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Abstract
Many researchers work on improving the data efficiency of
machine learning. What would happen if they succeed? This
paper explores the social-economic impact of increased data
efficiency. Specifically, we examine the intuition that data ef-
ficiency will erode the barriers to entry protecting incumbent
data-rich AI firms, exposing them to more competition from
data-poor firms. We find that this intuition is only partially
correct: data efficiency makes it easier to create ML applica-
tions, but large AI firms may have more to gain from higher
performing AI systems. Further, we find that the effect on pri-
vacy, data markets, robustness, and misuse are complex. For
example, while it seems intuitive that misuse risk would in-
crease along with data efficiency – as more actors gain access
to any level of capability – the net effect crucially depends
on how much defensive measures are improved. More inves-
tigation into data efficiency, as well as research into the “AI
production function”, will be key to understanding the devel-
opment of the AI industry and its societal impacts.

Introduction
How does the performance of an artificial intelligence (AI)
system scale with more data, more computational resources,
and better algorithms? In other words, what is the AI pro-
duction function1? This question influences the shape of AI
progress, the structure of the AI industry, and the societal
impacts of AI.

In this paper, we offer a preliminary analysis of one as-
pect of the AI production function - data. Specifically, we
analyze the implications of increases in data efficiency2: in-
creases in the performance a system achieves for any given
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1We depart slightly from the standard definition of production
functions (Cobb and Douglas 1928) by focusing on the relationship
between the inputs to a machine learning (ML) system and the per-
formance of the system, rather than between the inputs and outputs
of using the ML system on a specific task.

2Computer scientists may recognize this as being related to
sample complexity. We prefer the term data efficiency because it
is more intuitive to map ”more efficient” to ”higher performance”,
than ”lower complexity” to ”higher performance”. Further, we do
not mean to imply any statistical properties of our data (in contrast
to the word ”sample”).

Figure 1: The Access Effect

Figure 2: The Performance Effect

data input. We find that increases in data efficiency have an
access effect – where more actors get access to ML capabili-
ties – and a performance effect – where performance for any
given dataset is improved.

Predictions about the AI industry and its societal impacts
often implicitly rely on claims regarding the AI production
function and specifically on the relationship between data
and the performance of systems. Kai-Fu Lee, for example,
claims that China has an advantage with regards to devel-
oping AI technology, partly because we live in an “Age
of Data”, where “once computing power and engineering
talent reach a certain threshold, the quantity of data be-



comes decisive in determining the ... accuracy of an algo-
rithm” (Lee 2018). Views on the AI production function –
in particular current methods’ data efficiency – often also
inform views about the limits of machine learning, with
many leading researchers for example Yann LeCun, Geof-
frey Hinton, Yoshua Bengio (interviewed in (Ford 2018)),
and Gary Marcus (Marcus 2018), commenting that the need
for large amounts of data suggest limitations of our current
techniques.

Data efficiency is likely to increase. Many recent ad-
vances in Machine Learning and Artificial Intelligence have
come from deep learning, a technique which enables high
performance on challenging tasks such as image recogni-
tion at the cost of large compute requirements as well as
needing large data sets. At the same time, we know that im-
provements to data efficiency are possible. For instance, hu-
mans can learn simple visual concepts such as novel char-
acters from single instances (Lake et al. 2011). In addition,
researchers are interested in making more efficient machine
learning algorithms, which decrease the amount of data or
compute necessary to achieve some level of performance.
For example, transfer learning seeks to use pretraining on
one dataset to improve performance on another problem or
dataset (Pan and Yang 2009)3. Few and zero-shot learning
seek to successfully learn classifications from very few ex-
amples (Socher et al. 2013). Active learning seeks to in-
crease the value of each data point by getting more informa-
tive data points (Cohn, Ghahramani, and Jordan 1996). Data
efficiency can also be improved by improving data quality,
for instance by developing better sensors.

This paper summarises the empirical literature on how
performance scales with data, and introduces a simple model
to analyze the implications of improved data efficiency. We
then explore implications for the AI industry and society,
followed by suggestions for directions for future work.

