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Abstract decentralized label model [13], and similarly, it is able to
describe security policies to be enforced on behalf of mutu-
This paper introduces the use of static information flow ally distrusting principals. This ability is just as important
analysis for the specification and enforcement of end-to- for availability as it is for confidentiality and integrity.
end availability policies in programs. We generalize the de-
centralized label model, which is about confidentiality and ~ The second part of the framework is a formal meaning
integrity, to also include security policies for availability. for security policies in the policy language. A security pol-
These policies characterize acceptable risks by representingCy demands that the system behave in a way that enforces
them as principals. We show that in this setting, a suitable the policy; this paper characterizes precisely what the be-
extension of noninterference Corresponds to a Strong, end_haVior can be. In the context of Confidentiality and integrity,
to-end availability guarantee. This approach provides a nat- €nd-to-end security policies have generally been interpreted
ural way to specify availability policies and enables exist- s information flow policies requiring that the system obey
ing static dependency analysis techniques to be adapted fononinterference. As this paper shows, availability policies
availability. The paper presents a simple language in which t00 can be interpreted as requiring a form of noninterfer-
fine-grained information security policies can be specified €Nnce.
as type annotations. These annotations can include require-
ments for all three major security properties: confidential-
ity, integrity, and availability. The type system for the lan-
guage provably guarantees that any well-typed program has
the desired noninterference properties, ensuring confiden-
tiality, integrity, and availability.

The third part of the framework is a static program anal-
ysis that enforces policies for confidentiality, integrity, and
availability. Previous work has shown that it is possible to
enforce end-to-end confidentiality and integrity properties
by static, compile-time analysis of program text (for a sur-
vey see [15]). What is new here is a demonstration that the
same approach applies to availability: an availability anal-
ysis can be expressed in tractable form as a programming
1. Introduction language type system that also enforces confidentiality and

o . i integrity.
Availability is an important aspect of security, and attacks

that harm availability may cause considerable damage. For The paper is structured as follows. Section 2 presents the
example, denial-of-service attacks have been an increasnew policy language for expressing requirements for avail-
ing problem for web services. Although availability is of- ability, integrity, and confidentiality. Section 3 instantiates
ten considered one of the three key aspects of informationthis label system as program annotations in a simple pro-
security (along with confidentiality and integrity), assuring gramming language. Section 4 uses the operational seman-
availability has been the province of the fault tolerance com- tics of the language to express trace-based security proper-
munity, largely divorced from other security concerns. ties that correspond to availability, integrity, and confiden-
This paper suggests that the divide between availability tiality policies. Section 5 gives a type system for this pro-
and the other security properties can be bridged. It showsgramming language and states the corresponding security
that single, common framework can accommodate reasontheorem: well-typed programs are semantically secure (see
ing about confidentiality, integrity, and availability. The first the appendix for proofs). Section 6 extends the simple pro-
part of this framework is a policy language for the specifi- gramming language to express richer notions of availabil-
cation of rich security policies for confidentiality, integrity, ity and also to describe some aspects of distributed systems.
and availability. This policy language is an extension to the Section 7 discusses related work, and Section 8 concludes.



2. Availability policies e root: userroot, which usually has the ability to shut
down a system.

e DDoSiggo: the distributed denial of service at-
tack launched from 1000 machines. This principal
can be used to specify the availability of a sys-
tem that can tolerate DDoS attacks launched from less

2.1. Avallability . o igoglzazrzuzr}gs.enerated by a puzzle-based de-
A system output is considered to beailableif it will be puzz e b g yap

fense mechanism [8] for DoS attacks. This principal

produceceventually Note tha@ the value.of the (.)utput. does fails if attackers can easily solve the puzzle and launch
not have to_be _c_orrect—that is the province of mtegrlty. DoS attacks successfully.

The availability of an output is the degree to which the
output is available. There are two common ways to spec- Itis also useful to describe more complex failure scenar-
ify this degree of availability. The first approach is to quan- 10s using a combination of principals. For example, suppose
tify system reliability using measurable criteria such as the that there is a principalps representing a back-up power
failure probability or the MTTF/MTTR thiean time to fail ~ supply, and to make the system unavailable, ppotrer and
/ mean time to recovgratio [17]. The second approach, ups need to fail. This joint failure is represented by a con-
from the fault tolerance community, is to specify what fac- junction,power Aups.
tors may cause the system to fail. For example, itis common More generally, principalp may be constructed using
to specify the minimum number of host failures (either fail- conjunction and disjunction operatoksandV:
stop or Byzantine) needed to bring down the system [16]. In
this work we explore the second approach: specifying avail- p = a | p1Aps | p1Vpe
abilities as failure factors.

The above description of availability glosses over an-

other aspect of availability: timeliness. How soon does an . . )
P y ure factor:p; Aps fails only if bothp; andp, fail. Another

output have to occur after it is expected in order to be con- . - o

sidered to be available? For real-time services, there mayco.nst.ructon/ Is used to construgt agroup (d|SJunct|9n)._ the

be hard time bounds beyond which a late output is useless.prmCIpaI P1Vp2 represents.a fallur.e that happens if either

Reasoning about how long it takes to generate an output’! ' P2 fails. For example, if the principalobvpower can

adds considerable complexity, however, so for now let us make a system fail, then Bob and the power supply each can
: N N cause the failure.

consider an output to be available if it arrives eventually.

Section 6 presents an extension to this framework that sup- u;OedivrgosnS;rc?;; t;hjgl);?lf;ﬁlve;egs S;:S:TS] E”;Sraalllgn'
ports reasoning about timeliness. guage, p yoraq Y [10].

A quorum system is a collectiof© , . . ., @, } of sets (quo-
22 Fai .. rums) of hosts, every two of which intersect. A quorum sys-
2. Failures as principals tem is available as long as there is some quorum in which
We assume that the unavailability of a system output can beng hosts fail. Therefore, a quorum system cannot tolerate
attributed to dailure. There are many kinds of possible fail-  the fajlure of a set of hostB such that for every quorum
ures: for example, hardware failures such as losing power,(). B N, is not empty. Thus, if the principa represents
software failures such as subversion by an attacker, and huy host, the availability of a quorum system can be speci-
man failures, such as a user who provides incorrect or everyieq py the principal/ 5 | vo. 5,20 Anes -
malicious inputs. Our goal is a general policy language that
can describe all these kinds of failures and how the avail-
ability of the system is affected by them. This description
can then aid in designing systems that resist failure.

We begin by pinning down more precisely what is meant

by “availability”, then define an expressive policy language

for availability, and demonstrate the policy language can be
used for confidentiality and integrity too.

