ _ _ 3_1 1 1
-1v-1=1,-1vl=11v-1=1,1V1=0,weget y —3y— 32— 7y-2z Thus
we have the objective function

OBJ = Z %—iy—iz—}ly-z.
C=(yVz)

The condition that the instance is balanced is precisely equivalent to the condition
that the linear terms cancel out. (This holds true by definition for all balanced 2-bit
CSP problems.) Thus in fact

OBJ= > 2-

C=(yvz)

Y-z

N,
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Hence the optimum value of the Balanced-MAX-2SAT instance is
OPT =max OBJ  subject to z; € {—1, 1} for all 4.

Following Goemans-Williamson we directly relax this to a semidefinite program by
replacing z; with a high-dimensional vector v;, subject to v; - v; = 1, and solving;
in polynomial time we can find a solution {v;} which achieves SDP — ¢, where SDP
denotes the optimal value of the semidefinite program. We now round by picking r
to be a random Gaussian vector and setting x; = sgn(r - v;). Recalling from [22] that
this gives E[z;-x;] = 1— 2 arccos(v;-v;), we have for any clause (yV z) = (0;2;Vojx;),

B

W~

(0iz;) - (025)] = § — 3(1 = Zarccos(oiv; - 05v5)) = B(§ — (0w - 0505)),

T

where we have used the definition of § and the fact that it is unchanged if we let
p range over [—1,1]. It follows that E[OBJ] > SSDP > BOPT and the proof is
complete. O

G Partial progress on the Majority Is Stablest con-
jecture

G.1 A bound on the weight at level 1

If the Majority Is Stablest conjecture is true, then it is true for extremely small p,
and thus we must be able to prove that functions with small influences have no more
weight at level 1 than Majority has, viz., % (up to o(1)). We now prove Theorem .

Proof. Let £ denote the linear part of f, (z) = >, f({i})z;. We have that
D)< k() < 6 for all i. Now Y5, f(S)? = ] and

1113 {f,€)
< ([ fllso 1111
<

€]l
Since all of ’s coefficients are small, smaller than d, we expect ¢ to behave like a

Gaussian with mean zero and standard deviation ||¢||o; such a Gaussian has L'-norm
equal to 1/2/7||¢||2. Several error bounds on the Central Limit Theorem exist to this
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effect; the sharpest is a result of Koénig, Schiitt, and Tomczak-Jaegermann [36] which
implies that ||¢||; < +/2/7||¢|2 + (C/2)d. Thus

113 < V/2/x el + (C/2)s,
hence [|£]| < /1/27 + /1/27 + C4/2 and therefore ||¢||3 < 2/7 + C0. O

The results of Konig, Schiitt, and Tomczak-Jaegermann were used in [2I] in order
to prove that Boolean functions whose Fourier transform is concentrated at the first
two levels are “close” to the dictator function.

Given Theorem [7] it is easy to prove Corollary [§

Proof. Recall that S,(f) = 34 pI1f(5)? and Y4 f(S)? < 1. For p > 0 and E[f] = 0
we have that f(0)2 = 0 and that S,(f) is maximized when as much weight as possible
is put at level 1 and the rest is at level 2. By Theorem , at most 2/m + C0 weight
can be on level 1. The first result follows.

For p < 0 (and E[f] arbitrary), S,(f) is minimized when as much weight as

possible is put at level 1 and the rest is at level 3. The second result again follows
from Theorem [7. O

G.2 Improved weight bounds for level 1

In this subsection we prove optimal bounds on the weight of the first level for (not
necessarily balanced) functions with low sensitivity. The bound will generalize The-
orem [7] It should be compared to a theorem of Talagrand [45]:

Theorem 18. (Talagrand) Suppose f : {—1,1}" — {—1,1} satisfies Pr[f = 1] =p <
1/2. Then
> f(8)* < O(p*log(1/p)).

[S]=1

Our bound in Theorem [J] improves on Theorem [1§] for functions with small influ-
ences.

One technical tool we will use is the Berry-Eséen theorem, which gives error
bounds for the Central Limit Theorem. We use the following version in [I§]:

Theorem 19. (Berry-Eséen) Let Xy, ..., X, be a sequence of independent random
variables satisfying B[X;] = 0 for all j, (327, E[X?))'? = o, and > EBlIXG)P] =
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ps. Let Q = o Y (X) + -+ X,), let F denote the cumulative distribution function
of Q, F(x) = Pr[Q < x|, and let ® denote the cumulative distribution function of a
standard normal random variable. Then

sup(1 + |2*)|F(z) — ®(2)] < O(ps/a”).