Prior Work on the Data Efficiency and
Production Function of AI

Compute costs over time Recent authors have estimated
that the amount of compute used in the largest AI training
runs is increasing exponentially, doubling every 3.5 months
(Amodei and Hernandez 2018). Some authors suggest this
is reason for skepticism about future AI progress, since re-
quiring exponentially more resources to achieve results will
become prohibitively expensive (Carey 2018), (Garfinkel
2018). These high compute requirements, at least in rein-
forcement learning applications where the compute is being
used to produce training data, suggest there would be large
gains from improvements in data efficiency.

The relationship between performance and data Re-
cent empirical work suggests that there may be a simple re-
lationship between data, model size, and performance.

One such investigation found that across different set-
tings, a power law model (where performance is propor-
tional to the amount of data to some power) described the

3We include transfer learning as a method for data efficiency
because it improves the data efficiency of the target task.

relationship between the amount of data and performance,
as long as the model size grew at a rate dictated by a sep-
arate power law (Hestness et al. 2017). If true, these power
law relationships allow one to model the data and hardware
requirements for a specific performance level, as attempted
in recent work (Hestness, Ardalani, and Diamos 2019).

Work by other groups have also found that performance
increases with more data, as long as model size is also al-
lowed to increase. While many authors agree on the power
law model (for instance (Sala 2019), (Desai et al. 2019),
(Cho et al. 2015), and (Hestness et al. 2017)), other authors
find that a logarithmic model explains the relationship (Sun
et al. 2017). Not all work agrees that there is a simple re-
lationship – one experiment which did not increase model
size found that performance was only marginally improved
by increasing the dataset size (Linjordet and Balog 2019).

ML performance over time While there has been ex-
cellent work in tracking changes to ML performance over
time (for example (Shoham et al. 2018) and (Eckersley and
Yomna 2017)), to our knowledge there are no similar com-
pilations in tracking how data efficiency has changed over
time. We believe that this would be a promising direction
for future research.

Modeling Data Efficiency: Assumptions
What are the effects of increasing data efficiency? We con-
struct a simple model of what it means for data efficiency
to increase. We model data efficiency as a certain data to
performance function, making two assumptions.

Let the data to performance curve for an ML system be
a function f , which takes in a quantity of data d, and re-
turns the performance p of the system given that amount of
training data. Assume that f is defined in a manner where a
larger p is higher performance.

For clarity of presentation, our assumptions tend to be
stronger than are necessary for our argument.

Assumption 1: Monotonic performance increases
Adding more data will not decrease system performance
according to its performance function – performance will
remain increase. We omit considerations of computational
cost from our analysis. Formally:

∀d, d′ : d′ > d =⇒ f(d′) > f(d)
“More data always improves performance”

Assumption 2: Eventually diminishing marginal returns
Eventually the system will reach a point (here denoted as m)
where it sees diminishing marginal returns to performance
from data. Intuitively, the first time you see something is
more informative than the millionth time. This claim has
been theoretically shown for some performance functions
(Amari 1993).

∃m such that ∀d > m, d′ > m,∆ > 0
d′ > d =⇒ f(d′ + ∆)− f(d′) < f(d + ∆)− f(d)

“At some point, more data does not help as much as before”



Models of Data Efficiency
How can we model increased data efficiency as a trans-
formation of a data to performance function: f to a new
fefficient? We discuss three models of data efficiency to
demonstrate different intuitions.