The notationa represents an abstract name that a princi-
pal. The principal conjunctiop; Ap-» represents a joint fail-

2.3. Principal hierarchy
We write p; > p- if the principalp, acts foranother prin-

cipal p; [13]. Interpreting failures as principals, this means

In general, we regard a failure as the malfunction of a . . .
. . . the failure ofp; is worse than the failure @£ (or the same).
principal, an entity that may affect the behavior of a sys- . S .
. . The acts-for relationship is useful for formally analyzing
tem. Therefore, the failure can be denoted by the responsi-_ .~ " LT
o . . .~ . availability, because;, > p> means that the availability
ble principal. For some failures, the corresponding princi- : : o
s . : level represented by, is at least as high as the availabil-
pal is simply an abstract name, which might represent hard-.
; . ity level represented bys,.
ware, users, attacks or defense mechanisms, as shown in th . . o .
. ) The acts-for relationship between principals is called a
following examples: o . .
principal hierarchy’H, an ordering (actually, a pre-order)
e power: the main power supply of a system, whose fail- on the set of principals. By the definition of the acts-for re-

ure may bring down the entire system. lationship, a principal hierarchy needs to satisfy the follow-
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Figure 1. Availability policies vs. assertions

ing deductive rules:

- - -
PIAD2 = Py P1Zp2 P2 = P3 pP1 = P2
P1 = D3 p1 = p2Vps
P1 = Pp3 P2 = P3 P1 = p2 P1ZP3
p1Vp2 = p3 DP1 = p2/Aps3

2.4. Owned availability policies
Mutual distrust is intrinsic to security. In order for all stake-

Thus, if an output has the availability poliay : p, it
means that the availability of the output will be enforced
subject to two security assumptions. The first assumption is
thatp does not fail. The second assumption is that the secu-
rity assertions of; are valid.

2.5. General security policies

Although availability is the focus of this paper, it cannot be
considered in isolation from confidentiality and integrity,
for two reasons. First, availability can be in tension with
confidentiality and integrity because a mechanism that helps
improve availability (such as replication) can harm confi-
dentiality and integrity. Second, availability can depend on
integrity. For example, consider the following pseudo-code:

while (x > 0) skip;
send (o, y);

holders (such as users) to believe that a computer system enfhis program outputs the value pfafter thewhile state-
forces their security, it is necessary that they be able to ex-ment terminates. If the value of is positive, thewhile
press their distinct security requirements. Thus, each indi-statement is an infinite loop, and the output is unavailable.
vidual user should be able to specify and manage their ownThus, an attacker can compromise theailability of the
policies. Decentralized policy management is especially im- outputo by compromising théntegrity of x.

portant for distributed systems.

Essentially the same policy language can be used for

This observation applies just as much to availability as it all three major kinds of policies: confidentiality, integrity,
does to confidentiality and integrity. Therefore, the avail- and availability. In the DLM, an integrity policy applied

ability policies defined here support a notion @vner-
ship, as in the decentralized label model (DLM), which ap-
plies ownership to confidentiality and integrity policies. An
owned availability policy has the form: p, where principal

u is the policy owner, and principal represents the avail-
ability level required byu.

The owner of a policy is allowed to affect the meaning
of the policy by making relevarsecurity assertiong-or ex-
ample, Figure 1 shows a simple syst8hwhich receives an
inputs and sends the value of the input to an outpusup-
pose two availability policies; : h andus : h are speci-
fied on the outpub. Thus, bothu, andus requires the out-
puto to be available if host does not fail.

as a label to some datais writtenw : pq,...,p,, Mmean-

ing that« allows only principalspy, ..., p, to affect up-
dates tad. (This is of course stronger than the correspond-
ing access control policy because the prohibited effect on
updates might be indirect.) And a confidentiality policy
w:p1, ..., P, means that allows only principal®., ... p,

to receive information affected by the labeled data.

The key insight is that for every aspect of security, prin-
cipals on the right-hand side of a DLM policy can be inter-
preted as failure factors. A confidentiality policyp means
thatu requires the data will remain confidential as long as
p does not fail to keep it confidential. For integrity,re-
quires the data will have integrity unleg<ails to provide

Our goal is to determine whether a system can enforcecorrect data. As an availability policy, it says thatequires
the availability policies on its outputs. Since a system can- that the data is available as longadoes not fail. In each

not affect the availabilities of its inputs, an availability pol-

case the policy: : p can be interpreted ass requirement

icy specified on its input is considered a security assertionthat only the failure op may compromise the correspond-
by the policy owner that the policy is already enforced. In ing aspect of security.

this example, two availability policieg; : h andus : b/
are specified on. In other wordsy, asserts thatis avail-
able if h does not fail, whileus asserts that is available
if »’ does not fail. In general, the security assertions of
can be used to enforce the security policiesuofor uy,

if h does not fail, then is available, therv will be avail-
able. Thus, its availability policy on is enforced. But for
ug, if h does not fail; may still be unavailable, which will
cause to be unavailable. Thus, the availability poligy: h
ono is not enforced bys.

The DLM'’s ability to list multiple principals on the right-
hand side of a policy is subsumed by disjunctive principals.
The confidentiality or integrity policy:: py, ..., p, can be
written in the formu: p1 V. . .Vp,,, indicating thap, V. . .Vp,,
are expected not to fail. This is equivalent to assuming that
none ofp; throughp,, will fail, as desired.

Thus, the policy formu : p is a generic security policy
applicable not only to availability but also to confidential-
ity and integrity. This commonality aids the analysis of the
interactions between the three security properties.



2.6. Policy semantics o trust(ps) = trust(py) if p1 = pa.

Whether the policy::p is used to talk about confidentiality, =~ ® believe(us) = believe(uy) if u1 = us.

integrity, or availability, it corresponds to the two security The first holds because in this case the failurg,oinplies
assumptions above: thatis a trustworthy enforcer of the  the fajlure ofp,; the second, because is subject to any
security property under consideration, and that the securitysecyrity assertions made hy. From these statements we

assertions of, are \_/a"d- _ ~ see thatrust(p) Ap2) = trust(py) V trust(p2) andtrust(p; V
_These assumptions can be formalized as a proposition p2) = trust(py) A trust(p2), and similarly withbelieve(-).
using the following syntax: From these two observations and the semantics, the fol-

lowing rule for ordering policies immediately follows:

- -
[CP] U — U1 P2 = P1
u:pr < Uz P2

o = trust(p) | believe(p) | o1Aos | o1Vos

wheretrust(p) means that principal does not fail (that is,
does not violate the security property under consideration),
believe(p) means thap’s assertions are valid, andandv
are the ordinary logical connectives.