In particular, if A is any interval in R, | Pr[Q € A] — Pr[N(0,1) € A]| < O(p3/a?).
We now prove Theorem [9}

Proof. 1t will be more convenient to work with the [0, 1] valued-function g = % + % f

and prove that » g _, §(9)? < <U(,u) + max{1, \/ |<I>—1(,u)|}0(\/3)>2. Note that pu =

E[g]. We will assume without loss of generality that x4 > 1/2 (otherwise look at
1_ 1 )
2~ 2/)

Let 7 denote (32, §(5)*)"/?. As in the proof of Theorem |7} we let £ be the
linear part of g and we know that all of ¢’s coefficients are at most ¢/2. The function
L=10/T =) 49(S)xs/7 is a sum of independent random variables Xg = §(S)xs/7.
Clearly E[Xg] = 0 for all S. Moreover, > ¢E[XZ] =1 and )¢ E[X?] < maxg | Xs| <

5/(27).

Now 72 = (g, () and therefore T =< ¢, L >. We will show below that
7= (g, L) < U(p) + max{1, |®~" (1n)[}O(d/7). (6)

Multiplying by 7 implies that

(r = Uy < 024 4 max{1, 107 () }OO).

which in turn implies that

T < U(p) +max{1, /|21 (u)[}O(V/3)

Finally, we will conclude that

7 < (U() + max{L V[T (W}0(V3))

We now prove (@]). Let ¢ be a number such that Pr[L > ¢] = p. Since g is a [0, 1]
valued-function it follows that (g, L) < E[1,,L].
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Letting F' denote the cumulative distribution function of L the Berry-Eséen the-
orem implies that sup,(1 + |z|*)|F(z) — ®(z)| < O(§/7). In particular, |Pr[L >
t] — Pr[N(0,1) > ]| < O(5/(7(1 + ¢*)) and hence

)
= @(—t)] < O(m) (7)
Note that the function U satisfies
/ _/—13;,>< 7133/:_71% 71% 1 :_7133
U'z) = ¢ (@ () x (27 (2))) = =0 (2)p(2 ())—¢<¢_1(x)) o7 (z).

Therefore U”(z) = —1/¢(®"!(x)) = —1/U(z). It follows that U is concave.
We now estimate U(u) — ¢(t). Since U’ is a monotone function, it follows that

Ul) = 6(0)] = |U(@(~1) — U] < |9(~t) - pl max{|U"(@(~0)], [0 ()]} (3)
< max{[t, 8 (W) }O(/(r(1 + 7)) < max{L, |27} ()| }O(5/7).

Further,

<g,L> < E[liL] = tPr[L > ] + /too Pr{L > 2] dx
— Pl > 1]+ /:o PN(0,1) > 2 dz + /tOO(F(x) _ (x))dz
C b () + (t) + /tOO(F(x) o)) da
< 0l0) 41 ln - @(-0] + [ 1P(@) - 0(a)|da

i > 3 .
< o)+ T |t|30(5/7') + O((S/T)/t 1/(1 4+ |x|°) dx ((7) and Berry-Eséen)
)
= ¢(t)+0(m) (@)
< U(p) + max{1, ]2~ (u)[}O(5/7).
which proves @ as needed. O

G.3 Weighted majorities

In this subsection we show that the Majority Is Stablest conjecture holds for weighted
majority functions. We consider function of the form sgn(a;x; + ---a,x,) where
S~ a? =1, it is further assumed that for all z € {—1,1}" it holds that >_ a;z; # 0.

38



In order to prove Theorem [5| we will need another version of the Central Limit
Theorem with error bounds, this one for multidimensional random variables. The
following theorem is from [6, Corollary 16.3]:

Theorem 20. Let X;,..., X, be independent random variables taking values in RF
satisfying:

¢ E[X;]=0,j=1...n

e n7 'Y " Cov(X;) =V, where Cov denotes the variance-covariance matriz;
e \ is the smallest eigenvalue of V', A is the largest eigenvalue of V' ;

o oy = S BIX[ < oo

Let Q,, denote the distribution of n=Y2(Xy + -+ + X,,), let @y denote the dis-
tribution of the k-dimensional Gaussian with mean 0 and variance-covariance matrix
V, and let n = CA™32psn=2 where C is a certain universal constant.

Then for any Borel set A,

|Qn(A) = @o v (A)] <0+ B(A),

where B(A) is the following measure of the boundary of A: B(A) = 2sup,cgs Doy ((0A)T +
y), where ' = AY?n and (0A)" denotes the set of points within distance i/ of the
topological boundary of A.

We now prove Theorem [3]

Proof. Since f is antisymmetric, we only need to prove the result for p € [0,1].
Let x and y be p-correlated uniformly random strings, let X; = a;z;, Y; = a;y;, and
X; = (X;,Y;) € R2. Let Q, denote the distribution of X;+---+X,, = n~Y2(y/n X, +
-+ v/nX,). Since S,(f) = 2Pr[f(x) = f(y)] — 1, we are interested in computing
20Q,(A;,UA__)—1, where A, denotes the positive quadrant of R? and A__ denotes
the opposite quadrant.

