
End-to-end Availability Policies and Noninterference

Lantian Zheng Andrew C. Myers

Computer Science Department

Cornell University

{zlt,andru}@cs.cornell.edu

Abstract

This paper introduces the use of static information flow
analysis for the specification and enforcement of end-to-
end availability policies in programs. We generalize the de-
centralized label model, which is about confidentiality and
integrity, to also include security policies for availability.
These policies characterize acceptable risks by representing
them as principals. We show that in this setting, a suitable
extension of noninterference corresponds to a strong, end-
to-end availability guarantee. This approach provides a nat-
ural way to specify availability policies and enables exist-
ing static dependency analysis techniques to be adapted for
availability. The paper presents a simple language in which
fine-grained information security policies can be specified
as type annotations. These annotations can include require-
ments for all three major security properties: confidential-
ity, integrity, and availability. The type system for the lan-
guage provably guarantees that any well-typed program has
the desired noninterference properties, ensuring confiden-
tiality, integrity, and availability.

1. Introduction
Availability is an important aspect of security, and attacks
that harm availability may cause considerable damage. For
example, denial-of-service attacks have been an increas-
ing problem for web services. Although availability is of-
ten considered one of the three key aspects of information
security (along with confidentiality and integrity), assuring
availability has been the province of the fault tolerance com-
munity, largely divorced from other security concerns.

This paper suggests that the divide between availability
and the other security properties can be bridged. It shows
that single, common framework can accommodate reason-
ing about confidentiality, integrity, and availability. The first
part of this framework is a policy language for the specifi-
cation of rich security policies for confidentiality, integrity,
and availability. This policy language is an extension to the

decentralized label model [13], and similarly, it is able to
describe security policies to be enforced on behalf of mutu-
ally distrusting principals. This ability is just as important
for availability as it is for confidentiality and integrity.

The second part of the framework is a formal meaning
for security policies in the policy language. A security pol-
icy demands that the system behave in a way that enforces
the policy; this paper characterizes precisely what the be-
havior can be. In the context of confidentiality and integrity,
end-to-end security policies have generally been interpreted
as information flow policies requiring that the system obey
noninterference. As this paper shows, availability policies
too can be interpreted as requiring a form of noninterfer-
ence.

The third part of the framework is a static program anal-
ysis that enforces policies for confidentiality, integrity, and
availability. Previous work has shown that it is possible to
enforce end-to-end confidentiality and integrity properties
by static, compile-time analysis of program text (for a sur-
vey see [15]). What is new here is a demonstration that the
same approach applies to availability: an availability anal-
ysis can be expressed in tractable form as a programming
language type system that also enforces confidentiality and
integrity.

The paper is structured as follows. Section 2 presents the
new policy language for expressing requirements for avail-
ability, integrity, and confidentiality. Section 3 instantiates
this label system as program annotations in a simple pro-
gramming language. Section 4 uses the operational seman-
tics of the language to express trace-based security proper-
ties that correspond to availability, integrity, and confiden-
tiality policies. Section 5 gives a type system for this pro-
gramming language and states the corresponding security
theorem: well-typed programs are semantically secure (see
the appendix for proofs). Section 6 extends the simple pro-
gramming language to express richer notions of availabil-
ity and also to describe some aspects of distributed systems.
Section 7 discusses related work, and Section 8 concludes.

2. Availability policies
We begin by pinning down more precisely what is meant
by “availability”, then define an expressive policy language
for availability, and demonstrate the policy language can be
used for confidentiality and integrity too.

2.1. Availability
A system output is considered to beavailable if it will be
producedeventually. Note that the value of the output does
not have to be correct—that is the province of integrity.

The availability of an output is the degree to which the
output is available. There are two common ways to spec-
ify this degree of availability. The first approach is to quan-
tify system reliability using measurable criteria such as the
failure probability or the MTTF/MTTR (mean time to fail
/ mean time to recover) ratio [17]. The second approach,
from the fault tolerance community, is to specify what fac-
tors may cause the system to fail. For example, it is common
to specify the minimum number of host failures (either fail-
stop or Byzantine) needed to bring down the system [16]. In
this work we explore the second approach: specifying avail-
abilities as failure factors.

The above description of availability glosses over an-
other aspect of availability: timeliness. How soon does an
output have to occur after it is expected in order to be con-
sidered to be available? For real-time services, there may
be hard time bounds beyond which a late output is useless.
Reasoning about how long it takes to generate an output
adds considerable complexity, however, so for now let us
consider an output to be available if it arrives eventually.
Section 6 presents an extension to this framework that sup-
ports reasoning about timeliness.

2.2. Failures as principals
We assume that the unavailability of a system output can be
attributed to afailure. There are many kinds of possible fail-
ures: for example, hardware failures such as losing power,
software failures such as subversion by an attacker, and hu-
man failures, such as a user who provides incorrect or even
malicious inputs. Our goal is a general policy language that
can describe all these kinds of failures and how the avail-
ability of the system is affected by them. This description
can then aid in designing systems that resist failure.

In general, we regard a failure as the malfunction of a
principal, an entity that may affect the behavior of a sys-
tem. Therefore, the failure can be denoted by the responsi-
ble principal. For some failures, the corresponding princi-
pal is simply an abstract name, which might represent hard-
ware, users, attacks or defense mechanisms, as shown in the
following examples:

• power: the main power supply of a system, whose fail-
ure may bring down the entire system.

• root: userroot, which usually has the ability to shut
down a system.

• DDoS1000: the distributed denial of service at-
tack launched from 1000 machines. This principal
can be used to specify the availability of a sys-
tem that can tolerate DDoS attacks launched from less
than 1000 machines.

• puzzle: the puzzle generated by a puzzle-based de-
fense mechanism [8] for DoS attacks. This principal
fails if attackers can easily solve the puzzle and launch
DoS attacks successfully.

It is also useful to describe more complex failure scenar-
ios using a combination of principals. For example, suppose
that there is a principalups representing a back-up power
supply, and to make the system unavailable, bothpower and
ups need to fail. This joint failure is represented by a con-
junction,power∧ups.

More generally, principalsp may be constructed using
conjunction and disjunction operators∧ and∨:

p ::= a | p1∧p2 | p1∨p2

The notationa represents an abstract name that a princi-
pal. The principal conjunctionp1∧p2 represents a joint fail-
ure factor:p1∧p2 fails only if bothp1 andp2 fail. Another
constructor∨ is used to construct a group (disjunction): the
principal p1∨p2 represents a failure that happens if either
p1 or p2 fails. For example, if the principalBob∨power can
make a system fail, then Bob and the power supply each can
cause the failure.

To demonstrate the expressiveness of this principal lan-
guage, we specify the availability of a quorum system [10].
A quorum system is a collection{Q1, . . . , Qn} of sets (quo-
rums) of hosts, every two of which intersect. A quorum sys-
tem is available as long as there is some quorum in which
no hosts fail. Therefore, a quorum system cannot tolerate
the failure of a set of hostsB such that for every quorum
Qi, B ∩Qi is not empty. Thus, if the principalh represents
a host, the availability of a quorum system can be speci-
fied by the principal

∨
B | ∀Qi.B∩Qi 6=∅(

∧
h∈B h).

2.3. Principal hierarchy
We writep1 � p2 if the principalp1 acts foranother prin-
cipal p2 [13]. Interpreting failures as principals, this means
the failure ofp1 is worse than the failure ofp2 (or the same).
The acts-for relationship is useful for formally analyzing
availability, becausep1 � p2 means that the availability
level represented byp1 is at least as high as the availabil-
ity level represented byp2.

The acts-for relationship between principals is called a
principal hierarchyH, an ordering (actually, a pre-order)
on the set of principals. By the definition of the acts-for re-
lationship, a principal hierarchy needs to satisfy the follow-

2

S: receive(i, x);
send(o, x);

i ou1 :h
u2 :h′

u1 :h
u2 :h

Figure 1. Availability policies vs. assertions

ing deductive rules:

p1∧p2 � p1
p1 � p2 p2 � p3

p1 � p3

p1 � p2

p1 � p2∨p3

p1 � p3 p2 � p3

p1∨p2 � p3

p1 � p2 p1 � p3

p1 � p2∧p3

2.4. Owned availability policies
Mutual distrust is intrinsic to security. In order for all stake-
holders (such as users) to believe that a computer system en-
forces their security, it is necessary that they be able to ex-
press their distinct security requirements. Thus, each indi-
vidual user should be able to specify and manage their own
policies. Decentralized policy management is especially im-
portant for distributed systems.

This observation applies just as much to availability as it
does to confidentiality and integrity. Therefore, the avail-
ability policies defined here support a notion ofowner-
ship, as in the decentralized label model (DLM), which ap-
plies ownership to confidentiality and integrity policies. An
owned availability policy has the formu :p, where principal
u is the policy owner, and principalp represents the avail-
ability level required byu.

The owner of a policy is allowed to affect the meaning
of the policy by making relevantsecurity assertions. For ex-
ample, Figure 1 shows a simple systemS, which receives an
input i and sends the value of the input to an outputo. Sup-
pose two availability policiesu1 : h andu2 : h are speci-
fied on the outputo. Thus, bothu1 andu2 requires the out-
puto to be available if hosth does not fail.

Our goal is to determine whether a system can enforce
the availability policies on its outputs. Since a system can-
not affect the availabilities of its inputs, an availability pol-
icy specified on its input is considered a security assertion
by the policy owner that the policy is already enforced. In
this example, two availability policiesu1 : h and u2 : h′

are specified oni. In other words,u1 asserts thati is avail-
able if h does not fail, whileu2 asserts thati is available
if h′ does not fail. In general, the security assertions ofu
can be used to enforce the security policies ofu. For u1,
if h does not fail, theni is available, theno will be avail-
able. Thus, its availability policy ono is enforced. But for
u2, if h does not fail,i may still be unavailable, which will
causeo to be unavailable. Thus, the availability policyu2 :h
ono is not enforced byS.

Thus, if an output has the availability policyu : p, it
means that the availability of the output will be enforced
subject to two security assumptions. The first assumption is
thatp does not fail. The second assumption is that the secu-
rity assertions ofu are valid.

2.5. General security policies
Although availability is the focus of this paper, it cannot be
considered in isolation from confidentiality and integrity,
for two reasons. First, availability can be in tension with
confidentiality and integrity because a mechanism that helps
improve availability (such as replication) can harm confi-
dentiality and integrity. Second, availability can depend on
integrity. For example, consider the following pseudo-code:

while (x > 0) skip;
send(o, y);

This program outputs the value ofy after thewhile state-
ment terminates. If the value ofx is positive, thewhile
statement is an infinite loop, and the output is unavailable.
Thus, an attacker can compromise theavailability of the
outputo by compromising theintegrityof x.

Essentially the same policy language can be used for
all three major kinds of policies: confidentiality, integrity,
and availability. In the DLM, an integrity policy applied
as a label to some datad is written u : p1, . . . , pn, mean-
ing that u allows only principalsp1, . . . , pn to affect up-
dates tod. (This is of course stronger than the correspond-
ing access control policy because the prohibited effect on
updates might be indirect.) And a confidentiality policy
u :p1, . . . , pn means thatu allows only principalsp1, . . . pn

to receive information affected by the labeled data.
The key insight is that for every aspect of security, prin-

cipals on the right-hand side of a DLM policy can be inter-
preted as failure factors. A confidentiality policyu :p means
thatu requires the data will remain confidential as long as
p does not fail to keep it confidential. For integrity,u re-
quires the data will have integrity unlessp fails to provide
correct data. As an availability policy, it says thatu requires
that the data is available as long asp does not fail. In each
case the policyu : p can be interpreted asu’s requirement
that only the failure ofp may compromise the correspond-
ing aspect of security.

The DLM’s ability to list multiple principals on the right-
hand side of a policy is subsumed by disjunctive principals.
The confidentiality or integrity policyu : p1, . . . , pn can be
written in the formu :p1∨. . .∨pn, indicating thatp1∨. . .∨pn

are expected not to fail. This is equivalent to assuming that
none ofp1 throughpn will fail, as desired.

Thus, the policy formu : p is a generic security policy
applicable not only to availability but also to confidential-
ity and integrity. This commonality aids the analysis of the
interactions between the three security properties.

3

2.6. Policy semantics
Whether the policyu :p is used to talk about confidentiality,
integrity, or availability, it corresponds to the two security
assumptions above: thatp is a trustworthy enforcer of the
security property under consideration, and that the security
assertions ofu are valid.