A security policy can be given a formal semantics in
terms of these propositions. Using semantic brackéts
indicate the semantic function, the meaning of a policy

2.7. Combining owned policies

In general, different principals may have different security
requirements. It is convenient to incorporate the security
policies of several principals into one entity so that they can
be analyzed and manipulated together. This is accomplished

IS- by writing asetof policiesg = {Py, ..., P,}, where each
BT P; is an owned policy; : p; of the same kind (confidential-
[u:p] = believe(w) A trusi(p) | ity, integrity, or availability).
To enforce a DQ'ICYP IS to guarantee a segunty prop- A combined policyg is enforced if and only if all the
erty (such as availability) under the assumption thaj policies in3 are enforced. As a result, the security assump-

is true. For example, suppose Alice specifies an availabil-tion described by must be weaker than or equal to the se-
ity policy Alice : hy A hy on one of her files, and Al-  curity assumptions described by policiesdn Therefore,
ice assumesdiz = hy andhy = ho, wherehs, hy and  the semantics of is the propositiorf 3] = \/ p 5[ P]. Just
h3 are host machines. To enforce the policy is to guaran- as with simple policies, combined poligk is as strong as
tee the availability of the file under the assumption that combined policy3;, written 3, < (3, if [31] = [B2]. From
believe( Alice) A trust(hy Ahy) is true. Therefore, one way  the semantics, the ordering on policies can be lifted up to
to enforce the policy is to replicate the file on hostsand  an ordering on combined policies by the following rule:
ho becauserust(hi/Ahe) means thatk, andh, cannot fail at
the same time,(which)ensures that at least one host is avail- VPEp. AP Ef. PSP
able to serve accesses to the file. Moreover, there exists an- PL< P
other way to enforce the policy: storing the file b Since Importantly, the set of all the combined policies form a
believe(Alice) is true, Alice’s assumption that; acts for  [attice with the followingjoin (Li) andmeet(r1) operations:
hy andhs is valid, which implies that; does not fail be-
cause eitheh; or h, does not fail. PrUBe =1 U B
To enforce system-wide availability (confidentiality, in- 01 192 = {urVuz:p1Vpe | ur:pr € fi Auzipz € o}
tegrity) it is necessary to be able to determine whether oneThe join and meet operations are sound with respect to the
security policy is at least as strong as another. A pallgy  policy semantics, because itis easily shown fi¥ati 3] =
is as strong as another poli¢y, written P; < P, if the en- [61] V [B2] and[B1 1 B2] = [B1] A [B2]-
forcement ofP, implies the enforcement @?;. This policy Having a lattice of policies supports static program anal-
ordering falls out naturally from the semantics of policies. ysis [5]. For example, consider an addition expressiof
Intuitively, a policy representing a weaker security assump- e2. Let A(e;) and A(ez) represent the availability policies
tion is more difficult to enforce, because a security property of the results ok; ande,. Since the result; + e, is avail-
is more difficult to satisfy under a weaker assumption. Then able if and only if the results of; ande, are both avail-
[P1] = [P:] implies P, < Ps. able, we haved(e; + e3) < A(er) and A(e; + e3) <
Consider the above file access example. Suppose a passA(es). Because the policies form a latticd(e; + e2) =
word is needed to access the file. Then the password shouldi(e;) M A(es) is the least restrictive availability policy we
have an availability policyP such thatilice:hiAhy < P, can assign to the result ef ande,. Dually, if C'(e;) and
because the availability of the file depends on the availabil- C'(e;) are the confidentiality policies of; and e, then
ity of the password. C(e1) < C(eg+e2)andC(ey) < C(e;+eq). The least re-
By the definition of the acts-for relationship between strictive confidentiality policy that can be assigned to the re-
principals, the following statements hold: sultC'(eq + e2) is C(er) U Cleg).




2.8. Security labels Indeed, supposeis unavailable. By (SA2), it is because
In general, a system will need to simultaneously enforce the availability or value of some inputis compromised by
policies for confidentiality, integrity, and availability of the ~attackers. Without loss of generality, suppose the availabil-
information it manipulates. These policies can be applied ity of i is compromised. LeP; be the availability policy
to information assecurity labels A label ¢ is written as a  0f i. By (SA1), P; is enforced. Therefore, the unavailabil-
triple (B¢, 81, Ba), Wherelc represents the (possibly com- ity of i implies tha ;] is false, as discussed in Section 2.5.
bined) policy for confidentiality3; represents the integrity By the noninterference property, we hale< P;, which is
policy, and34 represents availability. The notatio6g/), equivalenttd P] = [P;]. Thus,[P] is false. Therefore, the
I(¢), and A(¢) represent the confidentiality, integrity, and unavailability ofo implies that[ P is false. In other words,
availability components of. if [P] is true, thero must be available, which means tiat
For example, suppose expressigrhas a security label  is enforced orn.
{1, andesy has labels. Thene; + e5 has a labelC(¢1) L

C(la), I(tr) M I(L2), A(lr) T A(L2)). 3.2. The Aimp programming language
It is well known that confidentiality and integrity poli-
3. Applying policies to computation cies can be enforced by static program analyses that ver-

ify whether a program satisfies a noninterference prop-
erty [19, 7, 20]. Since availability policies also correspond
to a noninterference property in our security model, a static
dependency analysis can be used to determine whether a
system satisfies these policies. We now demonstrate this
“approach by formally representing the system as a pro-
gram written in a security-typed imperative language called
Aimp.

The Aimp language is a basic imperative language
with assignments, sequential composition, condition-
als and loops. The only non-standard construct in Aimp

In this paper, a system is modeled by a program with which
users (including attackers) can interact only by affecting its
inputs and observing its outputs. Security policies, includ-
ing confidentiality, integrity and availability policies, are
specified on the inputs and outputs of a program. This sec
tion shows this approach with a simple programming lan-
guage.

3.1. Security model

Our goal is to ensure that a program does not allow attack-
ersto V|olat.e its security pohqeg atruntime. A programit- ;5 4 special valuaone, which is used to represenin-
self has no influence on how its inputs are computed or how 5y aijapility: a value is unavailable if and only if it isone.

its outputs are used by external users. Therefore, a Programyyitively, there are three rules on using the vatoge:
is not responsible for the enforcement of the integrity and

availability policies of its inputs, or the confidentiality poli- e The valuenone cannot appear in a program.
cies of its outputs. For example, as shown in Figure 1, the e The result of expressionis none if the evaluation of
owners of the availability policies on inpatassume those e depends oone.
policies are enforced. More generally, we have the follow- e The execution of a statement gets stuck if the execu-
ing security assumption: tion depends onone.
SA1 Confidentiality policies specified on inputs, A program of Aimp is just a statement, and the state of
and integrity and availability policies specified on a program is Captured by a memaly that maps memory
outputs are already enforced. references (memory locations) to values. We assume that a

We are interested in the security violations that may be Memory is observable to users, so memory references can
caused by attackers, and we assume that the power of an aR€ used to represent I/O channels. A reference represent-
tacker is limited to affecting the inputs and observing the ing an input is called amput referencelf the value of an

outputs of a program. This leads to our second security as{NPut reference isone, then the corresponding input is un-
sumption: available. Similarly, a reference representing an output is

called anoutput referenceSupposen is an output refer-
ence, then the corresponding output becomes available if
is assigned an integer value. An unassigned output refer-
ence represents an output still expected by users.