We shall apply Theorem 20} We have E[X;] = 0 for all j. We have Cov(y/nX;) =
na? [ ; fl) ], and thus V = n=' > Cov(y/nX;) = { [1) 'f } The eigenvalues of
Vare A\ =1—pand A = 1+ p. Since |[y/nX;| is v/2n |a;| with probability 1,
p3 = n S E[Vr X = 232023 |4 < 232n1/26. Thus n = O(1)5(1 — p)~3/2
and 7' = (1+ p)'/*n = O(n).
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It is well known (see, e.g., [Il 26.3.19]) that ®gy(As) = Pov(A__) = 1/2 —

(1/2m) arccos(p), and it is easy to check that B(A,+ U A__) = O(n'). Thus by
Theorem 20| we get Q,(A.y UA__) = 1 — (arccosp)/m £ O(n) and the theorem
follows. O]

We now prove Proposition [6]

Proof. We may assume without loss of generality that 0 =a; > ay > --- > a, >0
Letting X; denote the random variable a;z;, we will prove that Inf;(f) > Q(J) by
proving that

Pr(| Xy + - + X, | < 6] > Q(0). (9)

Let C be the constant hidden in the O(-) in the final part of the Berry-Eséen theorem,
Theorem . In proving @D we may also assume without loss of generality that

1 — 100C2%6% > 1/4; (10)

i.e., 0 is not too large. We may also assume C' is an integer.

Let m = 100C?+2. We will split into two cases, depending on the magnitude of a,,.
In either case, we shall apply the Berry-Eséen theorem to the sequence X,,, ..., X,,.
We have

n

ZE V2= (3" a2)2 > (1 (m - 2)8)V2 > (1- 1000%6) > 1/2,

j=m

where we have used (| . We also have ps = Y% E[X;*] < > a,B[X7] =

am0?, so the error term in the conclusion of the theorem, O(ps /a ), is at most

Cay /o < 2Cay,.
Case 1: a,, < 1005 In this case, by the Berry-Eséen theorem we have that
Pr[X,, 4+ --- 4+ X, € [0,6]] > ®([0,6]) — 2Can, > 66(5) — 6/5 > .04,

where we have used the fact that ¢(d) > .24 for 6 < 1. On the other hand, since
as, . . am 1 are all at most §, it is easy to fix particular signs y; € {—1,1} such
that Zl 5 a;y; € [—0,0]. These signs occur with probability 272, which is at least
27100C* " Thus with probability at least .04 - 27199C*§ = Q(5) both events occur, and
| Xo + -+ + X,| <0 as desired.
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Case 2: a,, > ﬁd . In this case, we apply the Berry-Eséen theorem to the interval

[—10C6, 10C¢] and merely use the fact that a,, < J. We conclude that

Pr[X,, + -+ X, € [-10C§,10C3)] > &([-10C46, 10C6]) — 2C6
> 2006 - $(10C3) — 200 > 2006 - —=(1 — (1009)?/2) — 2C6 > 409,

where we have used in the last step to infer 1 — (10C§)?/2 > 5/8. Given
X+ -+ X, =t €[-10C6,10C0], it is easy to choose particular signs yo, ..., Ym_1
such that ¢ + 37" a;y; € [0, 0]. This uses the fact that each g, is at least 50 and
hence Z;Z;l a; > 100C%2.6 > 10C4; it also uses the fact that each a; is at most

100
. Once again, these signs occur for s, ..., T, with probability at least 2710007,

Thus | X3 4 - + X,| < ¢ happens with probability at least 4027199C°§ = Q(§), as
desired. ]

H Mod ¢ linear equations over two variables.

The MAX-2LIN(q) problem is that of maximizing the number of satisfied equations
in a given system of linear equations over Z,, where in each equation there are exactly
two variables. The MAX-CUT problem can be viewed as a special case of the MAX-
2LIN(2) problem, by taking the equation v+u = 1 for every edge {u,v} in the graph.
It would be interesting to apply the ideas we used in the reduction to MAX-CUT,
to get conditional hardness-of-approximation results for MAX-2LIN(q), or for other
2CSP problems over non-binary domains.

In particular, it would be nice if we could show that for every positive e there
exists a large-enough ¢, such that (assuming the Unique Games conjecture) it is hard
to distinguish between the case where a given MAX-2LIN(q) instance is (1 — ¢€)-
satisfiable, and the case where it is not even e-satisfiable. Note that we could use
the hardness of the above gap problem as a starting point of the reduction to MAX-
CUT, instead of the Unique Label Cover problem. In order to show hardness for
that problem, it seems that one must use a g-ary version of the Majority is Stablest
conjecture.