These assumptions can be formalized as a propositionσ
using the following syntax:

σ ::= trust(p) | believe(p) | σ1∧σ2 | σ1∨σ2

wheretrust(p) means that principalp does not fail (that is,
does not violate the security property under consideration),
believe(p) means thatp’s assertions are valid, and∧ and∨
are the ordinary logical connectives.

A security policy can be given a formal semantics in
terms of these propositions. Using semantic brackets[[·]] to
indicate the semantic function, the meaning of a policyu :p
is:

[[u :p]] = believe(u) ∧ trust(p)

To enforce a policyP is to guarantee a security prop-
erty (such as availability) under the assumption that[[P]]
is true. For example, suppose Alice specifies an availabil-
ity policy Alice : h1 ∧ h2 on one of her files, and Al-
ice assumesh3 � h1 and h3 � h2, whereh1, h2 and
h3 are host machines. To enforce the policy is to guaran-
tee the availability of the file under the assumption that
believe(Alice) ∧ trust(h1∧h2) is true. Therefore, one way
to enforce the policy is to replicate the file on hostsh1 and
h2 becausetrust(h1∧h2) means thath1 andh2 cannot fail at
the same time, which ensures that at least one host is avail-
able to serve accesses to the file. Moreover, there exists an-
other way to enforce the policy: storing the file onh3. Since
believe(Alice) is true, Alice’s assumption thath3 acts for
h1 andh2 is valid, which implies thath3 does not fail be-
cause eitherh1 or h2 does not fail.

To enforce system-wide availability (confidentiality, in-
tegrity) it is necessary to be able to determine whether one
security policy is at least as strong as another. A policyP2

is as strong as another policyP1, writtenP1 ≤ P2, if the en-
forcement ofP2 implies the enforcement ofP1. This policy
ordering falls out naturally from the semantics of policies.
Intuitively, a policy representing a weaker security assump-
tion is more difficult to enforce, because a security property
is more difficult to satisfy under a weaker assumption. Then
[[P1]] ⇒ [[P2]] impliesP1 ≤ P2.

Consider the above file access example. Suppose a pass-
word is needed to access the file. Then the password should
have an availability policyP such thatAlice :h1∧h2 ≤ P ,
because the availability of the file depends on the availabil-
ity of the password.

By the definition of the acts-for relationship between
principals, the following statements hold:

• trust(p2) ⇒ trust(p1) if p1 � p2.
• believe(u2) ⇒ believe(u1) if u1 � u2.

The first holds because in this case the failure ofp1 implies
the failure ofp2; the second, becauseu2 is subject to any
security assertions made byu1. From these statements we
see thattrust(p1∧p2) ≡ trust(p1) ∨ trust(p2) andtrust(p1∨
p2) ≡ trust(p1) ∧ trust(p2), and similarly withbelieve(·).

From these two observations and the semantics, the fol-
lowing rule for ordering policies immediately follows:

[CP]
u2 � u1 p2 � p1

u1 :p1 ≤ u2 :p2

2.7. Combining owned policies
In general, different principals may have different security
requirements. It is convenient to incorporate the security
policies of several principals into one entity so that they can
be analyzed and manipulated together. This is accomplished
by writing asetof policiesβ = {P1, . . . , Pn}, where each
Pi is an owned policyui :pi of the same kind (confidential-
ity, integrity, or availability).

A combined policyβ is enforced if and only if all the
policies inβ are enforced. As a result, the security assump-
tion described byβ must be weaker than or equal to the se-
curity assumptions described by policies inβ. Therefore,
the semantics ofβ is the proposition[[β]] =

∨
P∈β [[P]]. Just

as with simple policies, combined policyβ2 is as strong as
combined policyβ1, writtenβ1 ≤ β2, if [[β1]] ⇒ [[β2]]. From
the semantics, the≤ ordering on policies can be lifted up to
an ordering on combined policies by the following rule:

∀P ∈ β1. ∃P ′ ∈ β2. P ≤ P ′

β1 ≤ β2

Importantly, the set of all the combined policies form a
lattice with the followingjoin (t) andmeet(u) operations:

β1 t β2 = β1 ∪ β2

β1 u β2 = {u1∨u2 :p1∨p2 | u1 :p1 ∈ β1 ∧ u2 :p2 ∈ β2}

The join and meet operations are sound with respect to the
policy semantics, because it is easily shown that[[β1tβ2]] =
[[β1]] ∨ [[β2]] and[[β1 u β2]] = [[β1]] ∧ [[β2]].

Having a lattice of policies supports static program anal-
ysis [5]. For example, consider an addition expressione1 +
e2. Let A(e1) andA(e2) represent the availability policies
of the results ofe1 ande2. Since the resulte1 + e2 is avail-
able if and only if the results ofe1 ande2 are both avail-
able, we haveA(e1 + e2) ≤ A(e1) and A(e1 + e2) ≤
A(e2). Because the policies form a lattice,A(e1 + e2) =
A(e1) u A(e2) is the least restrictive availability policy we
can assign to the result ofe1 ande2. Dually, if C(e1) and
C(e2) are the confidentiality policies ofe1 and e2, then
C(e1) ≤ C(e1 +e2) andC(e2) ≤ C(e1 +e2). The least re-
strictive confidentiality policy that can be assigned to the re-
sultC(e1 + e2) is C(e1) t C(e2).

4

2.8. Security labels
In general, a system will need to simultaneously enforce
policies for confidentiality, integrity, and availability of the
information it manipulates. These policies can be applied
to information assecurity labels. A label ` is written as a
triple 〈βC , βI , βA〉, whereβC represents the (possibly com-
bined) policy for confidentiality,βI represents the integrity
policy, andβA represents availability. The notationsC(`),
I(`), andA(`) represent the confidentiality, integrity, and
availability components of̀.

For example, suppose expressione1 has a security label
`1, ande2 has label̀ 2. Thene1 + e2 has a label〈C(`1) t
C(`2), I(`1) u I(`2), A(`1) uA(`2)〉.

3. Applying policies to computation
In this paper, a system is modeled by a program with which
users (including attackers) can interact only by affecting its
inputs and observing its outputs. Security policies, includ-
ing confidentiality, integrity and availability policies, are
specified on the inputs and outputs of a program. This sec-
tion shows this approach with a simple programming lan-
guage.

3.1. Security model
Our goal is to ensure that a program does not allow attack-
ers to violate its security policies at run time. A program it-
self has no influence on how its inputs are computed or how
its outputs are used by external users. Therefore, a program
is not responsible for the enforcement of the integrity and
availability policies of its inputs, or the confidentiality poli-
cies of its outputs. For example, as shown in Figure 1, the
owners of the availability policies on inputi assume those
policies are enforced. More generally, we have the follow-
ing security assumption:

SA1 Confidentiality policies specified on inputs,
and integrity and availability policies specified on
outputs are already enforced.

We are interested in the security violations that may be
caused by attackers, and we assume that the power of an at-
tacker is limited to affecting the inputs and observing the
outputs of a program. This leads to our second security as-
sumption:

SA2 If an output is unavailable, then it is because
the availability or value of some input is compro-
mised by attackers.

By (SA1) and (SA2), an availability policyP specified
on an outputo can be enforced by anoninterferenceprop-
erty [6]: the availability ofo is not interfered by the avail-
ability of any input whose availability policy is not as strong
asP , or the value of any input whose integrity policy is not
as strong asP .

Indeed, supposeo is unavailable. By (SA2), it is because
the availability or value of some inputi is compromised by
attackers. Without loss of generality, suppose the availabil-
ity of i is compromised. LetPi be the availability policy
of i. By (SA1), Pi is enforced. Therefore, the unavailabil-
ity of i implies that[[Pi]] is false, as discussed in Section 2.5.
By the noninterference property, we haveP ≤ Pi, which is
equivalent to[[P]] ⇒ [[Pi]]. Thus,[[P]] is false. Therefore, the
unavailability ofo implies that[[P]] is false. In other words,
if [[P]] is true, theno must be available, which means thatP
is enforced ono.

3.2. The Aimp programming language
It is well known that confidentiality and integrity poli-
cies can be enforced by static program analyses that ver-
ify whether a program satisfies a noninterference prop-
erty [19, 7, 20]. Since availability policies also correspond
to a noninterference property in our security model, a static
dependency analysis can be used to determine whether a
system satisfies these policies. We now demonstrate this
approach by formally representing the system as a pro-
gram written in a security-typed imperative language called
Aimp.

The Aimp language is a basic imperative language
with assignments, sequential composition, condition-
als and loops. The only non-standard construct in Aimp
is a special valuenone, which is used to representun-
availability: a value is unavailable if and only if it isnone.
Intuitively, there are three rules on using the valuenone:

• The valuenone cannot appear in a program.
• The result of expressione is none if the evaluation of

e depends onnone.
• The execution of a statement gets stuck if the execu-

tion depends onnone.

A program of Aimp is just a statement, and the state of
a program is captured by a memoryM that maps memory
references (memory locations) to values. We assume that a
memory is observable to users, so memory references can
be used to represent I/O channels. A reference represent-
ing an input is called aninput reference. If the value of an
input reference isnone, then the corresponding input is un-
available. Similarly, a reference representing an output is
called anoutput reference. Supposem is an output refer-
ence, then the corresponding output becomes available ifm
is assigned an integer value. An unassigned output refer-
ence represents an output still expected by users.

The syntax of Aimp is shown in Figure 2. Letm range
over memory locations. In Aimp, values include integern,
andnone. Expressions include integern, dereference ex-
pression!m, and addition expressione1+e2. Note thatnone
is not a valid expression so that it cannot appear in a pro-
gram. Statements include the empty statementskip, the as-

5

Values v ::= n | none
Expressions e ::= n | !m | e1 + e2

Statements s ::= skip | m := e | s1; s2

| if e then s1 else s2

| while e do s

Figure 2. Syntax of Aimp

signment statementm := e, sequential compositions1; s2,
if andwhile statements.

Let β range over a latticeL of base labels, such as poli-
cies as defined in Section 2. The top and bottom elements
of L are represented by> and⊥, respectively. The syntax
for types in Aimp is shown as follows:

Base labels β ∈ L
Labels `, pc ::= 〈βC , βI , βA〉
Types τ ::= int` | int` ref | stmtR

In Aimp, the only data type isint`, an integer type anno-
tated with security label̀, which contains three combined
policies as described in Section 2.

A memory referencem has typeint` ref, indicating the
value stored atm has typeint`. In Aimp, types of mem-
ory references are specified by atyping assignmentΓ that
maps references to types so that the type ofm is τ ref if
Γ(m) = τ .

The type of a statements has the formstmtR whereR
contains the set of unassigned output references whens ter-
minates. Intuitively,R represents all the outputs that are still
expected by users afters terminates.

3.3. Operational semantics
The small-step operational semantics of Aimp is given in
Figure 3. LetM represent a memory that is a finite map
from locations to values (includingnone), and let〈s, M〉
be a machine configuration. Then a small evaluation step is
a transition from〈s, M〉 to another configuration〈s′, M ′〉,
written 〈s, M〉 7−→ 〈s′, M ′〉.

The evaluation rules (S1)–(S6) are standard for an imper-
ative language. Rules (E1) and (E2) are used to evaluate ex-
pressions. Because an expression has no side-effect, we use
the notation〈e, M〉 ⇓ v to mean that evaluatinge in mem-
ory M results in the valuev. Rule (E1) is used to evaluate
dereference expression!m. In rule (E2),v1 + v2 is com-
puted using the following formula:

v1 + v2 =
{

n1 + n2 if v1 = n1 andv2 = n2

none if v1 = none or v2 = none

Rules (S1), (S4) and (S5) show that if the evaluation of
configuration〈s, M〉 depends on the result of an expression

e, it must be the case that〈e, M〉 ⇓ n. In other words, if
〈e, M〉 ⇓ none, the evaluation of〈s, M〉 gets stuck.