By (SA1) and (SA2), an availability policy’ specified The syntax of Aimp is shown in Figure 2. Let range
on an outpub can be enforced by moninterferencerop- over memory locations. In Aimp, values include integer
erty [6]: the availability ofo is not interfered by the avail- andnone. Expressions include integer, dereference ex-
ability of any input whose availability policy is not as strong pressiorim, and addition expressiaen +e,. Note thathone
asP, or the value of any input whose integrity policy is not is not a valid expression so that it cannot appear in a pro-
as strong a#. gram. Statements include the empty statersiip, the as-

SA2If an output is unavailable, then it is because
the availability or value of some input is compro-
mised by attackers.



e, it must be the case thét, M) || n. In other words, if
(e, M) |} none, the evaluation ofs, M) gets stuck.

Values v == n | none
Expressions ¢ == n | !m | e;+eo
Statements s = skip | m:=e | $1;82
| if ethen s; else sy (E1] m € dom(M)
| whileedos (!m, M) |} M(m)
M M =
Figure 2. Syntax of Aimp [E2] fer, M) 4 v ez, M)dve v=u+us
<61 + e2, M> ‘U v
signment statement := ¢, sequential compositiosy; s, [S1] (e, M) 4 n
if andwhile statements. (m :=e, M) — (skip, M[m n])

Let 3 range over a lattic& of base labels, such as poli-
cies as defined in Section 2. The top and bottom elements [g2] : ;
of £ are represented by and_L, respectively. The syntax (81552, M) — (s15 82, M)
for types in Aimp is shown as follows:

(s1, M) — (s1, M')

[S3] (skip; s, M) — (s, M)

Baselabels 3 ¢ L (e, MyIn n>0

Labels ¢,pc = (Bc,Br,Ba) [S4] ,
Types 7 = inty | intyref | stmty (if e then sy else s2, M) — (51, M)
In Aimp, the only data type isnt,, an integer type anno- [55] . e. M)4n n<0
tated with security label, which contains three combined (if e then s1 else s2, M) — (s2, M)
policies as described in Section 2. ‘
A memory reference: has typeint, ref, indicating the [S6] (while e do s, M) —

. \ if e then s;while e do s else skip, M
value stored atn has typeint,. In Aimp, types of mem- (it e then s;uhile e do s else skip, M)

ory references are specified bytyping assignment' that
maps references to types so that the typewds  ref if
T'(m)=r.

The type of a statementhas the formstmtz whereR
contains the set of unassigned output references whemn
minates. IntuitivelyR represents all the outputs that are still
expected by users afteterminates.

Figure 3. Small-step operational semantics for
Aimp

33 O ional _ 3.4. Examples

T perationa S.emantlcs ) ) o _ By its simplicity, the Aimp language helps focus on the ba-
The small-step operational semantics of Aimp is given in gjc constructs of an imperative language. Figure 4 shows a
Figure 3. Let)M represent a memory that is a finite map fe\y code segments that demonstrate various kind of avail-

from locations to values (includingone), and let(s, M)  gpjjity dependencies, some of which are subtle. In all these
be a m_a_chme configuration. Then a small ev_aluatlon step ISexamplesyn, represents an output, and its initial value is
a transition from(s, M) to another configuratiofs’, M), none. All other references represent inputs.

written (s, M) — (s', M’). In code segment (A), ifn; is unavailable, the execution

_The evaluation rules (S1)~(S6) are standard for animper-geq styck at the first assignment. Therefore, the availability
ative language. Rules (E1) and (E2) are used to evaluate exz¢ . depends on the availability o,
o .

pression;. Because an expression has no s.idel-effect, we use |1 ode segment (B), thehile statement gets stuck if
the notat|on<e,.M> | v to mean that e\{aluatmgm mem- my IS unavailable. Moreover, it diverges if the valuernf
ory M results in the \_/alue. Rule (E1) is used tq evaluate is positive. Thus, the availability ofi, depends on both the
dereferepce expresspm. In rule .(E2),v1 + vy is com- availability and the value af; .
puted using the following formula: In code segment (C), thief statement does not terminate
if my is positive, so the availability ofn, depends on the
value ofm;.
In code segment (D), is assigned in one branch of
Rules (S1), (S4) and (S5) show that if the evaluation of the if statement, but not in the other. Therefore, when the
configuration(s, M) depends on the result of an expression if statement terminates, the availabilitysxodepends on the

01+ vy = ni + no if v =mnyandvy = ny
! 2 none if v, = none Orvy, = none



e The valuenone is not observable. In other words, if

(A) ma:='mq; Me:= 1; '
(B) while (!mi) do skip; S M(m) = none, an observer cannot determine the
(C) if ('m1) then while (1) do skip; else skip; value ofm in M.

Mo:=1; Supposss is a program, and/ is the initial configuration.

(D) if (!m1) then m,:=1 else skip;
while (!m2) do skip;
Mo :=2;

Based on the observation model, the outputsarfe a sef

of finite traces of memories, and for any tracén 7, there
exists an evaluations, M) —— (s1, M) — ... —
Figure 4. Examples ($n, M,) such thatl’ = [M, My, ..., M,]. Intuitively, ev-

ery trace in7 is the outputs observable to users at some
point during the evaluation df, M), and7 represents all
the outputs ofs, M) observable to users. Since the Aimp
language is deterministic, for any two tracesZinit must

be the case that one is a prefix of the other.

In the intuitive description of noninterference, equivalent
low-confidentiality inputs can be represented by two mem-
4. Noninterference properties ories whose low-confidentiality parts are indistinguishable.
Suppose the typing information of a mematy is given
by a typing assignment. Thenm belongs to the low-
confidentiality part ofM if C(I'(m)) < L. Similarly, m
is a high-integrity reference if(I'(m)) £ L, and a high-
availability reference ifA(I'(m)) £ L. Given two mem-
ories M; and My, letI" - M; ~c<p M, denote that
low-confidentiality parts of\/; and M, are indistinguish-
able with respect td", I' = M; ~;¢; M, denote that
high-integrity parts ofM; and M, are indistinguishable
with respect td, andI’ - M; ~4¢; M> denote that the
high-availability parts ofAf; and Ms have indistinguish-
able availability with respect tb.