In this section we state a conjecture regarding the stability of ¢g-ary valued func-
tions (functions of the form f : [¢|" — [q]), that together with the Unique Games
conjecture implies that the (e,1 — €)-gap version of MAX-2LIN(q) is NP-hard. By
proving a weaker statement, we show that the Unique Games conjecture implies that
MAX-2LIN(q) is hard to approximate up to any arbitrary constant, where the gap
lies between some positive €d and ¢, rather than between ¢ and 1 — € as above.
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We also state some conjectures regarding the stability of g-ary balanced functions,
where by “balanced” we mean that each value ¢ € [g] is obtained with the same
probability over a random input. In addition, we present the plurality function as a
candidate for the stablest g-ary function among balanced g-ary functions where the
influences of every coordinate is small enough, and compute its stability.

H.1 Some notation

This section deals mostly with functions over a g-ary domain, namely functions that
are defined over the set [¢]", endowed with the uniform measure. Functions that map
[q]™ into [g] are called g-ary valued, or simply g-ary.

Relaxed g-ary functions. Let f : [¢|" — [q], be a g-ary function. For every
a € [q] we let f* : [¢]* — {0,1} be the indicator of the event f = a, namely
f9(x) = 1{f@2)=a}. It is easy to see that the vector (f?)sc[q completely describes f.
This vector representation allows us to consider relazed q-ary functions, whose values
are distributions over [g].

A relaxed g-ary function is a vector (f*).cq of functions of the form f*: [¢]" —
0, 1], which satisfies

Vel Zf“(x):l.

a€lq]

For simplicity, we will still denote f : [¢]" — [q] for relaxed g-ary functions f. If every
function f* in f obtains only {0, 1} values, we will identify the vector with a g-ary
function, and sometimes call it a proper g-ary function.

A relaxed ¢-ary function f is called balanced, if

Vacelq, E [f'(z)]=1/q.

r€(g]™

Noise correlation. For a point x € [q]", we define an n-correlated z to be the
random variable y , obtained by setting each coordinate y; independently to be z;
with probability 1, and a uniformly random element in [¢] otherwise. We denote the
distribution of y by N,(z).

The noise correlation of a real valued function f : [¢]* — R for noise rate 7, is

defined by



where z is uniformly distributed in [¢]", and y ~ N, (z) is an n-correlated x. For a
relaxed g-ary function f, we define the noise correlation of f n by

S(f) =D Sy(f*) .
a€lq]

Note that for the case of a proper g-ary function f, its noise correlation is given by

Sp(f) =Pr seqr [flx) = f(y)].

y~Np(z)
For example, the n-noise stability of the dictator g-ary function f(x) = z;isn + (1 —n)(1 — 1/q).
Fourier expansion. One may encode the elements of [¢] as some finite abelian
group and write Fourier expansions of real-valued functions in terms of that basis.
We prefer a more abstract approach. For = € [g|" we write zg for {z; : i € S}. The

space of functions X = {f : [¢]* — R} is an orthogonal sum of spaces X = ®gc[,Xs
where Xg denote the space of all functions f : [¢]* — R such that

e f(x) depends only on xg for all x,
e [ is orthogonal to all functions in the spaces Xg for S" C S.

We will write f : [¢|” — R as

f(x) =Y fs(x) (11)
Sch

(we will sometime replace f{;; by fi;) where fg(z) is the projection of f to the space
Xg. We will refer to( as the Fourier expansion of f.

Inner products. We use the natural inner-product for real valued functions over
g-ary domains, namely (f,g) = E,[f(x)g(z)]. Note that the second property above
easily implies that for every two functions f, g : [¢]* — R and every two different
subsets S, T C [n], fs and gy are orthogonal, namely (fs,gr) = 0. The following
analogues of Plancharel’s and Parsavel’s identity follow:

(frg) =D (fs;gs) . and [Ifl5= > Ifsl-

ScCln] SCn]

It is easy to verify the following claim.
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Claim 21. Let f be a relaxed q-ary function over [q]". Then

> sl <1, (12)

a€lq], SCn]

and equality holds if and only if f is proper.

The Fourier expansion leads to a convenient formula for the noise stability of a real-
valued function. Tt is easy to see that if f¢ € Xg then S, (fs) = (1 —1)"%!|| fs||5. This
implies that

Claim 22. For every real-valued function f : [q]" — R and every n € [0, 1],

Sy(f) =D (A=) sl (13)

S

Influences. Using the Fourier expansion of f, we can define the influence of the
i’th variable on a real-valued function f by Inf;(f) = > o, || fsll2. We also define the
low degree and high degree influence of i by

WfE(f) = > lfsly, and  InfP*(F) = > lIfslls -
S: €S S: €S
|S|1<k |S|>k
For a relaxed g-ary function f, we define the influence of ¢ by Inf;(f) = > 1, Inf:(f),
and similarly for low degree and high degree influence.