[E1]
m ∈ dom(M)

〈!m, M〉 ⇓ M(m)

[E2]
〈e1, M〉 ⇓ v1 〈e2, M〉 ⇓ v2 v = v1 + v2

〈e1 + e2, M〉 ⇓ v

[S1]
〈e, M〉 ⇓ n

〈m := e, M〉 7−→ 〈skip, M [m 7→ n]〉

[S2]
〈s1, M〉 7−→ 〈s′1, M ′〉

〈s1; s2, M〉 7−→ 〈s′1; s2, M ′〉

[S3] 〈skip; s, M〉 7−→ 〈s, M〉

[S4]
〈e, M〉 ⇓ n n > 0

〈if e then s1 else s2, M〉 7−→ 〈s1, M〉

[S5]
〈e, M〉 ⇓ n n ≤ 0

〈if e then s1 else s2, M〉 7−→ 〈s2, M〉

[S6]
〈while e do s, M〉 7−→

〈if e then s; while e do s else skip, M〉

Figure 3. Small-step operational semantics for
Aimp

3.4. Examples
By its simplicity, the Aimp language helps focus on the ba-
sic constructs of an imperative language. Figure 4 shows a
few code segments that demonstrate various kind of avail-
ability dependencies, some of which are subtle. In all these
examples,mo represents an output, and its initial value is
none. All other references represent inputs.

In code segment (A), ifm1 is unavailable, the execution
gets stuck at the first assignment. Therefore, the availability
of mo depends on the availability ofm1.

In code segment (B), thewhile statement gets stuck if
m1 is unavailable. Moreover, it diverges if the value ofm1

is positive. Thus, the availability ofmo depends on both the
availability and the value ofm1.

In code segment (C), theif statement does not terminate
if m1 is positive, so the availability ofmo depends on the
value ofm1.

In code segment (D),mo is assigned in one branch of
theif statement, but not in the other. Therefore, when the
if statement terminates, the availability ofo depends on the

6

(A) m2:=!m1; mo:= 1;

(B) while (!m1) do skip; mo:=1;

(C) if (!m1) then while (1) do skip; else skip;

mo:=1;

(D) if (!m1) then mo:=1 else skip;

while (!m2) do skip;

mo:=2;

Figure 4. Examples

value ofm1. Moreover, the program executes awhile state-
ment that may diverge beforemo is assigned value 2. There-
fore, for the whole program, the availability ofmo depends
on the value ofm1.

4. Noninterference properties
This section formalizes the noninterference properties, in-
cluding availability noninterference, that correspond to the
security policies of Section 2. Although this formalization
is done in the context of Aimp, it can be easily generalized
to other state transition systems.

For both confidentiality and integrity, noninterference
has an intuitive description: equivalent low-confidentiality
(high-integrity) inputs always result in equivalent low-
confidentiality (high-integrity) outputs. The notion of
availability noninterference is more subtle, because an at-
tacker has two ways to compromise the availability of
an output. First, the attacker can make an input unavail-
able and block the computation that tries to read the in-
put. Second, the attacker can try to affect the integrity of
control flow and make the program diverge (fail to ter-
minate). Intuitively, availability noninterference means
that with all high-availability inputs available, equiva-
lent high-integrity inputs will eventually result in equally
available high-availability outputs.

The intuitive concepts of high and low security are based
on the power of the potential attacker, which is represented
by a base labelL. Suppose the attacker is able to compro-
mise principalsp1, . . . , pn, and that there exists a top princi-
pal (denoted by∗) that acts for every principal. In the DLM,
we haveL = {∗ : p1∧. . .∧pn}, becausep1∧. . .∧pn is the
most powerful principal that the attacker controls. Given a
base labelβ, if β ≤ L then the label represents a low-
security level that is not protected from the attacker. Oth-
erwise,β is a high-security label.

For an imperative language, the inputs of a program is
just the initial memory. However, what are the outputs of a
program depends on theobservation modelof the language,
which defines what aspects of a program execution are ob-
servable to external users. The observation model of Aimp
is defined as follows:

• Memories are observable.

• The valuenone is not observable. In other words, if
M(m) = none, an observer cannot determine the
value ofm in M .

Supposes is a program, andM is the initial configuration.
Based on the observation model, the outputs ofs are a setT
of finite traces of memories, and for any traceT in T , there
exists an evaluation〈s, M〉 7−→ 〈s1, M1〉 7−→ . . . 7−→
〈sn, Mn〉 such thatT = [M,M1, . . . ,Mn]. Intuitively, ev-
ery trace inT is the outputs observable to users at some
point during the evaluation of〈s, M〉, andT represents all
the outputs of〈s, M〉 observable to users. Since the Aimp
language is deterministic, for any two traces inT , it must
be the case that one is a prefix of the other.

In the intuitive description of noninterference, equivalent
low-confidentiality inputs can be represented by two mem-
ories whose low-confidentiality parts are indistinguishable.
Suppose the typing information of a memoryM is given
by a typing assignmentΓ. Then m belongs to the low-
confidentiality part ofM if C(Γ(m)) ≤ L. Similarly, m
is a high-integrity reference ifI(Γ(m)) 6≤ L, and a high-
availability reference ifA(Γ(m)) 6≤ L. Given two mem-
ories M1 and M2, let Γ ` M1 ≈C≤L M2 denote that
low-confidentiality parts ofM1 andM2 are indistinguish-
able with respect toΓ, Γ ` M1 ≈I 6≤L M2 denote that
high-integrity parts ofM1 and M2 are indistinguishable
with respect toΓ, andΓ ` M1 ≈A 6≤L M2 denote that the
high-availability parts ofM1 and M2 have indistinguish-
able availability with respect toΓ.

By the observation model of Aimp, a user cannot distin-
guishnone from any other value. Letv1 ≈ v2 denote that
v1 andv2 are indistinguishable. Thenv1 ≈ v2 if and only
if v1 = v2, v1 = none or v2 = none. With these defi-
nitions, the three kinds of memory indistinguishability are
defined as follows:

Definition 4.1 (Γ ` M1 ≈C≤L M2). Supposedom(Γ) =
dom(M1) = dom(M2). ThenΓ ` M1 ≈C≤L M2 if for any
m ∈ dom(Γ), C(Γ(m)) ≤ L impliesM1(m) ≈ M2(m).

Definition 4.2 (Γ ` M1 ≈I 6≤L M2). Supposedom(Γ) =
dom(M1) = dom(M2). ThenΓ ` M1 ≈I 6≤L M2 if for any
m ∈ dom(Γ), I(Γ(m)) 6≤ L impliesM1(m) ≈ M2(m).

Definition 4.3 (Γ ` M1 ≈A 6≤L M2). Supposedom(Γ) =
dom(M1) = dom(M2). ThenΓ ` M1 ≈A 6≤L M2 if for any
m ∈ dom(Γ), A(Γ(m)) 6≤ L implies thatM1(m) = none
if and only if M2(m) = none.

Based on the definitions of memory indistinguishabil-
ity, we can define trace indistinguishability, which formal-
izes the notion of equivalent outputs in the intuitive descrip-
tion of noninterference. First, we assume that users cannot
observe timing. As a result, traces[M,M] and [M] look
the same to a user. In general, two tracesT1 and T2 are
equivalent, writtenT1 ≈ T2, if they are equal up to stut-

7

tering, which means the two traces obtained by eliminat-
ing repeated elements inT1 andT2 are equal. For example,
[M1,M2,M2] ≈ [M1,M1,M2]. Second,T1 andT2 are in-
distinguishable, ifT1 appears to be a prefix ofT2, because
in that case,T1 andT2 may be generated by the same ex-
ecution. Given two tracesT1 andT2 of memories with re-
spect toΓ, let Γ ` T1 ≈C≤L T2 and denote that the low-
confidentiality parts ofT1 andT2 are indistinguishable, and
Γ ` T1 ≈I 6≤L T2 denote that the high-integrity parts of
T1 andT2 are indistinguishable. These two notions are de-
fined as follows:

Definition 4.4 (Γ ` T1 ≈C≤L T2). Given two tracesT1 and
T2, Γ ` T1 ≈C≤L T2 if there existsT ′

1 = [M1, . . . ,Mn]
andT ′

2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′

1, andT2 ≈ T ′
2,

andΓ ` Mi ≈C≤L M ′
i for anyi in {1, . . . , min(m,n)}.

Definition 4.5 (Γ ` T1 ≈I 6≤L T2). Given two tracesT1 and
T2, Γ ` T1 ≈I 6≤L T2 if there existsT ′

1 = [M1, . . . ,Mn]
andT ′

2 = [M ′
1, . . . ,M

′
m] such thatT1 ≈ T ′

1, andT2 ≈ T ′
2,

andΓ ` Mi ≈I 6≤L M ′
i for anyi in {1, . . . , min(m,n)}.

Note that two executions are indistinguishable if any two
finite traces generated by those two executions are indis-
tinguishable. Thus, we can still reason about the indistin-
guishability of two nonterminating executions, even though
≈I 6≤L and≈C≤L are defined on finite traces.

With the formal definitions of memory indistinguishabil-
ity and trace indistinguishability, it is straightforward to for-
malize confidentiality noninterference and integrity nonin-
terference:

Definition 4.6 (Confidentiality noninterference). A pro-
gram s has the confidentiality noninterferenceprop-
erty w.r.t. a typing assignmentΓ, written Γ ` NIC(s),
if for any two tracesT1 and T2 generated by evaluat-
ing 〈s, M1〉 and〈s, M2〉, whereΓ ` M1 ≈C≤L M2, we
haveΓ ` T1 ≈C≤L T2.

Definition 4.7 (Integrity noninterference). A programs
has theintegrity noninterferenceproperty w.r.t. a typing as-
signmentΓ, written Γ ` NII(s), if for any two tracesT1

andT2 generated by evaluating〈s, M1〉 and〈s, M2〉, where
Γ ` M1 ≈I 6≤L M2, we haveΓ ` T1 ≈I 6≤L T2.

The intuitive description of availability noninterference
has a premise that all the high-availability inputs are avail-
able. To formalize this premise, we need to distinguish in-
put references from unassigned output references. Given a
programs, let R denote the set of unassigned output ref-
erences. In general, references inR are mapped tonone
in the initial memory. Ifm 6∈ R, then referencem repre-
sents either an input, or an output that is already been gen-
erated. Given an initial memoryM , the premise that all the
high-availability inputs are available can be represented by
∀m,A(Γ(m)) 6≤ L ∧m 6∈ R ⇒ M(m) 6= none. The for-

mal definition of availability noninterference is given be-
low:

Definition 4.8 (Availability noninterference). A program
s has theavailability noninterferenceproperty w.r.t. a typ-
ing assignmentΓ and a set of unassigned output refer-
encesR, written Γ ;R ` NIA(s), if for any two memo-
riesM1,M2, the following statements

• Γ ` M1 ≈I 6≤L M2

• For anym in dom(Mi) (i ∈ {1, 2}), if m 6∈ R and
A(Γ(m)) 6≤ L, thenMi(m) 6= none.

• 〈s, Mi〉 7−→∗ 〈s′i, M ′
i〉 for i ∈ {1, 2}

imply that there exist〈s′′i , M ′′
i 〉 for i ∈ {1, 2} such that

〈s′i, M ′
i〉 7−→∗ 〈s′′i , M ′′

i 〉 andΓ ` M ′′
1 ≈A 6≤L M ′′

2 .

5. Security typing and soundness
The type system of Aimp is designed to ensure that
any well-typed Aimp program satisfies the noninterfer-
ence properties defined in Section 4. For confidential-
ity and integrity, the type system performs a standard static
information flow analysis. For availability, the type sys-
tem tracks the set of unassigned output references and uses
them to ensure that availability requirements are not vio-
lated.

To track unassigned output references, the typing envi-
ronment for a statements includes a componentR, which
contains the set of unassigned output references before the
execution ofs. The typing judgment for statements has the
form: Γ ;R ; pc ` s : stmtR′ , whereΓ is the typing assign-
ment, andpc is theprogram counterlabel [4] used to track
security levels of the program counter. The typing judgment
for expressions has the formΓ ;R ` e : τ . Let the notation
AΓ(R) denote

⊔
m∈R A(Γ(m). The typing rules are shown

in Figure 5.
Rules (INT) and (NONE) check constants. An integern

has typeint` where` can be an arbitrary label. The value
none represents an unavailable value, so it can have any
data type. Sinceint is the only data type in Aimp,none
has typeint`.

Rule (REF) says that the type of a referencem is τ ref
if Γ(m) = τ . In Aimp, a memory maps references to val-
ues, and values always have integer types.

Rule (DEREF) checks dereference expressions. It disal-
lows dereferencing the references inR, because they are
unassigned output references. If the value ofm is none,
then dereferencingm will block the computation, caus-
ing the unassigned output references unavailable. There-
fore, rule (DEREF) has the premiseAΓ(R) ≤ A(`), which
ensures the availability ofm is as high as the availabil-
ity of any unassigned output reference. For example, in
code segment (A) of Figure 4, the type system ensures that
A(Γ(mo)) ≤ A(Γ(m1)) when checking!m1.