By the observation model of Aimp, a user cannot distin-
guishnone from any other value. Let; =~ v, denote that
v1 andwvy are indistinguishable. Them =~ v, if and only
if v1 = vy, v1 = none Or v = none. With these defi-
nitions, the three kinds of memory indistinguishability are
defined as follows:

value ofm;. Moreover, the program executestaile state-
ment that may diverge before, is assigned value 2. There-
fore, for the whole program, the availability of, depends
on the value ofn;.

This section formalizes the noninterference properties, in-
cluding availability noninterference, that correspond to the
security policies of Section 2. Although this formalization
is done in the context of Aimp, it can be easily generalized
to other state transition systems.

For both confidentiality and integrity, noninterference
has an intuitive description: equivalent low-confidentiality
(high-integrity) inputs always result in equivalent low-
confidentiality (high-integrity) outputs. The notion of
availability noninterference is more subtle, because an at-
tacker has two ways to compromise the availability of
an output. First, the attacker can make an input unavail-
able and block the computation that tries to read the in-
put. Second, the attacker can try to affect the integrity of
control flow and make the program diverge (fail to ter-
minate). Intuitively, availability noninterference means
that with all high-availability inputs available, equiva-
lent high-integrity inputs will eventually result in equally
available high-availability outputs. Definition 4.1 (' - My ~c<, Ms). Supposelom(I') =

The intuitive concepts of high and low security are based dom(M;) = dom(Ms). Thenl' - My ~c<, M, if for any
on the power of the potential attacker, which is representedm € dom(T"), C(I'(m)) < L implies M1 (m) ~ Maz(m).

by a base label. Suppose the attacker is able to compro- Definition 4.2 (' - M, ~;4; Ms). Supposelom(T') —

mise principal®, ..., p,, and that there exists a top princi- - — .
pal (denoted by) that acts for every principal. In the DLM, g;’lg(‘]j\g;z(;) d})g((% 3;;??;&35}5{%; 243\4: I?rz)any
we havelL = {x: pyA...Ap,}, because A...Ap, is the ' '

most powerful principal that the attacker controls. Given a Definition 4.3 (' - M; ~ay¢1 M>). Supposedom(I') =
base label3, if 3 < L then the label represents a low- dom(M;) = dom(Ms). Thenl' - M,y ~ a4 M, if for any
security level that is not protected from the attacker. Oth- m € dom(T"), A(I'(m)) £ L implies that)/; (m) = none
erwise,( is a high-security label. if and only if M>(m) = none.

For an imperative language, the inputs of a program is

just the initial memory. However, what are the outputs of a ity, we can define trace indistinguishability, which formal-

program erends on théservation modelf the Ianguage, izes the notion of equivalent outputs in the intuitive descrip-
which defines what aspects of a program execution are ob-

. .~ "tion of noninterference. First, we assume that users cannot
servable to external users. The observation model of Aimp -
; : . observe timing. As a result, tracés/, M| and [M] look
is defined as follows:

the same to a user. In general, two tra@gésandT; are
e Memories are observable. equivalent, writtenl; ~ 715, if they are equal up to stut-

Based on the definitions of memory indistinguishabil-



tering, which means the two traces obtained by eliminat- mal definition of availability noninterference is given be-
ing repeated elements i andT; are equal. For example, low:

[Ml,ﬂfg, MQ] ~ []V[l,Ml, MQ] Second; andT; are in-
distinguishable, ifl;} appears to be a prefix df,, because
in that casel}; and7> may be generated by the same ex-
ecution. Given two trace$; and7; of memories with re-
spect tol', letI" - Ty ~¢<1 T> and denote that the low-
confidentiality parts of; and75; are indistinguishable, and
I' = Ty =41 T denote that the high-integrity parts of o ' M =141 My

Ty andT; are indistinguishable. These two notions are de- e For anym in dom(M;) (i € {1,2}), if m ¢ R and
fined as follows: A(T(m)) £ L, thenM;(m) # none.

Definition 4.4 (' - T =~c<r T3). Giventwo traced’ and o (s Mi) —" {s;, M) fora € {1,2}

T», T+ Ty =c<p T if there existsT] = [Mq,..., M,] imply that there exis{s?, M) for i € {1,2} such that
andTj = [Mj,..., M ] such thatl} =~ T{, andT; =~ T3, (sh, M) —* (s, M!") andl" = M{" ~aq¢1, M.

andI' - M; ~c<p M/ foranyiin {1,...,min(m,n)}.

Definition 4.5 (U - T1 ~;¢, Tb). Giventwotracedy and 9. Security typing and soundness
T», T + Ty ~r¢1 T if there existsI| = [My,..., M,]
andTy = [Mj,...,M] ] suchthatly ~ T7, andTy = T3,
andI' - M; ~;45, M/ foranyiin {1,...,min(m,n)}.

Definition 4.8 (Availability noninterference). A program

s has theavailability noninterferencegroperty w.r.t. a typ-
ing assignment® and a set of unassigned output refer-
encesR, writtenT'; R + NI4(s), if for any two memo-
ries My, Ms, the following statements

The type system of Aimp is designed to ensure that
any well-typed Aimp program satisfies the noninterfer-
ence properties defined in Section 4. For confidential-
Note that two executions are indistinguishable if any two ity and integrity, the type system performs a standard static
finite traces generated by those two executions are indisinformation flow analysis. For availability, the type sys-
tinguishable. Thus, we can still reason about the indistin- tem tracks the set of unassigned output references and uses
guishability of two nonterminating executions, even though them to ensure that availability requirements are not vio-
~r41 and~c<y, are defined on finite traces. lated. _ _ .
With the formal definitions of memory indistinguishabil- 10 track unassigned output references, the typing envi-

ity and trace indistinguishability, it is straightforward to for- fonment for a statemestincludes a componer®, which
malize confidentiality noninterference and integrity nonin- contains the set of unassigned output references before the

terference: execution ofs. The typing judgment for statements has the
form:T'; R ;pcF s : stmtg/, wherel is the typing assign-
Definition 4.6 (Confidentiality noninterference). A pro- ment, andpc is theprogram countetabel [4] used to track
gram s has the confidentiality noninterferenceprop-  security levels of the program counter. The typing judgment
erty w.r.t. a typing assignmert, written I' = NIc(s), for expressions has the forfh, R |- e : 7. Let the notation

if for any two traces7T; and T, generated by evaluat- Ar(R) de”th_LneR A(T(m). The typing rules are shown
ing (s, My) and (s, M), wherel' - M; ~c<r M, we in Figure 5.
havel' - T1 ~c<r, To. Rules (INT) and (NONE) check constants. An integer
has typeint, where/ can be an arbitrary label. The value
none represents an unavailable value, so it can have any
data type. Sincent is the only data type in Aimppone
has typeint,.