The Beckner operator. We define the analogue of the Beckner operator for func-
tions over g-ary domains. For a real valued f : [¢|" — [¢] and a parameter p € [0, 1],
let

Tp(f)(x) = EyNNp(x) [f(y)] .

For relaxed ¢-ary functions f, we define T,(f) by letting T,(f)* = T,(f*). Note
that T,(f) is indeed a relaxed g-ary function, and that if f is balanced then so is
T,(f). It is also easy to observe, using the basic properties of the Fourier expansion,
that for real-valued functions f, T,(f) = >_¢ p/*l fs. This implies that for real-valued

functions S,(f) = 3¢ p/!|| fs||5. It is thus natural to define for a real valued f,

T(f) =250 fs. Sp(f) = S oS53, (14)
for all p € [-1,1].

44



H.2 Stability of balanced ¢-ary functions

We are interested in the noise stability of balanced g-ary functions. We conjecture
that the noise stability of such functions, where the influence of each coordinate is
very small, tends to zero as ¢ tends to infinity.

Conjecture 23. Letn, 0 <n < 1, be some fixed parameter. Then there exist positive
functions 6,, S, : N — R such that lim,_.« S,[q] = 0 and such that for every balanced
relazed q-ary function f : [q]" — [q], all of whose influences are bounded by 6,(q), the
n-noise correlation of f is at most S,(q).

To prove Conjecture [23] it suffices to show that if all influences of a [0, 1]-valued
function f as above are small enough, then S,(f) = 04-x(1/¢). The following con-
jecture therefore implies Conjecture

Conjecture 24. Let p, —1 < p < 1 be some fized parameter. Then there exist
positive functions 0,,C, : N — R such that lim, .., Cy[q] = 0 and such that the
following holds. For every function f : [q]™ — [0,1] with E[f] = 1/q, all of whose
influences are smaller than 0,(q),

> APl < Cola)/a

SH#D

Conjecture and the Unique Games conjecture together, imply that the (¢, 1—¢)-
gap version of MAX-2LIN(q) is NP-hard.

Theorem 25. The Unique Games conjecture and Conjecture together imply the
following. Let € > 0 be any fized parameter. Then there exists a large enough q, such
that given an instance of MAX-2LIN(q) is it NP-hard to distinguish between the case
where it is e-satisfiable and the case where it is (1 — €)-satisfiable.

Theorem [25] is proven in Subsection [H.4]

We cannot prove Conjecture[24], but we can show the following “first-level” version
of it. This first-level bound suffices to prove Theorem 27, which shows arbitrary
hardness for MAX-2LIN(q) assuming only the Unique Games conjecture.

Theorem 26. There exists a constant K and a positive function 6 : N — R, such
that for all functions f : [q]" — [0,1] with E[f] < 1/q and which satisfy || fi|> < 6(q)

for all v, it holds that
Klogq
Z 1115 < Z
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The proof of Theorem 26| appears in the next subsection. The following theorem,
showing that for large enough ¢ MAX-2LIN(q) is hard to approximate to within any
constant factor, follows from Theorem [26]

Theorem 27. Assuming the Unique Games conjecture, the following holds. For
every € > 0 there exists a positive § and an integer q, such that given an instance
of MAX-2LIN(q), it is NP-hard to distinguish between the case where the instance is
0-satisfiable, and the case where it is ed-satisfiable.

Theorem 27] is proven in Subsection [H.4]

H.3 Proof of Theorem [26]

The proof of Theorem [26| follows that of Proposition 2.2 in [45]. We will need the
following sub-Gaussian estimate.

Lemma 28. Let ¢ > 0. Then there exists a 6 = 6(q, €) such that if Z1,...,Z, : [q] —
C where [q] is equipped with the uniform measure and

e E[Z)] =0 for all i,
o E[|Z|? = 07 where Y.} 02 < 0% and 07 < 0%6* for alli.

Then for all t > 2:

& t2 €
Pr|| Z Zi| > ot] <4 (eXp(—g) + T t3) :
i=1

Proof. Clearly it suffices to prove that if Z; are real-valued random variables, satis-
fying the conditions above, e > 0 and ¢ > 1 then

Pr|| ZZ1| > ot] <2 (exp(—ﬁ) + /8 ) :

— 2 1+13

We apply the Berry-Eséen Theorem . We first note that since the variables Z; obtain
at most ¢ values, it follows that || Z||%, < q||Zi||3 or || Zi. < VallZill, < /q09.