8

[INT] Γ ;R ` n : int`

[NONE] Γ ;R ` none : int`

[REF]
Γ(m) = int`

Γ ;R ` m : int` ref

[DEREF]
m 6∈ R Γ(m) = int` AΓ(R) ≤ A(`)

Γ ;R `!m : int`

[ADD]
Γ ;R ` e1 : int`1 Γ ;R ` e2 : int`2

Γ ;R ` e1 + e2 : int`1t`2

[SKIP] Γ ;R ; pc ` skip : stmtR

[SEQ]

Γ ;R ; pc ` s1 : stmtR1

Γ ;R1 ; pc ` s2 : stmtR2

Γ ;R ; pc ` s1; s2 : stmtR2

[ASSIGN]

Γ ;R ` m : int` ref Γ ;R ` e : int`′

C(pc) t C(`′) ≤ C(`) I(`) ≤ I(pc) u I(`′)

Γ ;R ; pc ` m := e : stmtR−{m}

[IF]

Γ ;R ` e : int`

Γ ;R ; pc t ` ` si : τ i ∈ {1, 2}
Γ ;R ; pc ` if e then s1 else s2 : τ

[WHILE]

Γ ` e : int` Γ ;R ; pc t ` ` s : stmtR
AΓ(R) ≤ I(`) u I(pc)

Γ ;R ; pc ` while e do s : stmtR

[SUB]
Γ ;R ; pc ` s : τ Γ ;R ; pc ` τ ≤ τ ′

Γ ;R ; pc ` s : τ ′

Figure 5. Typing rules for Aimp

Rule (ADD) checks addition expressions. Let`1 t `2 be
〈C(`1)tC(`2), I(`1)uI(`2), A(`1)uA(`2)〉. As discussed
in Section 2.8, the label ofe1 + e2 is exactly`1 t `2 if ei

has the label̀i for i ∈ {1, 2}.
Rule (SEQ) checks sequential statements. The premise

Γ ;R ; pc ` s1 : stmtR1 means thatR1 is the set of
unassigned output references afters1 terminates and be-
fore s2 starts. Therefore, the typing environment fors2 is
Γ ;R1 ; pc. It is clear thats2 ands1; s2 terminate at the same
time. Thus,s1; s2 has the same type ass2.

Rule (ASSIGN) checks assignment statements. The as-
signment statementm := e assigns the value ofe to m,
which is an explicit information flow frome to m. There-
fore, bothC(`) ≤ C(Γ(m)) and I(Γ(m)) ≤ I(`) must
hold to protect the confidentiality ofe and the integrity
of m. Whether this assignment tom happens depends on

the control flow. Thus, this rule has the premisesC(pc) ≤
C(`), which prevents attackers from inferring sensitive in-
formation about the control flow, andI(`) ≤ I(pc), which
prevents attackers from compromising the integrity ofm
by affecting the control flow. Finally, when the statement
terminates,m should be removed from the set of unas-
signed output references, and thus the statement has type
stmtR−{m}.

Rule (IF) checksif statements. Consider the state-
ment if e then s1 else s2. The value ofe determines
which branch is executed, so the program-counter la-
bels for branchess1 and s2 subsume the label ofe to
protect e from implicit flows. As usual, theif state-
ment has typeτ if both s1 ands2 have typeτ .

Rule (WHILE) checkswhile statements. Awhile state-
ment may diverge, which affects the availability of any ref-
erence inR. Therefore, if there is any high-availability ref-
erence inR (AΓ(R) 6≤ L), this rule needs to prevent attack-
ers from affecting whether thiswhile statement diverges
or whether control flow reaches this statement. For exam-
ple, consider the code segments (B) and (C) in Figure 4, in
whichR = {mo}. SupposeA(Γ(mo)) 6≤ L. In code seg-
ment (B), the premiseAΓ(R) ≤ I(`) of this rule ensures
I(Γ(m1)) 6≤ L, which means that attackers cannot affect
the value ofm1, and whether thewhile statement diverges.

In code segment (C), the premiseAΓ(R) ≤ I(pc) of
rule (WHILE) guaranteesI(Γ(m1)) 6≤ L sinceI(pc) ≤
I(Γ(m1)). Thus, attackers cannot affect which branch of
theif statement would be taken, i.e. whether control flow
reaches thewhile statement.

Rule (SUB) is the standard subsumption rule. Let
Γ ;R ; pc ` τ ≤ τ ′ denote thatτ is a subtype ofτ ′ with re-
spect to the typing environmentΓ ;R ; pc. Suppose
Γ ;R ; pc ` stmtR′ ≤ stmtR′′ andΓ ;R ; pc ` s : stmtR′ .
Based on rule (SUB), we haveΓ ;R ; pc ` s : stmtR′′ . In
addition, supposeR′ is exactly the set of unassigned out-
puts after the execution ofs. ThenΓ ;R ; pc ` s : stmtR′′

impliesR′ ⊆ R′′ ⊆ R by definition, sinceR′′ needs to
contain all unassigned output references whens termi-
nates.

Consider the assignmentmo := 1 in code segment
(D) of Figure 4. For the branchskip of the if state-
ment, we haveΓ ;{mo} ; pc ` skip : stmt{mo}. Thus, by
rule (IF), Γ ;{mo} ; pc ` mo := 0 : stmt{mo} needs to
hold. Therefore,Γ ;{mo} ; pc ` stmt∅ ≤ stmt{mo}
is needed. Because the availability ofmo de-
pends on which branch is taken, we need to ensure
A(Γ(mo)) ≤ I(Γ(m1)). By rule (IF),I(pc) ≤ I(Γ(m1)).
Therefore, A(Γ(mo)) ≤ I(Γ(m1)) can be ensured
by imposing the constraintA(Γ(m)) ≤ I(pc) on
Γ ;R ; pc ` stmtR′ ≤ stmtR′′ for m ∈ R′′ −R′.

The type system of Aimp contains only one subtyping

9

rule (ST), which is based on the above discussion.

[ST]

R′ ⊆ R′′ ⊆ R
∀m, m ∈ R′′ −R′ ⇒ A(Γ(m)) ≤ I(pc)

Γ ;R ; pc ` stmtR′ ≤ stmtR′′

This type system satisfies the subject reduction prop-
erty. Moreover, we can prove that any well-typed program
has confidentiality, integrity and availability noninterfer-
ence properties. The proofs of the following two theorems
are included in Appendix A.

Theorem 5.1 (Subject reduction). SupposeΓ ;R ; pc `
s : τ , anddom(Γ) = dom(M). If 〈s, M〉 7−→ 〈s′, M ′〉,
then there existsR′ such thatΓ ;R′ ; pc ` s′ : τ , and
R′ ⊆ R, and for anym ∈ R−R′, M ′(m) 6= none.

Theorem 5.2 (Noninterference).If Γ ;R ; pc ` s : τ , then
Γ ` NIC(s), Γ ` NII(s) andΓ ;R ` NIA(s).

6. Extensions
This section describes two language extensions that can be
used to reduce availability dependencies and allow a pro-
gram to use low-availability data in a more flexible and
practical way.

6.1. Timeout
Timeouts can effectively turn a blocking operation into a
non-blocking operation, and thus provide a strong availabil-
ity guarantee for a computation that uses low-availability in-
puts. To support timeouts, we introduce two syntax exten-
sions to Aimp: timed integer values and a race expression.

Values v ::= . . . | 〈n, t〉
Expressions e ::= . . . | e1#e2

A timed integer〈n, t〉 is similar to integern except that
it would taket units of time to use this value. A race ex-
pressione1#e2 evaluatese1 ande2 at the same time and re-
turns the result of the expression that finishes first. If both
e1 ande2 finish at the same time, the result ofe1 would be
the final result. Suppose we want to set a timeoutt for ex-
pressione such that if the evaluation ofe does not finish in
t units of time, a default valuen is returned as the result of
e. This can be implemented by the expressione#〈n, t〉.

Using the timeout mechanism, the following program
implements an auction for two clients Alice and Bob. Ref-
erencemA represents Alice’s bid, and Alice has 30 units
of time to make a bid, otherwise time runs out, and0 is re-
turned as her bid. Similarly, Bob also has 30 units of time
to make a bid. Even though the result of this auction de-
pends on the bids of Alice and Bob, the availability of the
auction result is not affected by them.

m1 := !mA#〈0, 30〉;
m2 := !mB#〈0, 30〉;
if (!m1 ≥ !m2) mo := !m1

else mo := !m2

6.1.1. Operational semantics
Note that valuen can be treated as a syntax sugar for〈n, 0〉.
As a result, the evaluation rules in Figure 3 can be adapted
to the timeout extension by replacing any occurrence of
〈e, M〉 ⇓ n with a more general form〈e, M〉 ⇓ 〈n, t〉.
For example, the adapted rule (S1) is shown below:

[S1]
〈e, M〉 ⇓ 〈n, t〉

〈m := e, M〉 7−→ 〈skip, M [m 7→ n]〉

In addition, the formula for computingv1 + v2 in rule (E2)
also needs to be adapted to this more general form of val-
ues:

v1+v2 =
{

〈n1 + n2, t1 + t2〉 if ∀i ∈ {1, 2}. vi = 〈ni, ti〉
none if v1 = none or v2 = none

The operational semantics of the race expression is given by
the following rules (E3)–(E5). Supposee1 ande2 are eval-
uated to〈n1, t1〉 and〈n2, t2〉, which means evaluatinge1

ande2 takest1 andt2 units of time, respectively. Thus, if
t1 ≤ t2 (E3), the result ofe1 should be the final result, and
if t1 > t2 (E4), 〈n2, t2〉 is the final result. Rule (E5) ap-
plies when only the result of one expressionei is available.

[E3]
〈e1, M〉 ⇓ 〈n1, t1〉 〈e2, M〉 ⇓ 〈n2, t2〉 t1 ≤ t2

〈e1#e2, M〉 ⇓ 〈n1, t1〉

[E4]
〈e1, M〉 ⇓ 〈n1, t1〉 〈e2, M〉 ⇓ 〈n2, t2〉 t1 > t2

〈e1#e2, M〉 ⇓ 〈n2, t2〉

[E5]
〈ei, M〉 ⇓ 〈n, t〉 〈ej , M〉 ⇓ none {i, j} = {1, 2}

〈e1#e2, M〉 ⇓ 〈n, t〉

6.1.2. Typing
The race expression is essential for the timeout mechanism
to provide strong availability guarantees. Consider a race
expressione1#e2. According to rule (E5), the result of ex-
pressione1#e2 is available as long as the result ofe1 or e2

is available. Therefore, the availability ofe is as high as the
availability ofe1 ande2. Let A(e) represent the availability
label ofe. Then we haveA(e1#e2) = A(e1) t A(e2). On
the other hand, the value ofe1#e2 depends on the availabil-
ity and timing of bothe1 ande2. Consequently, an attacker
can try to compromise the integrity ofe1#e2 by compro-
mising the availability or timing ofe1 or e2. Intuitively, the
race expression trades integrity for availability.

To take into account attacks on timing, a security label
may contain a new base label componentβIT (IT stands for
integrity of timing), andIT (`) is used to retrieve the com-
ponent in`. Suppose expressione has a label̀ , and the re-
sult of e is 〈n, t〉. Then an attacker with a security levelL
can affect the value oft if and only if IT (`) ≤ L.