Rule (REF) says that the type of a referemcés 7 ref
if I'(m) = 7. In Aimp, a memory maps references to val-

The intuitive description of availability noninterference ues, and values always have integer types.
has a premise that all the high-availability inputs are avail- Rule (DEREF) checks dereference expressions. It disal-
able. To formalize this premise, we need to distinguish in- lows dereferencing the references7) because they are
put references from unassigned output references. Given ainassigned output references. If the valuenofis none,
programs, let R denote the set of unassigned output ref- then dereferencingn will block the computation, caus-
erences. In general, referencesRnare mapped taone ing the unassigned output references unavailable. There-
in the initial memory. Ifm ¢ R, then referencen repre- fore, rule (DEREF) has the premisgg-(R) < A(¢), which
sents either an input, or an output that is already been genensures the availability of: is as high as the availabil-
erated. Given an initial memory/, the premise that all the ity of any unassigned output reference. For example, in
high-availability inputs are available can be represented bycode segment (A) of Figure 4, the type system ensures that
Vm, A(T'(m)) £ L Am ¢ R = M(m) # none. The for- A(T'(m,)) < A(T'(my)) when checkingm; .

Definition 4.7 (Integrity noninterference). A programs
has thentegrity noninterferenceroperty w.r.t. a typing as-
signmentl’, writtenT" - NI;(s), if for any two tracesl}
andT; generated by evaluating, M;) and(s, Ms), where
'+ M; RILL M, we havel’ - Ty RILL Ts.



[INT] I;RFn:int C(¢), which prevents attackers from inferring sensitive in-
formation about the control flow, ant[¢) < I(pc), which
[NONE] I'; R I~ none : int, prevents attackers from compromising the integritynof
by affecting the control flow. Finally, when the statement
[REF] '(m) :.intf terminates,m should be removed from the set of unas-
IR Em: int, ref signed output references, and thus the statement has type
mgR  T(m)=int, Ap(R) < A0 SR~ {m} _
[DEREF] TR Flm - ints Rule (IF) checksif statements. Consider the state-
’ ment if e then s; else sy. The value ofe determines
[';RIeq:inty, ;R es: inty, which branch is executed, so the program-counter la-
[ADD] . i bels for branches;; and s, subsume the label of to
I'sREer + ez :inty e, 1 2
protect e from implicit flows. As usual, theif state-
[SKIP] I';R;pct skip : stmtr ment has type if both s; ands, have typer.
R pek s - statr Rule (WHILE) checl_<s:hile statement_s. Az_h_ile state-
P ’ ! ment may diverge, which affects the availability of any ref-
I'sRi;pck sz : stmtgr, . . . . : -
[SEQ] — — erence inR. Therefore, if there is any high-availability ref-
TSR ipet 51582 : stmtr, erence ink (Ap(R) £ L), this rule needs to prevent attack-
P Rbm:interef T:RFe:inty ers from affecting whether thishilg statement diverges
Clpe) UC(E) < C(6) 1(¢) < I(pe) N I(¢) or Wheth_er control flow reaches this stateme_nt. For exam-
[ASSIGN] A AT Ty — plel, consider the code segments (B) and (C) in Figure 4, in
e T —im} whichR = {m,}. Supposed(T'(m,)) £ L. In code seg-
IR Ee:int ment (B), the premiselp(R) < I(¥) of this rule ensures
IiRipcUlhsi:T ic{l,2} I('(my)) £ L, which means that attackers cannot affect
[IF] [ R pch if c thens; else sy 7 the value ofn;, and whether thehile statement diverges.
In code segment (C), the premigg(R) < I(pc) of
IF'ke:int, T;R;pcUlE s:stmtr rule (WHILE) guaranteed(I'(m,)) £ L sincel(pc) <
Ar(R) < I(£) 1 I(pc) I(I'(my)). Thus, attackers cannot affect which branch of
[WHILE] : . :
I';R;pct whileedo s : stmtr the if statement would be taken, i.e. whether control flow
reaches thehile statement.
[SUB] DiRipels:T F5R?/PC br<r Rule (SUB) is the standard subsumption rule. Let
DiRipeks:T I';R;pct 7 < 7 denote that is a subtype of’ with re-

Figure 5. Typing rules for Aimp

Rule (ADD) checks addition expressions. et | {5 be

the control flow. Thus, this rule has the premigggc) <

spect to the typing environment' ;R ;pc. Suppose
I';R;pctk stmtg < stmtgr andl'; R;pct s: stmtp.
Based on rule (SUB), we havé; R ;pc - s : stmtpg./. In
addition, suppos&’ is exactly the set of unassigned out-
puts after the execution af ThenI'; R ;pct s : stmtp~
implies R’ € R” C R by definition, sinceR” needs to

<C(€1)|_|C(£2), I(él) HI(EQ), A(fl) |_|A(€2)> As discussed
in Section 2.8, the label af; + e; is exactlyl; L 45 if ¢;
has the labef; for i € {1,2}.

Rule (SEQ) checks sequential statements. The premise Consider the assignmemt, := 1 in code segment
I'sR;pc F s1 : stmtg, means thatk, is the set of (D) of Figure 4. For the branckkip of the if state-
unassigned output references afterterminates and be- ment, we havd™ ;{m,}; pc - skip : stmty,, ;. Thus, by
fore sy starts. Therefore, the typing environment feris rule (IF), T';{mo};pc = my, := 0 : stmty, ) needs to
I'; Ry ; pe. Itis clear thats, ands ; s, terminate at the same  hold. Therefore,I' ;{m,};pc F stmty < stmty,
time. Thus,s;; s, has the same type as. is needed. Because the availability ofn, de-

Rule (ASSIGN) checks assignment statements. The asPends on which branch is taken, we need to ensure
signment statement, := e assigns the value afto m,  AI'(11)) < I(I'(m1)). By rule (IF), I(pc) < I(I'(m1)).
which is an explicit information flow frone to m. There- ~ Therefore, A(I'(m,)) < I(I'(m;)) can be ensured
fore, bothC(¢) < C(T'(m)) and I(T(m)) < I(¢) must by imposing the constraintA(I'(m)) < I(pc) on
hold to protect the confidentiality of and the integrity ~ ;R;pch stmtr: < stmtr~ form € R" —R'.
of m. Whether this assignment ta happens depends on The type system of Aimp contains only one subtyping

contain all unassigned output references whetermi-
nates.



rule (ST), which is based on the above discussion.
R CR'CR
Vm, me R’ —R = A(l'(m)) < I(pc)

ST
[ST] I';R;pck stmtrs < stmtgr

This type system satisfies the subject reduction prop-
erty. Moreover, we can prove that any well-typed program
has confidentiality, integrity and availability noninterfer-
ence properties. The proofs of the following two theorems
are included in Appendix A.