Data efficiency modeled as adding data Data efficiency
can be simply modeled as analogous to giving all users more
data. This model may be appropriate for understanding the
impact of transfer learning, where you use data from one
source to improve performance on a variety of tasks. Sim-
ilarly, this model may be appropriate when data efficiency
with respect to real world data comes from using additional
simulated data. We do not claim that each data point of simu-
lated or transfer data is as useful as a data point for the target
task, but rather that they may be equivalent to some amount
of data for the target task.

fefficient(d) = f(d + c) where c > 0
“Data efficiency is like adding more data”

Data efficiency by increasing data value Another way to
model data efficiency is as an increase in the value of data.
This could be accomplished through ”better data”, for in-
stance by collecting data from better placed sensors, which
better capture the phenomena one is trying to model. An-
other plausible path to increased data value is by using ac-
tive learning, where each data point is chosen to be more
informative to the system.

fefficient(d) = f(a ∗ d) where a > 1
“Data efficiency is like accessing a constant factor more

data”

Data efficiency modeled by function composition A
general formal expression of data efficiency is as follows,
where g is monotonic and continuous:

fefficient(d) = f(g(d)) where g(d) > d

Two core effects of Data Efficiency
We conceptualize the impacts of data efficiency as com-
posed of two effects – an access effect and a performance
effect. The access effect refers to how any given ML capa-
bility becomes more accessible to more actors: a given level
of performance becomes accessible with less data. The per-
formance effect refers to how for any given amount of data,
it becomes possible to achieve higher performance.

The Access Effect As depicted in Figure 1, the access ef-
fect refers to the leftward shift of the data to performance
curve. This captures most of the straightforward impacts
of improved data efficiency, namely decreased data require-
ments to achieve any given level of performance. This has
the effect of enabling new applications in data limited do-
mains and broadening access of existing capabilities to more
actors.
Proposition 1. Improved data efficiency makes any given
level of performance attainable with less data
Formally, all of our models of data efficiency transform d
in some way such that g(d) > d for every d. This means
that there is some d′ < d such that g(d′) ≥ d, and therefore

fefficient = f(g(d′)) ≥ f(d), attaining or exceeding the same
level of performance with less data.

The Performance Effect As depicted in Figure 2, the per-
formance effect refers to the upward shift in performance for
a given amount of data. It can be muted by the presence of
performance ceilings or diminishing marginal returns. This
increases the level of performance for many levels of data,
assuming access to the same algorithms.
Proposition 2. Improved data efficiency increases perfor-
mance
Formally, all of our models of data efficiency transform
d in some way such that g(d) > d for every d. By the
monotonicity assumption, this fact implies that fefficient(d) =
f(g(d)) > f(d).

Consequences of Increased Data Efficiency
Impact on ML-based Capabilities and Applications
New applications in data limited domains One of the
clearest implications of data efficiency is the ability to use
ML to solve problems in data-limited domains. Data may be
limited because there are fundamental limitations – e.g. the
data does not exist – or because collecting it is expensive.

One notable example of an area where there is a limited
amount of obtainable data is ancient languages, where only
so many known text fragments exist. Improvements in data
efficiency may improve machine translation applications in
these domains.

There are many domains where obtaining new data is
costly. This can be data from expensive medical or chemical
tests, sensors, real world experiments, or human feedback.
As data efficiency improves one would expect ML appli-
cations in these domains to become more feasible. This is
also the case in domains where data is not presently being
collected but potentially could be (for instance, expert judg-
ment for a specific area in a standardized format on difficult
questions e.g. medical diagnosis).

A particularly important example for this trend is robotics.
Collecting data from real world robots may be expensive
because of the costs of robot time (maintenance, damage
risk, needing to reset the task, etc.). Relatively recent im-
provements to data efficiency have made deep reinforce-
ment learning from only real world data possible on simple
robotic tasks (Haarnoja et al. 2018)4.

New actors access ML capabilities Another implication
of the access effect is that more actors have access to ML
capabilities, since one needs less data in order to achieve
a given level of performance. This benefits data-poor actors,
suggesting that more companies will be able to deliver a (po-
tentially new) product with a certain level of performance.

An interesting type of data-poor actor is a team within
a larger organization, which would like access to more re-
sources (e.g. data, compute, or engineers) to develop some

4This is in contrast to methods which are data-efficient with re-
spect to real-world interaction, but which rely on large amounts of
simulated data (OpenAI et al. 2019). Those methods are less com-
putationally efficient, and require upfront investment in simulation
capabilities.