10

Supposee1 ande2 have typeint`1 andint`2 , respec-
tively. Thene1#e2 has typeint`1#`2 , where`1#`2 is a la-
bel computed from̀ 1 and`2. Based on the above discus-
sion, we have
A(`1#`2) = A(`1) tA(`2)
I(`1#`2) = I(`1) u I(`2) uA(`1) uA(`2) u IT (`1) u IT (`2)

By rule (E5), if the result ofe1#e2 is 〈n, t〉, the value oft
may be affected by the availability ofe1 ande2. Therefore,

IT (`1#`2) = IT (`1) u IT (`2) uA(`1) uA(`2)

As usual,C(`1#`2) = C(`1) t C(`2), since the result of
e1#e2 depends on the results of bothe1 ande2. With these
formulas for computing̀1#`2, the typing rule for checking
the race expression is straightforward:

[RACE]
Γ ;R ` e1 : int`1 Γ ;R ` e2 : int`2

Γ ;R ` e1#e2 : int`1#`2

Because the timeout mechanism trades integrity for
availability and allows attackers to compromise the in-
tegrity of an output by affecting the availability or
timing of an input, the definition of integrity noninter-
ference needs to be adapted to these new risks. Intu-
itively, the adapted integrity noninterference would re-
quire two sets of inputsM1 andM2 to generate equivalent
high-integrity outputs, if the high-integrity parts, the avail-
ability of the high-availability parts and the timing of the
high-integrity-of-timing parts ofM1 andM2 are indistin-
guishable. The formal definition is given below, following
the definition of the memory indistinguishability with re-
spect to the integrity of timing:

Definition 6.1 (Γ ` M1 ≈IT 6≤L M2). Supposedom(Γ) =
dom(M1) = dom(M2). ThenΓ ` M1 ≈IT 6≤L M2 means
for any m ∈ dom(Γ), IT (Γ(m)) 6≤ L and M1(m) =
〈n1, t1〉 andM2(m) = 〈n1, t2〉 imply t1 = t2.

Definition 6.2 (Integrity noninterference). A programs
has theintegrity noninterferenceproperty w.r.t. a typing as-
signmentΓ, written Γ ` NII(s), if for any two tracesT1

andT2 generated by evaluating〈s, M1〉 and 〈s, M2〉, we
have thatΓ ` M1 ≈I 6≤L M2, Γ ` M1 ≈A 6≤L M2 and
Γ ` M1 ≈IT 6≤L M2 imply Γ ` T1 ≈I 6≤L T2.

6.2. Run-time reference generation
For a programs in Aimp, the set of outputs thats is ex-
pected to generate are statically determined by a set of refer-
encesR. However, in some realistic applications, an output
may be expected only after control reaches certain program
points. For example, consider a simple service that responds
to the request from a client. The response is expected only
after the service receives a client request. To express such
kind of availability requirements, we extend Aimp with a
new statement that creates a new reference in memory. Intu-
itively, the output represented by this reference is expected

by users only after the point where it is created. The syn-
tax of this extension is shown below:

References r ::= m | x
Expressions e ::= . . . | !r
Statements s ::= . . . | r := e

| new x :`x = ref(`) in s

The namex is used to range over a set of reference vari-
ables. Thenew statementnew x : `x = ref(`) in s creates
a new referencem with typeint` ref, substitutes the oc-
currences ofx in s with m, and then executess. Now a ref-
erencer may be a memory locationm or a variablex. Ac-
cordingly, the dereference expression and the assignment
statement have the form!r andr := e, respectively.

Because the memory is observable to users, the creation
of a new reference is an observable event and may be used
as an information channel. In anew statementnew x : `x =
ref(`)in s, the label̀ x is used to specify the security level
of this event and control this new kind of implicit flows. For
example, any user with a confidentiality level not as high as
C(`x) should not observe the creation of the reference.

Consider the simple service example. In Aimp, a
straightforward implementation is shown below:

m := !m1;
m2 := 1;

where m1 represents the client request, andm2 repre-
sents the output generated by the server in response to
the client request. This implementation is problematic be-
cause the availability ofm2 depends on that ofm1. In prac-
tice, we can imagine that the availability labels ofm1 and
m2 are{*:client} and{*:server}, respectively, where
client represents the client machine, andserver repre-
sents the server machine. However, in general,client does
not act forserver, and thus{*:server} 6≤ {*:client}.
Therefore, the above program is not well-typed in practice.

With the new statement, the simple service can be im-
plemented by the following program in which the server re-
sponse is represented by a reference variablex instead of
a memory location. Sincex is created afterm1 is derefer-
enced, the availability ofx does not depend on that ofm1.

m := !m1;
new x:`x = ref(〈βC, βI, {*:server}A〉) in

x := 1;

6.2.1. Operational semantics
Formally, the following rule is used to evaluate thenew
statement:

[S7]
m = newloc(M, `x)

〈new x :`x = ref(`) in s, M〉 7−→
〈s[m/x], M [m 7→ none]〉

11

The function newloc(M, `x) deterministically returns a
fresh referencem such thatm 6∈ dom(M). The observabil-
ity and integrity of the newly created reference are specified
by a label̀ x. To associate a memory reference with its la-
bel, we assume there exists a mapΣ from the memory space
M (an infinite set of memory locations) to labels. Given
a label`, letM` = {m | m ∈ M∧Σ(m) = `}. In ad-
dition, we assume that for anỳ, M` is infinite. The
function newloc(M, `x) deterministically picks a refer-
encem fromM`x

such thatm 6∈ dom(M).
The definitions of memory indistinguishability need to

take into account the reference labels, which determine the
observability and integrity of references themselves. Due
to the space limit, we only give the new definition for
Γ ` M1 ≈A 6≤L M2 below. Compared to Definition 4.3,
this definition does not requiredom(M1) = dom(M2), but
I(Σ(m)) 6≤ L impliesm ∈ dom(M1)∩dom(M2). The new
definitions forΓ ` M1 ≈I 6≤L M2 andΓ ` M1 ≈C≤L M2

have similar adjustments.

Definition 6.3 (Γ ` M1 ≈A 6≤L M2). Supposedom(Γ) =
dom(M1) ∪ dom(M2). ThenΓ ` M1 ≈A 6≤L M2 if for
any m ∈ dom(Γ) such thatI(Σ(m)) 6≤ L, we have
m ∈ dom(M1) ∩ dom(M2), andA(Γ(m)) 6≤ L implies
thatM1(m) = none if and only if M2(m) = none.

Note that we assume that for any referencem in the ini-
tial memory of a program,Σ(m) = 〈⊥C ,>I ,>A〉. As a
result, if a programs does not contain anynew statement,
these new definitions of memory indistinguishability , when
applied to the traces ofs, are consistent with those original
definitions in Section 3.

Typing rules for this extension are found in Appendix B.

7. Related work
There has been much research on ensuring high availabil-
ity of a computer platform, or guaranteeing a server to carry
out the computation requests from clients. Most of these
work falls in two main categories: one is aimed at tolerating
server-side failures, usually by using some replication tech-
niques [16, 10, 2]; the other deals with faulty clients and de-
fends denial of service attacks [3]. This work is concerned
with the availability risks inherent to the computation that
may process untrusted inputs, while the computation plat-
form is assumed available.

Lamport first introduced the concepts ofsafetyandlive-
nessproperties [9]. Being available is often characterized
as a liveness property, which informally means “something
good will eventually happen”. In general, verifying whether
a program will eventually produce an output is equivalent
to solving the halting problem, and thus incomputable for a
Turing-complete language. In this work, we propose a secu-
rity model in which an availability policy can be enforced
by a noninterference property [6]. It is well known that a

noninterference property is not a property on traces [11],
and unlike safety or liveness properties, cannot be specified
by a trace set. However, a noninterference property can be
treated as a property on pairs of traces. For example, con-
sider a trace pair〈T1, T2〉. It has the confidentiality nonin-
terference property if the first elements ofT1 and T2 are
distinguishable, orT1 andT2 are indistinguishable to low-
confidentiality users. Therefore, a noninterference property
can be represented by a set of trace pairsS, and a program
satisfies the property if all the pairs of traces produced by
the program belong toS. Interestingly, with respect to a
trace pair, the confidentiality and integrity noninterference
properties have the informal meaning of safety properties
(“something bad will not happen”), and availability nonin-
terference takes on the informal meaning of liveness.

Language-based information flow control techniques [5,
15, 19, 7, 20, 14, 1] can be used to enforce noninterference.
But they mainly dealt with confidentiality and integrity. Our
work focuses on applying the security-typed language ap-
proach to enforcing availability policies.

Myers and Liskov proposed the decentralized la-
bel model for specifying information flow policies [12].
This paper generalizes the DLM to provide a unified frame-
work for specifying confidentiality, integrity and availabil-
ity policies. In this framework, it is possible to compare an
availability policy with an integrity policy, or a confiden-
tiality policy with an integrity policy, making it convenient
to study the interactions between different aspects of secu-
rity.

Volpano and Smith introduced the notion oftermina-
tion agreement[18], which requires two executions indis-
tinguishable to low-confidentiality users to both terminate
or both diverge. The integrity dual of termination agreement
can be viewed as a special case of the availability noninter-
ference in which termination is treated as the only output of
a program.

8. Conclusions
This paper makes three contributions. First, it proposes a
way to specify availability policies as an extension to the
decentralized label model, including the added expressive
power of conjunctive and disjunctive principals and a new
semantics for policies and labels. Second, the paper presents
a simple language that can explicitly specify security poli-
cies as type annotations and has a security type system to
reason about end-to-end availability policies, along with
confidentiality and integrity policies. Third, the paper for-
mally defines an end-to-end availability property in terms
of program traces and shows that the security type system
enforces this property. As far as we know, this is the first se-
curity type system for reasoning about availability.

12

Acknowledgements
The authors would like to thank Andrei Sabelfeld, Steve
Chong and Lorenzo Alvisi for their insightful suggestions
and comments on this work. Nate Nystrom, Michael Clark-
son, Kevin O’Neill and Jed Liu also helped improve the pre-
sentation of this work.

References
[1] Anindya Banerjee and David A. Naumann. Secure informa-

tion flow and pointer confinement in a Java-like language.
In IEEE Computer Security Foundations Workshop (CSFW),
June 2002.

[2] Miguel Castro and Barbara Liskov. Practical Byzantine Fault
Tolerance. InProc. 3rd Symposium on Operating Systems
Design and Implementation, New Orleans, LA, February
1999.

[3] CERT. Denial of service attacks. http://www.cert.org/
tech tips/denialof service.html, June 2001.

[4] Dorothy E. Denning. Cryptography and Data Security.
Addison-Wesley, Reading, Massachusetts, 1982.

[5] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow.Comm. of the ACM,
20(7):504–513, July 1977.

[6] Joseph A. Goguen and Jose Meseguer. Security policies and
security models. InProc. IEEE Symposium on Security and
Privacy, pages 11–20, April 1982.

[7] Nevin Heintze and Jon G. Riecke. The SLam calculus: Pro-
gramming with secrecy and integrity. InProc. 25th ACM
Symp. on Principles of Programming Languages (POPL),
pages 365–377, San Diego, California, January 1998.

[8] Ari Juels and John Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. InPro-
ceedings of NDSS’99 (Network and Distributed System Secu-
rity Symposium), pages 151–165, 1999.

[9] Leslie Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering, SE-
3(2):125–143, March 1977.

[10] Dahlia Malkhi and Michael Reiter. Byzantine quorum sys-
tems. InProc. of the 29th ACM Symposium on Theory of
Computing, pages 569–578, El Paso, Texas, May 1997.

[11] John McLean. A general theory of composition for trace
sets closed under selective interleaving functions. InProc.
IEEE Symposium on Security and Privacy, pages 79–93,
May 1994.

[12] Andrew C. Myers and Barbara Liskov. A decentralized
model for information flow control. InProc. 17th ACM
Symp. on Operating System Principles (SOSP), pages 129–
142, Saint-Malo, France, 1997.

[13] Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model.ACM Transactions on
Software Engineering and Methodology, 9(4):410–442, Oc-
tober 2000.

[14] François Pottier and Vincent Simonet. Information flow in-
ference for ML. InProc. 29th ACM Symp. on Principles of
Programming Languages (POPL), pages 319–330, 2002.

[15] Andrei Sabelfeld and Andrew Myers. Language-based
information-flow security.IEEE Journal on Selected Areas
in Communications, 21(1):5–19, January 2003.

[16] Fred B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: a tutorial.ACM Computing
Surveys, 22(4):299–319, December 1990.

[17] Trivedi Kishor Shridharbhai.Probability and Statistics with
Reliability, Queuing, and Computer Science Applications.
Englewood Cliffs, N.J. : Prentice-Hall, 1st edition, 1982.

[18] Dennis Volpano and Geoffrey Smith. Eliminating covert
flows with minimum typings. InProc. 10th IEEE Com-
puter Security Foundations Workshop. IEEE Computer So-
ciety Press, 1997.

[19] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A
sound type system for secure flow analysis.Journal of Com-
puter Security, 4(3):167–187, 1996.

[20] Steve Zdancewic and Andrew C. Myers. Secure informa-
tion flow via linear continuations.Higher Order and Sym-
bolic Computation, 15(2–3):209–234, September 2002.

