CoRN.examples.bigD
Require Import
Program QArith ZArith BigZ Qpossec
MetricMorphisms Qmetric Qdlog ARArith
theory.int_pow theory.nat_pow
stdlib_rationals stdlib_binary_integers fast_integers dyadics.
Add Field Q : (dec_fields.stdlib_field_theory Q).
Notation bigD := (Dyadic bigZ).
Print Dyadic.
Definition test:bigD→True.
intro x;auto.
Defined.
Definition x:bigD:= (dyadic (10000000%bigZ) (100000%bigZ)).
Definition square:bigD→ bigD:=fun x:bigD ⇒ (dy_mult x x) .
Check dy_pow.
Check (Z⁺).
Check NonNeg.
SearchAbout NonNeg.
Check ((1 _):(Z⁺)).
Time Eval native_compute in (test (square x)).
Require Import ARbigD.
Time Eval vm_compute in (test (bigD_div (square x) x (10000%Z))).
Require Import ApproximateRationals.
Program QArith ZArith BigZ Qpossec
MetricMorphisms Qmetric Qdlog ARArith
theory.int_pow theory.nat_pow
stdlib_rationals stdlib_binary_integers fast_integers dyadics.
Add Field Q : (dec_fields.stdlib_field_theory Q).
Notation bigD := (Dyadic bigZ).
Print Dyadic.
Definition test:bigD→True.
intro x;auto.
Defined.
Definition x:bigD:= (dyadic (10000000%bigZ) (100000%bigZ)).
Definition square:bigD→ bigD:=fun x:bigD ⇒ (dy_mult x x) .
Check dy_pow.
Check (Z⁺).
Check NonNeg.
SearchAbout NonNeg.
Check ((1 _):(Z⁺)).
Time Eval native_compute in (test (square x)).
Require Import ARbigD.
Time Eval vm_compute in (test (bigD_div (square x) x (10000%Z))).
Require Import ApproximateRationals.