ML capability. As data efficiency improves, less data is
required to develop a prototype ML application in order
to demonstrate the potential application’s value. This may
smooth out the adoption of ML by organizations – e.g. gov-
ernment agencies – who have enough data, but lack organi-
zational buy-in to develop applications.

Misuse potential By increasing the number of actors with
access to a given ML capability, the chance increases that an
actor with malicious ends will also gain access. Researchers
have explored the many ways that ML-based applications
could be misused, including for cyberattacks, surveillance,
and attempts to affect elections (Brundage et al. 2018).

Deepfakes and synthetic media are a popular example of
technologies with a high potential for misuse. In fact, the
risk from these systems can be understood as a product of
their high data efficiency. Deepfakes that required 1000s of
hours of video would be much less disruptive, whereas a re-
cent system was able to base deepfakes on as few as 32 video
frames (Zakharov et al. 2019). Data efficiency is a crucial
parameter in judging misuse potential.

However, the net effect on misuse from increased data ef-
ficiency is complex. Many malicious uses can be defended
against. Therefore, as data efficiency increases, we can also
expect more actors to gain access to defensive capacities as
well as the development of more powerful defenses. The net
effect will therefore depend e.g. on the offense-defence bal-
ance in the relevant domain, the adoption rates of defensive
measures, and the extent to which defender or attacker ca-
pabilities scale faster as data efficiency increases. Take the
example of cybersecurity. Automated vulnerability detection
can be used offensively, but it can also be used defensively in
order to pre-emptively detect and patch vulnerabilities prior
to releasing systems.

Impacts on Competitive Advantage
How would improvements to data efficiency affect the com-
petitive advantage5 of large AI firms? Prima facie, it seems
that improvements in data efficiency would lead to a lev-
elling effect, decreasing market concentration. Firstly, the
access effect gives more actors access to any level of per-
formance. Secondly, assuming that there are performance
bounds to a task, such as for example in facial recognition,
the performance effect will diminish the absolute difference
in performance between actors. While the above effects may
dominate, as we argue here, the overall effect on competi-
tive advantage may in fact benefit data-rich actors more than
data-poor actors. This is because the value derived from a
certain level of performance on a task – say revenue created
by a recommendation algorithm – differs greatly between
actors and often correlates with the actor’s size, and because
revenue does not scale linearly with performance.

Actors derive different amounts of value from the same
level of ML performance Actors derive different amounts

5Competitive Advantage is a core concept in Economics which
refers to factors which allow a company to outperform its competi-
tors, and maintain a strong position in the sense of being able to
charge more, offer better services, etc. (Porter and Millar 1985)

of value from the same performance on a task, and so the
performance effect benefits some actors more than others.
The value an actor derives from a certain capability depends
on access to complements to the technology: e.g. having
products to sell, customers to sell those products to, and mar-
ket access. An ML capability which increases user engage-
ment by a fixed 5% will increase total engagement, revenue,
and profit more for actors with large user bases.

Furthermore, one can expect being an AI incumbent to
correlate with having substantial complements to AI tech-
nology. Many contemporary data-rich actors made their in-
vestments in ML on the basis of already having more com-
plements to ML performance than other actors. For example,
digital advertising may be a domain in which having better
ML applications is especially useful, and so companies with
large digital advertising revenue may be more inclined to
invest in ML. In sum, actors who have more complements
to AI technology benefit more from across-the-board in-
creases in performance (such as from improvements to data
efficiency) and data rich AI incumbents are likely to have
more AI complements, potentially increasing their competi-
tive advantage.

Winner-takes-all markets Economists often characterize
aspects of the AI industry as a winner-take-all, or winner-
take-most market. In such a market, what matters most is
whether a firm is first, or not; it doesn’t matter much for
their marketshare how good their service is in an absolute
sense. Since data efficiency does not alter the rank ordering
of actors in the performance of their ML systems, holding
datasets and other assets constant, it will have no impact on
a pure winner-take-all market assuming that all actors have
access to the same algorithms.