A. Noninterference proof
The noninterference result for Aimp is proved by extend-
ing the language to a new language AimpX. Each config-
urationC in AimpX encodes two Aimp configurationsC1

andC2. Moreover, the operational semantics of AimpX is
consistent with that of Aimp in the sense that the result of
evaluatingC is an encoding of the results of evaluatingC1

andC2 in Aimp. The type system of AimpX can guaran-
tee thatC is well-typed only if the low-confidentiality or
high-integrity parts ofC1 andC2 are equivalent. Intuitively,
if the result ofC is well-typed, then the results of evaluating
C1 andC2 should also have equivalent low-confidentiality
or high-integrity parts. Therefore, the preservation of type
soundness in an AimpX evaluation implies the preserva-
tion of low-confidentiality or high-integrity equivalence be-
tween two Aimp evaluations. Thus, to prove the confiden-
tiality and integrity noninterference theorems of Aimp, we
only need to prove the subject reduction theorem of AimpX.
This proof technique was first used by Pottier and Simonet
to prove the noninterference result of a security-typed ML-
like language [14].

Interestingly, the availability noninterference theorem of
Aimp can by proved by aprogressproperty of AimpX’s
type system. This appendix details the syntax and seman-
tic extensions of AimpX, proves the key subject reduction
and progress theorems of AimpX, and then proves the non-
interference theorem of Aimp.

A.1. Syntax extensions
The syntax extensions of AimpX include the bracket con-
structs, which are composed of two Aimp terms and used to

13

capture the differences between two Aimp configurations.

Values v ::= . . . | (v1 | v2)
Expressions e ::= . . . | (n1 | n2)
Statements s ::= . . . | (s1 | s2)

The bracket constructs cannot be nested, so the subterms of
a bracket construct must be Aimp terms. Given an AimpX
statements, let bsc1 and bsc2 represent the two Aimp
statements thats encodes. The projection functions satisfy
b(s1 | s2)ci = si and are homomorphisms on other state-
ment and expression forms. An AimpX memoryM maps
references to AimpX values that encode two Aimp values.
Thus, the projection function can be defined on memories
too. Fori ∈ {1, 2}, dom(bMci) = dom(M), and for any
m ∈ dom(M), bMci(m) = bM(m)ci.

Since an AimpX term effectively encodes two Aimp
terms, the evaluation of a AimpX term can be projected into
two Aimp evaluations. An evaluation step of a bracket state-
ment(s1 | s2) is an evaluation step of eithers1 or s2, and
s1 or s2 can only access the corresponding projection of the
memory. Thus, the configuration of AimpX has an index
i ∈ {•, 1, 2} that indicates whether the term to be evaluated
is a subterm of a bracket expression, and if so, which branch
of a bracket the term belongs to. For example, the configu-
ration〈s, M〉1 means thats belongs to the first branch of a
bracket, ands can only access the first projection ofM . We
write “〈s, M〉” for “ 〈s, M〉•”, which meanss does not be-
long to any bracket.

The operational semantics of AimpX is shown in Fig-
ure 6. It is based on the semantics of Aimp and con-
tains some new evaluation rules (S10–S12) for manipulat-
ing bracket constructs. Rules (E1) and (S1) are modified to
access the memory projection corresponding to indexi. The
rest of the rules in Figure 3 are adapted to AimpX by index-
ing each configuration withi. The following adequacy and
soundness lemmas state that the operational semantics of
AimpX is adequate to encode the execution of two Aimp
terms.

Let the notation〈s, M〉 7−→T 〈s′, M ′〉 denote that
〈s, M〉 7−→ 〈s1, M1〉 7−→ . . . 7−→ 〈sn, Mn〉 7−→
〈s′, M ′〉 andT = [M,M1, . . . ,Mn,M ′], or s = s′ and
M = M ′ and T = [M]. In addition, let|T | denote the
length of T , and T1 ⊕ T2 denote the trace obtained by
concatenatingT1 and T2. SupposeT1 = [M1, . . . ,Mn]
and T2 = [M ′

1, . . . ,M
′
m]. If memn = M ′

1, then T1 ⊕
T2 = [M1, . . . ,Mn,M ′

2, . . . ,M
′
m]. Otherwise,T1 ⊕ T2 =

[M1, . . . ,Mn,M ′
1, . . . ,M

′
m].

Lemma A.1 (Projection i). Suppose〈e, M〉 ⇓ v. Then
〈beci, bMci〉 ⇓ bvci holds fori ∈ {1, 2}.

Proof. By induction on the structure ofe.

Lemma A.2 (Projection ii). SupposeM is an AimpX
memory, andbMci = Mi for i ∈ {1, 2}, and〈s, Mi〉 is

[E1]
πi M(m) = v v 6= none

〈!m, M〉i ⇓ v

[E2]
〈e1, M〉i ⇓ v1 〈e2, M〉i ⇓ v2 v = v1 ⊕ v2

〈e1 + e2, M〉 ⇓ v

[S1]
〈e, M〉i ⇓ v bvc1 6= none bvc2 6= none

〈m := e, M〉i 7−→ 〈skip, M [m 7→ M(x)[v/πi]]〉i

[S10]
〈e, M〉 ⇓ (n1 | n2)

〈if e then s1 else s2, M〉 7−→
〈(if n1 then bs1c1 else bs2c1 |
if n2 then bs1c2 else bs2c2), M〉

[S11]
〈si, M〉i 7−→ 〈s′i, M ′〉i sj = s′j {i, j} = {1, 2}

〈(s1 | s2), M〉 7−→ 〈(s′1 | s′2), M ′〉

[S12] 〈(skip | skip), M〉 7−→ 〈skip, M〉

[Auxiliary functions]

v[v′/π•] = v′ π• v = v
v[v′/π1] = (v′ | bvc2) π1 v = bvc1
v[v′/π2] = (bvc1 | v′) π2 v = bvc2

Figure 6. The operational semantics of AimpX

an Aimp configuration. Then〈s, Mi〉 7−→ 〈s′, M ′
i〉 if and

only if 〈s, M〉i 7−→ 〈s′, M ′〉i andbM ′ci = M ′
i .

Proof. By induction on the structure ofs.

Lemma A.3 (One-step adequacy).If for i ∈ {1, 2},
〈si, Mi〉 7−→ 〈s′i, M ′

i〉 is an evaluation in Aimp, and there
exists〈s, M〉 in AimpX such thatbsci = si andbMci =
Mi, then there exists〈s′, M ′〉 such that〈s, M〉 7−→T

〈s′, M ′〉, and one of the following statements holds:

i. For i ∈ {1, 2}, bT ci ≈ [Mi,M
′
i] andbs′ci = s′i.

ii. For {j, k} = {1, 2}, bT cj ≈ [Mj] andbs′cj = sj , and
bT ck ≈ [Mk,M ′

k] andbs′ck = s′k.

Proof. By induction on the structure ofs.

• s is skip. Thens1 ands2 are alsoskip and cannot
be further evaluated. Therefore, the lemma is correct
because its premise does not hold.

• s is m := e. In this case,si is m := beci, and
〈m := beci, M1〉 7−→ 〈skip, Mi[m 7→ vi]〉 where
〈beci, M1〉 ⇓ vi. By induction, we have〈e, M〉 ⇓
v and bvci = vi. Therefore,〈m := e, M〉 7−→
〈skip, M [m 7→ v]〉. SincebMci = Mi, we have
bM [m 7→ v]ci = Mi[m 7→ bvci]. Finally, we have
bs′ci = s′i = skip for i ∈ {1, 2}.

14

• s is if e then s′′1 else s′′2 . Suppose〈e, M〉 ⇓ n. Then
〈s, M〉 7−→ 〈s′′j , M〉 for somej in {1, 2}, andsi is
if e then bs′′1ci else bs′′2ci for i ∈ {1, 2}. There-
fore, 〈si, bMci〉 7−→ 〈bs′′j ci, bMci〉 holds because
〈e, bMci〉 ⇓ n. It is clear that fori ∈ {1, 2}, bT ci =
[bMci, bMci] = [Mi,Mi] andbs′ci = bs′′j ci = s′i.

Suppose〈e, M〉 ⇓ (n1 | n2). Then〈s, M〉 7−→T

〈(bs′′j1c1 | bs
′′
j2
c2), M〉 wherej1, j2 ∈ {1, 2}. Because

〈e, M〉 ⇓ (n1 | n2), we have〈beci, bMci〉 ⇓ ni for
i ∈ {1, 2}, which implies〈si, Mi〉 7−→ 〈s′′ji

, Mi〉 for
i ∈ {1, 2}. Therefore,bT ci ≈ bMci ≈ [Mi,Mi] and
bsci = s′i = bs′′ji

ci hold for i ∈ {1, 2}.
• s is while e do s′′. Then 〈s, M〉 7−→∗

〈if e then s; while e do s′′ else skip, M〉. Further-
more,〈si, bMci〉 7−→∗

〈if becithenbsci; whilebecidobs′′cielseskip, bMci〉
for i ∈ {1, 2}. It is clear thatbT ci = [bMci, bMci]
andbs′ci = s′i hold for i ∈ {1, 2}.

• s is s3; s4. There are three cases:

– s3 is skip or (skip | skip). Then
〈s, M〉 7−→T 〈s4, M〉, and T ≈ [M].
For i ∈ {1, 2}, since si = skip; bs4ci,
〈bsci, bMci〉 7−→∗ 〈bs4ci, bMci〉. There-
fore, the lemma holds for this case.

– s3 is (s5 | skip) or (skip | s5) where
s5 is not skip. Without loss of general-
ity, suppose s3 is (s5 | skip). Then s1

is s5; bs4c1, and s2 is skip; bs4c1. Since
〈s5; bs4c1, bMc1〉 7−→ 〈s′1, M ′

1〉, we
have 〈s5, bMc1〉 7−→ 〈s′5, M ′

1〉 and s′1
is s′5; bs4c1. By (S11) and Lemma A.2,
〈s, M〉 7−→ 〈(s′5 | skip); s4, M ′〉, and
bM ′c1 = M ′

1, andbM ′c2 = bMc2 = M2. It is
clear that statement (ii) holds.

– For i ∈ {1, 2}, bs3ci is not skip. For
i ∈ {1, 2}, because〈si, Mi〉 7−→ 〈s′i, M ′

i〉
and si = bs3ci; bs4ci, we have
〈bs3ci, Mi〉 7−→ 〈s3i, M ′

i〉. By induction,
〈s3, M〉 7−→T 〈s′3, M ′〉, and statement (i)
or (ii) holds for T and s′3. Suppose state-
ment (i) holds forT ands3. Then fori ∈ {1, 2},
bT ci ≈ [Mi,M

′
i] andbs′3ci = s3i. By evalua-

tion rule (S2),〈s, M〉 7−→T 〈s′3; s4, M ′〉. More-
over, we havebs′3; s4ci = s3i; bs4ci = s′i for
i ∈ {1, 2}. Therefore, the lemma holds. For the
case that statement (ii) holds forT and s3, the
same argument applies.

• s is (s3 | s4). In this case,s1 = s3 and s2 = s4.
Since 〈si, M〉 7−→ 〈s′i, M ′〉 for i ∈ {1, 2}, we
have〈s3, M〉1 7−→ 〈s′1, M ′′〉1 and 〈s4, M ′′〉2 7−→
〈s′2, M ′〉2. Therefore,〈s, M〉 7−→T 〈(s′1 | s′2), M ′〉
whereT = [M,M ′′,M ′]. By Lemma A.2,bT ci ≈

[Mi,M
′
i] for i ∈ {1, 2}. Thus, the lemma holds for

this case.

Lemma A.4 (Adequacy). Suppose 〈si, Mi〉 7−→Ti

〈s′i, M ′
i〉 for i ∈ {1, 2} are two evaluations in Aimp. Then

for an AimpX configuration〈s, M〉 such thatbsci = si and
bMci = Mi for i ∈ {1, 2}, we have〈s, M〉 7−→T 〈s′, M ′〉
such thatbT cj ≈ Tj andbT ck ≈ T ′

k, whereT ′
k is a pre-

fix of Tk and{k, j} = {1, 2}.

Proof. By induction on the sum of the lengths ofT1 andT2:
|T1|+ |T2|.
• |T1| + |T2| ≤ 3. Without loss of generality, suppose
|T1| = 1. ThenT1 = [M1]. Let T = [M]. We have
〈s, M〉 7−→T 〈s, M〉. It is clear thatbT c1 = T1, and
bT c2 = [M2] is a prefix ofT2.