Theorem 5.1 (Subject reduction). Supposel’; R ; pc +
s : 7, anddom(T") = dom(M). If (s, M) —— (s', M),
then there existR’ such thatl';R';pc + s : 7, and
R’ C R, andforanym € R — R, M'(m) # none.

Theorem 5.2 (Noninterference).If I'; R ; pcF s : 7, then
I'FNIg(s), I'FNI;f(s)andl'; RENI4(s).

6. Extensions

my Ima#(0, 30);
may = lmp#(0, 30);
if ('myg > 'ma) m,

else m, := !mg

= !m1

6.1.1. Operational semantics
Note that value: can be treated as a syntax sugar{far0).
As a result, the evaluation rules in Figure 3 can be adapted
to the timeout extension by replacing any occurrence of
(e, M) | n with a more general fornde, M) | (n, t).
For example, the adapted rule (S1) is shown below:
(e, M) I (n, t)
(m:=e, M) +— (skip, M[m+ n])

[S1]

In addition, the formula for computing, + v- in rule (E2)
also needs to be adapted to this more general form of val-
ues:

v1+vy = {

The operational semantics of the race expression is given by
the following rules (E3)—(E5). Suppose ande, are eval-

(n1 + na, t1 + t2)
none

if Vie {172}. Vv = <n~;, ti>

if v1 = none Orvs = none

This section describes two language extensions that can ba&lated to(n1, t;) and(nz, t2), which means evaluating

used to reduce availability dependencies and allow a pro-

gram to use low-availability data in a more flexible and
practical way.

6.1. Timeout

Timeouts can effectively turn a blocking operation into a
non-blocking operation, and thus provide a strong availabil-
ity guarantee for a computation that uses low-availability in-
puts. To support timeouts, we introduce two syntax exten-
sions to Aimp: timed integer values and a race expression.

Values v
Expressions e

| (n, t)
‘ 61#62

A timed integer(n, t) is similar to integemn except that
it would taket units of time to use this value. A race ex-
pressiore; #e, evaluateg; ande, at the same time and re-
turns the result of the expression that finishes first. If both
e1 ande, finish at the same time, the resultafwould be
the final result. Suppose we want to set a timediar ex-
pressiore such that if the evaluation efdoes not finish in
t units of time, a default value is returned as the result of
e. This can be implemented by the expressighn, t).

Using the timeout mechanism, the following program
implements an auction for two clients Alice and Bob. Ref-
erencem 4 represents Alice’s bid, and Alice has 30 units
of time to make a bid, otherwise time runs out, @nid re-
turned as her bid. Similarly, Bob also has 30 units of time
to make a bid. Even though the result of this auction de-
pends on the bids of Alice and Bob, the availability of the
auction result is not affected by them.
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andes takest; andts units of time, respectively. Thus, if
t1 < t9 (E3), the result ok, should be the final result, and
if t1 > to (E4), (no, to) is the final result. Rule (E5) ap-
plies when only the result of one expressigris available.

[E3] (e1, M) | (n1, t1) (e2, M) | (na, t2) t1 <t
(erftea, M) | (n1, t1)
[E4] (er, M) I (n1, t1) (e2, M) | (n2, t2) t1 >tz
(erftea, M) | (n2, t2)
E5 (ei, M) § (n, t) (e;, M) | none {ivj}:{172}
(3] (extiea, M) U (m, §
6.1.2. Typing

The race expression is essential for the timeout mechanism
to provide strong availability guarantees. Consider a race
expressiore; #e,. According to rule (E5), the result of ex-
pressiore; #e, is available as long as the resultafor e,

is available. Therefore, the availability eis as high as the
availability of e; andes. Let A(e) represent the availability
label ofe. Then we haved(e;#ez) = A(er) U A(ez). On

the other hand, the value ef#e5 depends on the availabil-
ity and timing of bothe; ande;. Consequently, an attacker
can try to compromise the integrity ef #e5 by compro-
mising the availability or timing o&; or es. Intuitively, the
race expression trades integrity for availability.

To take into account attacks on timing, a security label
may contain a new base label component (17 stands for
integrity of timing), andI'T'(¢) is used to retrieve the com-
ponent inf. Suppose expressienhas a label, and the re-
sult of e is (n, t). Then an attacker with a security level
can affect the value dfif and only if IT'(¢) < L.



Suppose; andes have typeint,, andint,,, respec-
tively. Thene; #e2 has typeint,, 44, , wherel; #/; is a la-
bel computed fron?; and/s. Based on the above discus-
sion, we have
Al #0,) = A(£1) U A(ls)

I(Zl#fg) = I(f1) M I(fg) m A(fl) M A(Zz) M IT([l) M IT(ZQ)

By rule (E5), if the result 0B, #es is (n, t), the value oft
may be affected by the availability ef ande,. Therefore,

IT(6#05) = IT(6,) N IT(€2) M A(r) 1 A(L2)

As usual,C(¢1#42) = C(¢1) LU C(¢y), since the result of
e1#eo depends on the results of bathande,. With these
formulas for computing, #/-, the typing rule for checking
the race expression is straightforward:

I''RFe I'sRE ez :inty,
F;R = 61#62 : :i.Il‘l:zl#g2

:int
[RACE] maali’

by users only after the point where it is created. The syn-
tax of this extension is shown below:

References r == m | x
Expressions e == ... | Ir
Statements s == ... | r:=e

| newz:l, =ref({)ins

The namer is used to range over a set of reference vari-
ables. Thenew statemenhew z : ¢, = ref({) in s creates
a new referencen with type int, ref, substitutes the oc-
currences of in s with m, and then executes Now a ref-
erencer may be a memory locatiom or a variabler. Ac-
cordingly, the dereference expression and the assignment
statement have the fortn andr := e, respectively.