Threshold effects There are many tasks where a certain
threshold of performance is needed before the service has
value. Autonomous vehicles, for example, will only become
viable mass consumer products once they exceed some per-
formance threshold. Once this threshold is reached, a com-
pany will see a large spike in the value they can reap from
the capability. Improvements in data efficiency may there-
fore lead to increased concentration if it pushes only a small
number of actors above the threshold at which a product be-
comes viable or a task becomes solvable.

Potential value near performance ceilings Many real-
world problems have performance ceilings. For instance, a
mean squared error cost function used to measure the perfor-
mance of an image recognition algorithm has a fundamental
performance ceiling at 0 error. Predicting the outcome of
a fair coin has an irreducible error of 50%. While it may
seem that this would mute competitive advantage stemming
from the performance effect, it is not so straightforward. Im-
proved performance can be valuable even close to a perfor-
mance boundary, and thus a smaller absolute improvement
for a data-rich actor may still yield more value than a larger
absolute performance improvement for a data-poor actor.

Firstly, having a very high performing system allows one
to use its output as the input to other systems. For example,
Alipay’s Smile to Pay allows users to authenticate payments



with their face and access to their mobile phone, showing
high confidence in the accuracy of the underlying facial
recognition systems (Lee 2017).

Secondly, a nominal bound on the performance function
does not necessarily imply a practical bound on perfor-
mance; further, often the marginal benefits of improvement
increase as we approach a nominal performance bound.
Consider a hypothetical task with the performance function
of P (task is performed correctly) = p. This performance
function is trivially bounded by 0 and 1. One might think
that moving from P (task is performed correctly) = 0.99 to
0.999 is relatively unimportant. However, the expected num-
ber of times that we can perform the task before encounter-
ing a single error is simply the negative binomial distribution
NB(p, 1), which has the following expected value.

Expected number of tasks before error =
p

1− p

Going from p = 0.99 to p = 0.999 takes the number of
times that we can do the task before an error from 99 to 999,
almost a 10x improvement. Further, this remains true all the
way to the trivial upper bound of 1 – going from 0.999 to
0.9999 is almost another 10x increase in the expected num-
ber of task attempts before error.

In many domains (such as capital investments, survival
analysis, etc.), the time until error is the important param-
eter, rather than the probability of failure in any given unit
time. This shows that an apparent bound on the performance
function is not necessarily a bound on the utility function.

Consequences for Safety and Robustness
Distributional shift In a much more data-efficient world,
high performance is attainable with access to much less data.
This may mean that deployed systems are more sensitive to
distributional shifts, since they may be trained on less rep-
resentative data and because actors will be more tempted to
deploy high-performing systems.

Typically, ML practitioners evaluate their models before
deployment using the data that they have access to. If per-
formance is good enough, they may choose to deploy the
model. Depending on how the dataset is constructed, larger
datasets are more likely to contain representatives of rel-
atively unlikely inputs. This means that needing a large
dataset to get the necessary level of performance could give
some more robustness to distributional shift, if only because
it provides more examples, and a better sense of the rarer
parts of the distribution. As such, increased data efficiency
may increase issues related to distributional shift.

To counteract this effect, developers ought to think care-
fully about evaluation and dataset collection – if high per-
formance is possible with a smaller dataset, then it is impor-
tant to proactively include less well-represented inputs in the
evaluation, since they will not be sampled as often.

A similar point is that if ML seemingly works on more
problems, then this will increase the extent to which such
systems are deployed. If deployment of systems based on
smaller training datasets happens before researchers address
issues with generalization, then this may lead more people
to deploy non-robust ML systems.

Human oversight Human oversight and feedback is a par-
ticularly costly type of data. Some methods for AI safety are
based on the idea of scalable oversight (Amodei et al. 2016),
where one either directs human oversight to be more effec-
tive (Saunders et al. 2018), itself a form of data efficiency, or
trains a model of human approval/disapproval and uses that
as a safety component in other parts of the system (Leike et
al. 2018). In a more data efficient world, these methods are
more viable.