• |T1| + |T2| > 3. If |T1| = 1 or |T2| = 1, then the
same argument in the above case applies. Otherwise,
we have〈si, Mi〉 7−→ 〈s′′i , M ′′

i 〉 7−→T ′
i 〈s′i, M ′

i〉 and
Ti = [Mi] ⊕ T ′

i for i ∈ {1, 2}. By Lemma A.3,
〈s, M〉 7−→T ′ 〈s′′, M ′′〉 such that

i. For i ∈ {1, 2}, bT ′ci ≈ [Mi,M
′′
i] andbs′′ci =

s′′i . Since|T ′
1|+ |T ′

2| < |T1|+ |T2|, by induction
we have〈s′′, M ′′〉 7−→T ′′ 〈s′, M ′〉 such that for
{k, j} = {1, 2}, bT ′′cj ≈ T ′

j andbT ′′ck ≈ T ′′
k ,

and T ′′
k is a prefix ofT ′

k. Let T = T ′ ⊕ T ′′.
Then 〈s, M〉 7−→T 〈s′, M ′〉, andbT cj ≈ Tj ,
andbT ck ≈ T ′

k whereT ′
k = [Mk,M ′′

k]⊕T ′′
k is a

prefix ofTk.

ii. For {j, k} = {1, 2}, bT ′cj ≈ [Mj] andbscj =
sj , and bT ′ck ≈ [Mk,M ′′

k] and bsck = s′′k .
Without loss of generality, supposej = 1 and
k = 2. Since 〈s1, M1〉 7−→T1 〈s′1, M ′

1〉 and
〈s′′2 , M ′′〉 7−→T ′

2 〈s′2, M ′
2〉, andbs′c1 = s1 and

bs′c2 = s′′2 , and |T ′
2| < |T2|, we can apply the

induction hypothesis to〈s′′, M ′′〉. By the simi-
lar argument in the above case, this lemma holds
for this case.

Lemma A.5 (Soundness).Suppose〈s, M〉 7−→ 〈s′, M ′〉.
Then〈bsci, bMci〉 7−→∗ 〈bs′ci, bM ′ci〉.

Proof. By induction on the derivation of〈s, M〉 7−→
〈s′, M ′〉.

A.2. Typing rules
The type system of AimpX includes all the typing rules in
Figure 5 and has two additional rules for typing bracket con-
structs. In general, both confidentiality and integrity nonin-
terference properties are instantiations of an abstract non-
interference property: inputs with security labels that sat-

15

isfy a conditionV cannot affect outputs with security labels
that do not satisfyV . Two Aimp configurations are called
V -equivalent if they differ only at terms and memory loca-
tions with security labels that satisfyV . The abstract nonin-
terference property means that theV -equivalence relation-
ship between two configurations is preserved during evalu-
ation.

The bracket constructs captures the differences between
two Aimp configurations. As a result, any effect and result
of a bracket construct should have a security label that sat-
isfiesV . Let V (`) andV (int`) denote that̀ satisfiesV . If
v1 andv2 are notnone, rule (V-PAIR) ensures that the value
(v1 | v2) has a label that satisfiesV ; otherwise, there is no
constraint on the label of(v1 |v2), becausenone is indistin-
guishable from other values. In rule (S-PAIR), the premise
V (pc′) ensures that the statement(s1 |s2) may have only ef-
fects with security labels that satisfyV .

[V-PAIR]

Γ ` v1 : τ Γ ` v2 : τ
V (τ) or v1 = none or v2 = none

Γ ` (v1 | v2) : τ

[S-PAIR]

Γ ;bRc1 ; pc′ ` s1 : τ
Γ ;bRc2 ; pc′ ` s2 : τ V (pc′)

Γ ;R ; pc ` (s1 | s2) : τ

Intuitively, noninterference between the inputs with la-
bels satisfyingV and the outputs with labels that does not
satisfyingV is achieved as long as all the bracket constructs
are well-typed.

An important constraint that conditionV needs to satisfy
is thatV (`) impliesV (` t `′) for any`′. In AimpX, if ex-
pressione is evaluated to a bracket value(n1 |n2), statement
if e then s1 else s2 would be reduced to a bracket state-
ment(s′1 |s′2) wheres′i is eithers1 or s2. To show(s′1 |s′2) is
well-typed, we need to show thats1 ands2 are well-typed
under a program-counter label that satisfyingV , and we can
show it by using the constraint onV . Supposee has type
int`, then we know thats1 ands2 are well-typed under the
program counter labelpct `. Furthermore,̀ satisfiesV be-
cause the result ofe is a bracket value. Thus, by the con-
straint thatV (`) impliesV (` t `′), we haveV (pc t `).

SupposeΓ ;R ; pc ` (s1 | s2) : τ , andm ∈ R. By the
evaluation rule (S11), it is possible that〈(s1 |s2), M〉 7−→∗

〈(s′1 | s2), M ′〉 and M ′(m) = (n | none), which means
that m still needs to be assigned ins2, but not ins′1. As-
sume there existsR′ such thatΓ ;R′ ; pc ` (s′1 | s2) : τ .
Then by rule (S-PAIR), we haveΓ ;bR′c1 ; pc ` s′1 : τ
and Γ ;bR′c2 ; pc ` s2 : τ . Intuitively, we want to have
m 6∈ bR′c1 andm ∈ bR′c2, which are consistent withM ′.
To indicate such a situation, a referencem in R may have
an index:m1 or m2 means thatm needs to be assigned only
in the first or second component of a bracket statement, and

m• is the same asm. The projection ofR is computed in
the following way:

bRci = {m | mi ∈ R ∨m ∈ R}

Note that indexed references are not allowed to appear in
a statement typestmtR. To make this explicit, we require
that the typestmtR is well-formed only ifR does not
contain any indexed referencemi. For convenience, we in-
troduce two notations dealing with indexed reference sets.
Let the notationR ≤ R′ denotebRc1 ⊆ bR′c1 and
bRc2 ⊆ bR′c2, and letR−mi denote the reference set ob-
tained by eliminatingmi fromR, and it is computed as fol-
lows:

R−mi =

{ R′ if R = R′ ∪ {mj} ∧ i ∈ {j, •}
R′ ∪ {mj} if R = R′ ∪ {m} ∧ {i, j} = {1, 2}
R if otherwise

A.3. Subjection reduction
Lemma A.6 (Update). If Γ ;R ` v : τ andΓ ;R ` v′ : τ ,
thenΓ ;R ` v[v′/πi] : τ .

Proof. If i is •, thenv[v′/πi] = v′, and we haveΓ ` v′ : τ .
If i is 1, thenv[v′/πi] = (v′ | bvc2). SinceΓ ` v : τ , we
haveΓ ` bvc2 : τ . By rule (V-PAIR),Γ ` (v′ | bvc2) : τ .
Similarly, if i is 2, we also haveΓ ` v[v′/πi] : τ .

Lemma A.7 (Relax). If Γ ;R ; pc t ` ` s : τ , then
Γ ;R ; pc ` s : τ .

Proof. By induction on the derivation ofΓ ;R ; pct ` ` s :
τ .

Lemma A.8. SupposeΓ ;R ` e : τ , andΓ ` M , and
〈e, M〉 ⇓ v. ThenΓ ;R ` v : τ .

Proof. By induction on the structure ofe.

Lemma A.9. SupposeΓ ;R ; pc ` s : stmtR′ . If mi ∈ R
wherei ∈ {1, 2}, thenm 6∈ R′.

Proof. By induction on the derivation ofΓ ;R ; pc ` s :
stmtR′ .

Definition A.1 (Γ ` M). Γ ` M if dom(Γ) = dom(M),
and for anym ∈ dom(Γ), Γ ;R ` M(m) : Γ(m).

Definition A.2 (Γ ;R ` M). A memoryM is consistent
with Γ, R, written Γ ;R ` M , if Γ ` M , and for anym
in dom(M) such thatAΓ(m) 6≤ L, M(m) = none implies
m ∈ R, andM(m) = (none | n) implies m1 ∈ R, and
M(m) = (n | none) impliesm2 ∈ R.

Theorem A.1 (Subject reduction). SupposeΓ ;R ; pc `
s : τ , and Γ ` M , and 〈s, M〉i 7−→ 〈s′, M ′〉i, and
i ∈ {1, 2} implies V (pc). Then there existsR′ such that
the following statements hold:

i. Γ ;R′ ; pc ` s′ : τ , andR′ ≤ R, andΓ ` M ′.

16

ii. For anymj ∈ R−R′, bM ′ci(mj) 6= none.
iii. SupposeV (`) is I(`) ≤ L. ThenΓ ;R ` bMci implies

Γ ;R′ ` bM ′ci.
iv. If bMci(m) = none, and bM ′ci(m) = n, and

A(Γ(m)) 6≤ I(pc), thenm 6∈ R′.

Proof. By induction on the evaluation step〈s, M〉i 7−→
〈s′, M ′〉i. Without loss of generality, we assume that the
derivation ofΓ ;R ; pc ` s : τ does not end with using the
(SUB) rule. Indeed, ifΓ ;R ; pc ` s : stmtR2 is derived
by Γ ;R ; pc ` s : stmtR1 and Γ ;R ; pc ` stmtR1 ≤
stmtR2 , and there existsR′′ such that statements (i)–(iv)
hold for Γ ;R ; pc ` s : stmtR1 , then by Lemma A.9, we
can show thatR′ = R′′ ∪ (R2 − R1) satisfies statements
(i)–(iv) for Γ ;R ; pc ` s : stmtR2 .

• Case (S1). In this case,s is m := e, s′ is skip, andτ
isstmtR−{m}. By (S1),M ′ is M [m 7→ M(m)[v/πi]].
By Lemma A.8, we haveΓ ` v : Γ(m), which
implies thatM(m)[v/πi] has typeΓ(m). Therefore,
Γ ` M ′. The well-formedness ofτ implies thatR
does not contain any indexed references. LetR′ be
R − {m}. It is clear thatR′ ≤ R. By rule (SKIP),
Γ ;R′ ; pc ` skip : stmtR′ . BecausebM ′ci(m) =
v 6= none, andR − R′ = {m}, statement (ii) holds.
SincebM ′ci(m) = n andR − R′ = {m}, we have
thatΓ ;R ` bMci impliesΓ ;R′ ;L ` bM ′ci.

• Case (S2). Obvious by induction.

• Case (S3). Trivial.

• Case (S4). In this case,s is if e then s1 else s2. By
the typing rule (IF), we haveΓ ;R ; pct`e ` s1 : τ . By
Lemma A.7,Γ ;R ; pc ` s1 : τ . In this case,M ′ = M
andR′ = R, so statements (ii) and (iii) immediately
hold.

• Case (S5). By the similar argument of case (S4).

• Case (S6). In this case,s is while e do s1, andτ is
stmtR. By rule (WHILE), Γ ;R ; pc t ` ` s1 : τ ,
where ` is the label of e. Then we have
Γ ;R ; pc t ` ` s1; while e do s1 : τ . Further-
more,Γ ;R ; pc t ` ` skip : stmtR. By rule (IF),
Γ ;R ; pc ` if e then s; while e do s else skip : τ .
SinceM ′ = M andR′ = R, statements (ii) and (iii)
hold.

• Case (S10). In this case,s is if e then s1 else s2,
and i must be •. SupposeΓ ` e : int`. By
Lemma A.8,Γ ` (n1 | n2) : int`. By rule (V-
PAIR), V (`) holds, which implies V (pc t `).
By rule (IF), Γ ;R ; pc t ` ` si : τ , which im-
pliesΓ ;R ; pc t ` ` if ni then bs1ci else bs2ci : τ .
By rule (S-PAIR),Γ ;R ; pc ` s′ : τ . Again, since
M ′ = M andR′ = R, statements (ii) and (iii) hold.

• Case (S11). In this case,s is (s1 | s2). Without loss
of generality, suppose〈s1, M〉1 7−→ 〈s′1, M ′〉1,
and 〈s, M〉 7−→ 〈(s′1 | s2), M ′〉. By rule (S-PAIR),
Γ ;bRc1 ; pc ` s1 : τ . By induction, there ex-
istsR′

1 such thatΓ ;R′
1 ; pc ` s′1 : τ , andR′

1 ⊆ bRc1,
andΓ ` M ′. Let R′ beR′

1 • bRc2, which is com-
puted by the formula:

R1 • R2 = {m | m ∈ R1 ∩R2} ∪
{m1 | m ∈ R1 −R2} ∪
{m2 | m ∈ R2 −R1}

Since bR′c1 = R′
1 and bR′c2 = bRc2, we have

Γ ;bR′c1 ; pc ` s′1 : τ . By rule (S-PAIR),Γ ;R′ ; pc `
s′ : τ holds. SincebR′c2 = bRc2, for anymj ∈ R −
R′, it must be the case thatj = 1, andm ∈ bRc1−R′

1.
By induction, bM ′c1(m) 6= none. Therefore, state-
ments (ii) holds.

If Γ ;R ` M , thenΓ ;bRc1 ` bMc1. By induction,
Γ ;R′

1 ` bM ′c1. Therefore,Γ ;R′ ` M ′ holds.