It now follows that >, E[|Z;|*] < \/qod Y E[|Z;]*] < \/qo®6. Thus Theorem
implies that there exists a constant C' such that for ¢ > 1

u Cy/qo t2 €/8
P Zi| > < 2Pr|N (0,1 <2 —— .
r[]; z\_at]_l_i_ta—i- r[N(0,1) > ] < <exp( 2)+1+t3

provided that ¢t > 1 and § = d(q, €) is sufficiency small. ]
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We now prove Theorem [26]

Proof Let h denote the linear part of f, h(z) = Y"1, fi(xz;). We may assume that

o* =Y Ifillz > 3
Let ty = \/810gq and e = 1/(100¢*). Let & be chosen to satisfy Lemma 28} l Let
= 0/q%. If || fi]|3 < &' for all i then by Lemma 28 we obtain that

o2 = Z ||fz||§ = /h(m)f(m)d:v < /(atof(x) + (h(x) — O'to)].{h(x)>at0}>dl‘

ot e
< 70 —|—/ Prx[(h(x) — Uto)l{h(x)>oto} > t]dt
t=0
t o0
- iﬂ+/ Pr,[(h(z) > t]dt
q t=oto
O'to

IN

77+0L1Pum@ﬂ>amﬁ

t
< ﬂ—l— / 4et /Sdt—i-cre/ —d
q t=to to T+1

ot
< 4 4oe P 4+ ge < Ka
q
for some constant K. We thus conclude that 0? < K 21‘2}# as needed. O

H.4 Hardness for MAX-2LIN(q)

In this subsection we prove Theorem and Theorem [25| But first we need some
technical facts.

Claim 29. Let f : [q]" — [q] be a generalized g-ary function. Then ), Inf?k(f) <k.
Proof. By definition,

SR = 3D Wit < kYDA <k
7 a % a S

where the final inequality follows from . O]

Claim 30. Let f : [¢]" — [q] be a relazed q-ary function, and let p € [0,1] be some
parameter. Then for every i € [n],

e (T,(f)) < p*
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Proof. By definition,

Inf;*(T,(f)) = Y Inf;™(T, =" > Tl

a€lq] a€lg] S :i€S

|S|>k
a 2 a 2
=> D PN <D Y sl < o™
a€lq) s :i€S a€lg] s :i€S
|S|>k |S|>k
where the last inequality follows from ([12]). n

The above claim yields the following version of Conjecture [23|

Corollary 31. Letn, 0 < n < 1, be some fived parameter. Then assuming Con-
jecture holds implies that there exist positive functions o,,S, : N — R, and an
integer valued function k =k, : N — N, such that lim, ., S;[q] = 0 and such that the
following holds.

For every balanced relaxed q-ary function f : [q]" — [q], all of whose low-degree
influences Inf?kf are bounded by 9, (q), the n-noise correlation of f is at most S, (q).

Proof. Let §, and S, be as in Conjecture and let 6, = §,/2 and S} = 2S,. Then

obviously lim, .o, S;[q] = 0.

For every ¢, let p = p,(q) be selected so that p < 1, and yet
maxsen{(1 —n)°(1 — p*)} < Sy(q) -
We let k = k,(q) be selected so that Y _, p** < 8,(q)/2.

Now let f be a balanced relaxed g-ary function where for every i, Inf="(f) < 6,(q).
Let g = T,(f) (g is also balanced). Using Claim 22 we have

S, (f =3 =)= 2| £l

a€lg] S
< maxsen{(1 —1)*(1 — p*)} < Sy(q) ,
where the first inequality follows from . We thus have
Sy(f) < Sy(g) + Sy(q) (15)
Note that from Claim [30{ and , it follows that for every 1,

Inf;(g) = Inf*(g) + Inf;*(g) < InfZ*(f) + p™*
< 0,(q) +0y(q)/2 < oy(q) ,
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where the second inequality follows from the choice of p and k. Since g is also
balanced, it follows that Conjecture [23| applies to it, and therefore

Su(g) < Sy(q) -
Together with and the choice of S}, the corollary follows. n
We are now ready to prove Theorem [25

Proof of Theorem[2. Let € be a small constant to be determined later. Let V' be an
instance of Unique Label Cover where it is hard to distinguish between €' and (1 —¢')
satisfiability. Let M be the number of labels required (M is constant that depends
only on €).

We would like to transform our instance to an instance J of MAX-2LIN(q) (where
q is constant), and maintain an (e, 1 —e)-gap. Our construction requires a g-ary version
of the folded long-code. Let us start by defining what this means.

Definition 11 (folded functions). Let f : [¢|™ — [q] be some relazed q-ary func-
tion, and assume that q is prime. It is said that f is folded if

e For every a,b € Z; and every x € [q]", fi(z) = fo(bx).
e For every a,b € Z} and every x € [q]", fi(z) = fO(z + (bb,...,b)).