Marginal vs. Total Value of Data
Data efficiency, whether modeled as adding data or as in-
creasing data value, both show a performance effect regard-
ing the total performance value of data, but they disagree on
the marginal performance value of data. The additive model
yields a lower marginal performance value of data, because
of the diminishing marginal returns assumption. The multi-
plicative model yields a higher marginal performance value
of data because of the chain rule. Thus, the effect of in-
creased data efficiency on marginal value of data is an open
question according to these models.

Data Markets Data markets would likely be greatly af-
fected by changes in data efficiency. Firstly, if the marginal
value of data goes up, this may increase actors’ willingness
to buy, sell, or protect their data. Secondly, the collection of
new forms of data may become viable if the marginal value
of that data surpasses the marginal cost of collecting it. If
the marginal value of data is already greater than the cost of
collection and then increases, this may instead be realized as
increased profit for data-selling firms, rather than increased
data collection.

Data Labeling If the marginal value of data increases,
then actors will be more willing to pay for data labeling, and
there is more potential for higher wage data-labeling jobs,
especially where the labeling task is more skill or knowl-
edge intensive. For example, it may become viable to have
highly paid professionals such as doctors or lawyers to la-
bel data. As ML becomes viable for more tasks, the range of
labeling tasks may also expand.

Surveillance and Privacy If the marginal value of data
increases this may potentially exacerbate issues in surveil-
lance and privacy. This can potentially be mitigated by the
fact that the increased marginal value of data makes it more
worthwhile to undergo the expense to collect or process it in
a more privacy-preserving manner.

If data efficiency improves in such a way that the marginal
value of data decreases, one may expect less surveillance on
the margin. However, one might still see a net negative im-
pact on privacy. Firstly, there are likely high fixed costs of
building a data collection infrastructure, such that a decrease
in the marginal value of data discourages future investments
in surveillance, but does not necessarily affect existing data
collection infrastructure. Secondly, the performance effect
would mean that systems are higher performing overall. As
such, the data that the actor already has on its users provides
more information about them. An actor would need less data
to e.g. predict whether a user is pregnant. As such each piece



of data could become arguably more privacy infringing. Fur-
ther, even if actors are less willing to spend to get new data,
as the total value of data increases be more strongly incen-
tivised to hold on to data, rather than for instance acquiesc-
ing to requests to delete it.

Future Work
Data to performance curves The questions of how per-
formance scales with data using current algorithms, how this
has changed over time, and how it is likely to change in the
future remain fairly unexplored. Researchers with an inter-
est in these issues can consider conducting empirical tests
of the relationships between data and performance, as well
as investigations into how algorithmic improvements have
affected the data to performance curve.

Production function of AI The AI production function
plays a crucial role in determining parameters relevant to AI
governance and ethics, but there are many questions remain-
ing about how the production function of AI works, what
to include, how it changes over time, etc. Research in this
area would shed significant light on questions of the require-
ments of AI research, and provide a better understanding of
AI progress.

Performance to utility functions A major complicating
factor in our analysis is the distinction between performance
according to a cost or performance function, and the value
provided to a system’s owner. What is the owner’s utility,
for any given level of performance? Research in this area
could help yield a more granular and detailed view of the
dynamics of AI development for various actors, but would
require investigation into how ML is used.

Implications of the AI production function This paper
analyzed the potential impact of changes to data efficiency.
What would happen if the performance gains of extra com-
putational resources, the size of model, AI talent, or access
to state-of-the-art algorithms were to change? Authors may
also be interested in studying the extent to which the current
structure of the AI industry depends on the AI production
function. For example, many recent state-of-the-art results
have come out of private AI labs rather than universities,
with many researchers moving from university positions into
private industry (Gofman and Jin 2019). To what extent are
these changes a result of e.g. large AI firms having access to
large amounts of computational resources and data?
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