• Case (S12). In this case,s is (skip | skip). We have
Γ ;bRci ; pc ` skip : stmtbRci

for i ∈ {1, 2}.
By rule (S-PAIR),Γ ;bRci ; pc′ ` skip : τ . There-
fore, Γ ;bRci ; pc′ ` stmtbRci

≤ τ . By the subtyp-
ing rule,τ = stmtbRci

. SobRc1 = bRc2 = R and
τ = stmtR. By rule (SKIP),Γ ;R ; pc ` skip : τ .

A.4. Progress
Theorem A.2 (Progress).Let V (`) be I(`) ≤ L, and let
|s| represent the size of the statements, i.e. the number of
syntactical tokens ins. SupposeΓ ;R ; pc ` s : stmtR′ and
Γ ;R ` M . If AΓ(R) 6≤ L then there exists〈s′, M ′〉 such
that 〈s, M〉 7−→ 〈s′, M ′〉. Furthermore, ifbRc1 6= bRc2,
then|s′| < |s|.

Proof. By induction on the structure ofs.

A.5. Noninterference
Theorem A.3 (Confidentiality noninterference). If
Γ ;R ; pc ` s : τ , thenΓ ` NIC(s).

Proof. Given two memoriesM1 andM2 in Aimp, let M =
M1]M2 be an AimpX memory computed as follows:

M1]M2(m) =
{

M1(m) if M1(m) = M2(m)
(M1(m) |M2(m)) if M1(m) 6= M2(m)

Let V (`) be C(`) 6≤ L. ThenΓ ` M1 ≈C≤L M2 im-
plies thatΓ ` M . Suppose〈si, Mi〉 7−→Ti 〈s′i, M ′〉 for
i ∈ {1, 2}. Then by Lemma A.4, there exists〈s′, M ′〉
such that〈s, M〉 7−→T 〈s′, M ′〉, and bT cj ≈ Tj and
bT ck ≈ T ′

k where{j, k} = {1, 2} andT ′
k is a prefix of

Tj . By Theorem A.1, for eachM ′ in T , Γ ` M ′, which
implies that bM ′c1 ≈C≤L bM ′c2. Therefore, we have
Γ ` Tj ≈C≤L T ′

k. Thus,Γ ` NIC(s).

17

Theorem A.4 (Integrity noninterference). If Γ ;R ; pc `
s : τ , thenΓ ` NII(s).

Proof. Let V (`) be I(`) ≤ I. By the same argument as
in the proof of the confidentiality noninterference theo-
rem.

Lemma A.10 (Balance).Let V (`) beI(`) ≤ L. Suppose
Γ ;R ; pc ` s : τ , andΓ ;R ` M . There exists〈s′, M ′〉
such that〈s, M〉 7−→∗ 〈s′, M ′〉, andΓ ` bM ′c1 ≈A 6≤L

bM ′c2.

Proof. By induction of on the size ofs.

• |s| = 1. In this case,s must beskip. However,
Γ ;R ; pc ` skip : stmtR implies bRc1 = bRc2,
which is followed byΓ ` bMc1 ≈A 6≤L bMc2 because
Γ ;R ` M .

• |s| > 1. By the definition ofΓ ;R ` M , Γ `
bMc1 6≈A 6≤L bMc2 implies bRc1 6= bRc2. By the
progress theorem,〈s, M〉 7−→ 〈s′, M ′〉 and|s′| < |s|.
By the subject reduction theorem, there existsR′ such
thatΓ ;R′ ; pc ` s′ : τ andΓ ;R′ ;L ` M ′. By induc-
tion, 〈s′, M ′〉 7−→∗ 〈s′′, M ′′〉 andΓ ` bM ′′c1 ≈A 6≤L

bM ′′c2.

Theorem A.5 (Availability noninterference). If
Γ ;R ; pc ` s : τ , thenΓ ;R ` NIA(s).

Proof. Let V (`) beI(`) ≤ L. Given two memoriesM1 and
M2 in Aimp such thatΓ ` M1 ≈I 6≤L M2 and for anym in
dom(Γ), m 6∈ R andA(Γ(m)) 6≤ L imply Mi(m) 6= none.
To proveΓ ` NIA(s), we only need to show that there
exists〈s′i, M ′

i〉 such that〈s, Mi〉 7−→∗ 〈s′i, M ′
i〉, and for

any 〈s′′i , M ′′
i 〉 such that〈s′i, M ′〉 7−→∗ 〈s′′i , M ′′〉, Γ `

M ′′
1 ≈A 6≤L M ′′

2 holds.
LetM = M1]M2. Intuitively, by Lemma A.10, evaluat-

ing 〈s, M〉 will eventually result in a memoryM ′ such that
Γ ` bM ′c1 ≈A 6≤L bM ′c2, and if any high-availability ref-
erencem is unavailable inM ′, m will remain unavailable.
This conclusion can be projected to〈s, Mi〉 for i ∈ {1, 2}
by Lemma A.5.

Suppose there exists〈s′, M ′〉 such that〈s, M〉 7−→∗

〈s′, M ′〉, and for any m with AΓ(m) 6≤ L,
bM ′ci 6= none for i ∈ {1, 2}. By Lemma A.5,
〈s, Mi〉 7−→∗ 〈bs′ci, bM ′ci〉. Moreover, for any〈s′i, M ′

i〉
such that〈bs′ci, bM ′ci〉 7−→∗ 〈s′i, M ′

i〉, and anym with
AΓ(m) 6≤ L, it must be the case thatM ′

i(m) 6= none.
Therefore,Γ ` M ′

1 ≈A 6≤L M ′
2.

Otherwise, there exists 〈s′, M ′〉 such that
〈s, M〉 7−→∗ 〈s′, M ′〉, there exists m such that
A(Γ(m)) 6≤ L andbM ′ci(m) ≈none for somei ∈ {1, 2},
and for any〈s′′, M ′′〉 such that〈s′, M ′〉 7−→∗ 〈s′′, M ′′〉,
Γ ` bM ′ci ≈A 6≤L bM ′′ci. By Lemma A.10,

Γ ` bM ′c1 ≈A 6≤L bM ′c2 must hold. Otherwise, as-
sumeΓ ` bM ′c1 ≈A 6≤L bM ′c2 does not hold. Then there
exists 〈s′′, M ′′〉 such that 〈s′, M ′〉 7−→∗ 〈s′′, M ′′〉
and Γ ` bM ′′c1 ≈A 6≤L bM ′′c2. Because for
i ∈ {1, 2}, Γ ` bM ′ci ≈A 6≤L bM ′′ci, we have
Γ ` bM ′c1 ≈A 6≤L bM ′c2, which contradicts the original
assumption. In addition, we can show that〈s′, M ′〉 would
diverge and generate a trace of infinite size. Indeed, by The-
orem A.1, there existsR′ such thatΓ ;R′ ; pc ` s′ : τ ,
andΓ ;R′ ;L ` M ′. ThenA(R′) 6≤ L, because there ex-
ists m such thatA(Γ(m)) 6≤ L and bM ′ci(m) ≈none

for some i ∈ {1, 2}. By Theorem A.2, there exists
〈s′′, M ′′〉 such that 〈s′, M ′〉 7−→ 〈s′′, M ′′〉. Since
Γ ` bM ′ci ≈A 6≤L bM ′′ci for i ∈ {1, 2}, 〈s′′, M ′′〉 can
make progress by the same argument. Therefore, eval-
uating 〈s′, M ′〉 will generate a trace of infinite size.
For i ∈ {1, 2}, suppose there exists〈s′i, M ′

i〉 such that
〈bs′ci, bM ′ci〉 7−→∗ 〈s′i, M ′

i〉. Since the trace from eval-
uating〈s′, M ′〉 is infinitely long, for i ∈ {1, 2}, there ex-
ists 〈s′′i , M ′′

i 〉 such that〈s′, M ′〉 7−→∗ 〈s′′i , M ′′〉 and
bM ′′

i ci = M ′
i . Therefore,Γ ` M ′

i ≈A 6≤L bM ′ci for
i ∈ {1, 2}. Thus,Γ ` M ′

1 ≈A 6≤L M ′
2.

B. Typing the new statement

The type system of Aimp needs to be extended to manipu-
late reference variables and check thenew statement. First,
variablex represents a reference that can be used in the
typing environment: the typing assignmentΓ may mapx
to a type, and the reference setR may containx. For ex-
ample, consider the statementnew x : `x = ref(`) in s.
Suppose the typing environment for thenew statement is
“Γ ;R ; pc”. Then the typing environment fors should be
“Γ, x : int` ;R∪ {x} ; pc”. Second, to control the implicit
information flow arising from the creation of a new refer-
ence, the typing rule for checking the statementnew x :
`x = ref(`) in s needs to ensure that the confidentiality
and integrity components of`x are bounded by the current
program counter labelpc. Formally, the corresponding con-
straints areC(pc) ≤ C(`x) andI(`x) ≤ I(pc).

Intuitively, the value or availability of a reference cre-
ated at a program point is not affected by whether control
reaches this point, because the reference itself does not ex-
ist if control does not reach the point. As a result, the typ-
ing rules in Figure 5 may be over-restrictive for reasoning
about the security policies of a reference created at run time.
For example, consider the following code:

18

if (!m) then
new x:`x = ref(`) in
while !m1 do m1 := m1 - 1;
x := 1

else
skip

SupposeΓ ;R ; pc is the typing environment for thewhile
statement in the above code. ThenI(pc) ≤ I(Γ(m)) holds
by the typing rule (IF). Furthermore, we havex ∈ R, which
requires thatA(`) ≤ I(pc) by the typing rule (WHILE).
Therefore,A(`) ≤ I(Γ(m)) needs to be satisfied for the
above code to be well-typed, which contradicts the intuition
that the availability ofx is not affected by whether control
reaches thenew statement. To increase the precision of the
static security analysis, we extend the type system to keep
track of the program counter label for each reference vari-
ablex from the program point wherex is created. As a re-
sult, the typing environment is extended with a new compo-
nent∆ that maps references to program count labels.

The typing rule (NEW) is used to check thenew state-
mentnew x : `x = ref(`) in s. In this rule, statements
is checked with variablex in scope. In the typing environ-
ment ofs, the program counter label mapped tox is ⊥pc,
which is{⊥C ,>I ,>A}.

[NEW]

Γ, x :int` ;R∪ {x} ;∆, x :⊥pc ; pc ` s : τ
C(pc) ≤ C(`x) I(`x) ≤ I(pc)

Γ ;R ;∆ ; pc ` new x :`x = ref(`) in s : τ

In addition, typing rules (ASSIGN), (IF) and (WHILE)
need to take into account the∆ component in the typ-
ing environment. To abuse the notation a little bit, we use
∆ t ` to denote the program counter map∆′ that sat-
isfies dom(∆) = dom(∆′) and ∆′(r) = ∆(r) t ` for
any r ∈ dom(∆). In addition, let∆(r, pc) denote∆(r) if
r ∈ dom(∆), andpc if otherwise. The adjusted typing rules
are shown as follows:

[ASSIGN]

Γ ;R ` r : int` ref Γ ;R ` e : int`′

C(∆(r, pc)) t C(`′) ≤ C(`)
I(`) ≤ I(∆(r, pc)) u I(`′)

Γ ;R ;∆ ; pc ` r := e : stmtR−{r}

[IF]

Γ ;R ` e : int`

Γ ;R ;∆ t ` ; pc t ` ` si : τ i ∈ {1, 2}
Γ ;R ;∆ ; pc ` if e then s1 else s2 : τ

[WHILE]

Γ ` e : int` Γ ;R ;∆ t ` ; pc t ` ` s : stmtR
AΓ(R) ≤ I(`) ∀r ∈ R, A(r) ≤ I(∆(r, pc))

Γ ;R ;∆ ; pc ` while e do s : stmtR

19