Definition 12 (g-ary long-code). Let q be a prime. The g-ary long-code of an
element i € [M] is the g-ary function f : [q|™ — [q] defined by f(z) = x;.

Folded long-codes. We construct a system J of linear equations over the “sup-
posed g-ary long-codes” of the assignments of all the nodes in the given instance V.
We may not assume that we get correct long-code words, but by a standard PCP
trick we may assume that all words are folded (this preserves the linearity of the
equations). Note that a folded relaxed g-ary function must also be balanced!

Constructing J. Fix n < €/2 to be some positive constant, and let ¢ be a prime
large enough so that Sq’7(q) < €/8. Instead of a system of linear equations, we generate
a distribution of linear equations (which is roughly the same thing), by the following
process:

e Pick a vertex v € V' at random and two of its neighbors w,w’ € W at random.
Let 0 = 0, and ¢’ = 0,, be the respective bijections for edges (v, w) and
(v, w").
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e Let f and g be the supposed g-ary long codes of labels of w and w’ respectively.
e Pick z € [¢|M at random.
e Pick y ~ N,(z).

e The selected equation is flxoo)=g(yod).

Completeness. It is easy to see that the completeness of the verifier is (1 —2¢€')(n+
(1—n)(1—1/q)) (this is very similar to Subsection |E.1)). This is more than the needed
(1 —¢), if € is selected to be small enough.

Soundness. Suppose that there exists an assignment which satisfies at least an
e fraction of the equations. We will show how this leads to an assignment for V'
satisfying some constant fraction of its constraints. This constant will be independent
of M, and therefore by increasing M we will be able to get € to be smaller than that
constant. This will suffice to prove soundness.

We follow a path analogous to that of Subsection [E.3] of arithmetizing the prob-
ability of reaching a satisfied equation via the random selection process:

> @) = fuw)| =B ZE[w%,[fi(as)f&(y)ﬂ]

a€lq] aclq) ™Y

¢ < Prlacc| =

vw,w’ Ly

=E Z E [E [fe(2)] E[f;, (y)]]] (w and w'" are independent given v)

v zylw
La€[q]

=E Z E [gg(:c)gﬁ(y)]] (Where o = By [fw])

x?y
La€lq]

=E _Sn(gv)]

From the above inequality we have that for at least an €/4 fraction of v € V,
Sy(gs) > €/4. Now since the functions f,, are balanced, g, is also balanced, and we
may apply Conjecture [23|to it, to conclude that g, has at least one coordinate j with
Infjgk(gv) > 0)(q). It follows, as in ({]), that

Z Inf " ‘1(3

20

) < Zlnf<k g) < E =E [Infﬂ (fw)}




From here, the proof of soundness follows exactly as in Subsection after Equa-
tion [l O

The proof of Theorem 27] is very similar to that of Theorem 27], and we will not
repeat it completely. Instead, we will just point out the differences between the two
proofs.

Proof of Theorem [27. First, let us note the following technical fact which follows from
Theorem [26] that we will use instead of Conjecture 23} Let f be a balanced relaxed

g-ary function, which satisfies || f¢||3 < d(q) for every i and every a € [g], where § is

as in Theorem 26l Then a o
nlogq
S,(f) < ——=—

+n?
. This follows immediately from and (I2). Also recall that the 7-noise stability
of the dictatorship function is n + (1 —n)(1 — 1/q).
Now our construction of the equation system will be the same as in the proof of
Theorem [25], but with different parameters: We will pick 1 and ¢ so that
Knlogq 2
g N

T A-ni-1jg =

The rest of the proof is almost identical. O

H.5 Plurality

While we cannot prove Conjecture [23] it is still interesting to speculate about the
optimal parameters for which it is true. The plurality function is a possible candidate
for being an extremal example with respect to this conjecture. The Plurality function
h : [q]" — [q] is a generalization of Majority to non-binary domains: h(z) = a if a
maximizes |{i : z; = a}| (when there is more than one maximizer, choose arbitrarily).
In Theorem (10| below we show that the stability of Plurality is g~ (*=#)/(1+e)to(1),

We now compute the noise stability of the Plurality function. For i € [g] we let
u; denote the number of 7 labelled coordinate in x and let v; denote the number of ¢
labelled coordinates of y.

Letting p = 1/q, u; and v; are both Bin(n, p). It is easy to see that E[u;| = E[v;] =
pn, Var[u;] = Var[v;] = np(1 — p) and Cov|v;, v;] = Cov|u;,u;] = —np?. Moreover,
Cov|vi, u;] = npp(1 — p) and Cov|v;, u;] = —npp*.

o1



Let u; be u; normalized to have expected value 0 and variance 1. Define v; similarly.
Then Covl[t;, ;] = —np?/np(1 — p) = —p/(1 — p), Cov[t;, ;] = p and Cov|[v;, 4] =
—pp/(1 —p).

Let Uy, ...,U, beii.d. standard normals. Let V;,...,V, bei.i.d standard normals.
Consider the variables

Wom o (U 1T U)X o (v )

It is easy to see that Var[X;] = Var[W;] = 1 and that Cov|X;, X;] = Cov[W;, W;] =
—ﬁ. Let’s assume that E[U;V;] = pd; ;. Then repeating the calculations above, we
see that Cov|[W;, X;] = p and Cov[W;, X;] = —pp/(1 — p).

It now follows that the probability that color ¢ is chosen as the plural in both u
and v is asymptotically given by

Pr[X; = max X;, W; = max W;] = Pr[U; = max U;, V; = max V}|.
j J J j

The probability that the plural is the same in x and y is therefore given by ¢Pr[U; =
max; U;, V1 = max; V}|. Finally, we will introduce independent normal Gaussians
Yi,...,Y,and Z1,..., Z, and define

1 1

Ui = ——— (Yi+1Z) Vi = ———
Y e

where (1 —7?)/(1+7?) = p. The event {U; = max; U,} is a.s. the same as the event
{Vi: Y1 +nZ > Y, +nZ}. Similarly the event {V; = max; V;} is a.s. the same as
the event {Vi: Yy —nZ; > Y, — nZ;}.

Let’s condition on the value a of Y; and the value b of Z;. We then get the
equations Y; +nZ; < a+nband Y; — nZ; < a —nb for all i > 1. These equations are
equivalent to

(Y; =nZi), (16)

Vi<a, 04 b< 7 <N b (17)

There is no explicit formula for the probability of for general a and b (see 28,
Chapter 6]).

Instead, we will write a closed form expression using the Gaussian distribution
function ® and density function ¢. Clearly the probability of the expression written
above is given by:

U(a,b) = / é(y) (cp(“;y +b) _(I)(y;a +b)) dy.

—00
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We thus get that the probability that 1 is the plural in both x and y is given by

/Z / Z W0 (a, b)6(a)$(b)dadb.

The stability of plurality is now easily computed to be:

/Z /Z gV (a,b)(a)p(b)dadb.

H.6 Asymptotic behavior of plurality

In this section we establish the asymptotic behavior as ¢ — oo of Plurality, proving

Theorem [10

We wish to estimate the probability that U; = max; U; and that V; = max; V.
Write o = /1 + n2. Write U; for oU; and V; for oV;. Write Y for Y; and Z for Z;.
Clearly,

Pr[U; = maxU;, Vi = maxV}] = %Pr[Ul = max; U;, Vi = max; V;|Z < 0]
j j

+

iPr[Uy = max; U, Vi = max; V;|Z > (]
< Prv2<i<gq: U; <Y], (18)

where U, V)Y and Z are defined as in . We are to bound the probability .
We will use the well known estimate that for a > 20,

20(a) SPIY > a] < {6(a), 50(3) < Pr(l; > o] < 36(2).
Taking a = 1/202¢(q) log ¢, we thus obtain Pr[Y > a] < ¢(a) < ¢~7°9@ and
Pr[Vi : Uiga]:<1—Pr[Ulza]>q ' <1——¢%> (1——q ())ql‘

The expression on the right hand size is smaller than ¢~ when g(q) < 1—2log(ac)/ log g—
loglog g/ log q. Note that the probability in is bounded by the sum of the proba-
bility that ¥ > a and the probability that U; < a for all 7. It follows that the proba-
bility that 1 is the plurality both in z and y is bounded by q_”2 + q_”29(q) = q_"2+°(1).
Therefore, the probability that the plurality in x and y agree is bounded above by

g o o) — gmn*ro(l) — =(1=p)/(1+p)+e(1)  Thig proves the upper bound.
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To prove the lower bound, note that either by a direct calculation or by the FKG
inequality it follows that

PlU; < a,V;<a] > (1—P[U; > a])?.

Therefore by independence,

PrVi: U; <a,V;<a] > (1 — Pr[U; > a]>2q2 > (1 — gqﬁ(g))qu > (1 _ q—g(q))

2q—2

Thus taking g(g) = 1, the probability that U;, V; for 2 < i < ¢ are all smaller than

a = +/20%logq is Q(1).
On the other hand it is easy to see again that Pr[Y > a+1] > ¢ M and since
Pr[|Z] < 1] = Q(1) it follows that

Prmin{Y + Z,Y — Z} > max{U;, V;}] > g oW,

2<i<q

The probability that the plurality in x and y agree is therefore lower bounded by
g o o) = ¢=(1=p)/(+p)+o(1)  Thig proves the lower bound.
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