Because the memory is observable to users, the creation
of a new reference is an observable event and may be used
as an information channel. Inmew statemenhew z: ¢, =

Because the timeout mechanism trades integrity for ref(£)ins, the label, is used to specify the security level

availability and allows attackers to compromise the in-

tegrity of an output by affecting the availability or
timing of an input, the definition of integrity noninter-

ference needs to be adapted to these new risks. Intu-

of this event and control this new kind of implicit flows. For
example, any user with a confidentiality level not as high as
C(¢,) should not observe the creation of the reference.
Consider the simple service example. In Aimp, a

itively, the adapted integrity noninterference would re- straightforward implementation is shown below:

quire two sets of inputd/; and M, to generate equivalent
high-integrity outputs, if the high-integrity parts, the avail-
ability of the high-availability parts and the timing of the
high-integrity-of-timing parts of\/; and M- are indistin-
guishable. The formal definition is given below, following
the definition of the memory indistinguishability with re-
spect to the integrity of timing:

Definition 6.1 (I' = M; ~;rz1, M>). Supposelom(T’) =
dom(Ml) = dom(Mg) ThenI' = M; RITLL M5 means
for anym € dom(I"), IT(I'(m)) £ L and My(m) =
<n1, t1> andMg(m) = <Tl1, t2> Imply t1 = to.

Definition 6.2 (Integrity noninterference). A programs
has thdntegrity noninterferenceroperty w.r.t. a typing as-
signmentT’, writtenT" + NI;(s), if for any two tracesl}
and T, generated by evaluating, M;) and (s, M), we
have thatl' - My ~r¢;r Ma, I' = My ~agr M> and
' M; RITLL Mo lmpIyP 1T RILL T>.

6.2. Run-time reference generation
For a programs in Aimp, the set of outputs that is ex-

m := 'mq;
mo := 1;

where m; represents the client request, and, repre-
sents the output generated by the server in response to
the client request. This implementation is problematic be-
cause the availability of.o depends on that ofi;. In prac-
tice, we can imagine that the availability labelsrof and
mo are{*:client} and{*:server}, respectively, where
client represents the client machine, asgrver repre-
sents the server machine. However, in genefalent does
not act forserver, and thus{*: server} £ {*:client}.
Therefore, the above program is not well-typed in practice.
With the new statement, the simple service can be im-
plemented by the following program in which the server re-
sponse is represented by a reference variallestead of
a memory location. Since is created aftern; is derefer-
enced, the availability of does not depend on that of; .

= lmy;
new x:4, = ref({Bc, Or, {*:server},)) in

pected to generate are statically determined by a setof refer- x := 1;

encesR. However, in some realistic applications, an output

may be expected only after control reaches certain programs.2.1. Operational semantics

points. For example, consider a simple service that responds=ormally, the following rule is used to evaluate thew
to the request from a client. The response is expected onlystatement:

after the service receives a client request. To express such

kind of availability requirements, we extend Aimp with a

new statement that creates a new reference in memory. Intu-
itively, the output represented by this reference is expected

11

m = newloc(M, ()

S7
[57] (newz:l, = ref({)ins, M) —

(s|m/z], M[m+ none])



The function newloc(M, ¢,) deterministically returns a  noninterference property is not a property on traces [11],
fresh referencen such thatn ¢ dom(M). The observabil-  and unlike safety or liveness properties, cannot be specified
ity and integrity of the newly created reference are specified by a trace set. However, a noninterference property can be
by a label¢,.. To associate a memory reference with its la- treated as a property on pairs of traces. For example, con-
bel, we assume there exists a mafom the memory space sider a trace paif7;,73). It has the confidentiality nonin-
M (an infinite set of memory locations) to labels. Given terference property if the first elements Bf and 75, are
alabell, let My, = {m | m € MAX(m) = ¢£}. In ad- distinguishable, ofl} andT; are indistinguishable to low-
dition, we assume that for any, M, is infinite. The confidentiality users. Therefore, a noninterference property
function newloc(M, ¢,) deterministically picks a refer- can be represented by a set of trace pSirand a program
encem from Mg, such thatn ¢ dom(M). satisfies the property if all the pairs of traces produced by
The definitions of memory indistinguishability need to the program belong t&. Interestingly, with respect to a
take into account the reference labels, which determine thetrace pair, the confidentiality and integrity noninterference
observability and integrity of references themselves. Due properties have the informal meaning of safety properties
to the space limit, we only give the new definition for (“something bad will not happen”), and availability nonin-
I' - My =agr M, below. Compared to Definition 4.3, terference takes on the informal meaning of liveness.
this definition does not requiréom(M1) = dom(M>), but Language-based information flow control techniques [5,
I(3(m)) £ Limpliesm € dom(M;)Ndom(Msz). Thenew 15 19,7, 20, 14, 1] can be used to enforce noninterference.
definitions forl’ = My ~;z1 My andl’ = My o< Mo But they mainly dealt with confidentiality and integrity. Our

have similar adjustments. work focuses on applying the security-typed language ap-
Definition 6.3 (' - M, ~ag;, Ms). Supposelom(’) = proach to enforcing availability policies.
dom(Mq) U dom(Ms). ThenT + My ~aqr M, if for Myers and Liskov proposed the decentralized la-

any m € dom(T') such thatl(3(m)) £ L, we have  bel model for specifying information flow policies [12].
m € dom(M7) N dom(Ms), and A(T'(m)) £ L implies This paper generalizes the DLM to provide a unified frame-
that M7 (m) = none if and only if M3(m) = none. work for specifying confidentiality, integrity and availabil-
ity policies. In this framework, it is possible to compare an
availability policy with an integrity policy, or a confiden-
tiality policy with an integrity policy, making it convenient
these new definitions of memory indistinguishability , when to study the interactions between different aspects of secu-

applied to the traces of are consistent with those original rity. o ) )
definitions in Section 3. Volpano and Smith introduced the notion t&rmina-

Typing rules for this extension are found in Appendix B. tion agreemenf18], which requires two executions indis-
tinguishable to low-confidentiality users to both terminate
or both diverge. The integrity dual of termination agreement
7. Related work can be viewed as a special case of the availability noninter-
There has been much research on ensuring high availabilference in which termination is treated as the only output of
ity of a computer platform, or guaranteeing a server to carry a program.
out the computation requests from clients. Most of these
work falls in two main categories: one is aimed at tolerating
server-side failures, usually by using some replication tech- i
niques [16, 10, 2]; the other deals with faulty clients and de- 8. Conclusions
fends denial of service attacks [3]. This work is concerned This paper makes three contributions. First, it proposes a
with the availability risks inherent to the computation that way to specify availability policies as an extension to the
may process untrusted inputs, while the computation plat-decentralized label model, including the added expressive
form is assumed available. power of conjunctive and disjunctive principals and a new
Lamport first introduced the conceptsgsfetyandlive- semantics for policies and labels. Second, the paper presents
nessproperties [9]. Being available is often characterized a simple language that can explicitly specify security poli-
as a liveness property, which informally means “something cies as type annotations and has a security type system to
good will eventually happen”. In general, verifying whether reason about end-to-end availability policies, along with
a program will eventually produce an output is equivalent confidentiality and integrity policies. Third, the paper for-
to solving the halting problem, and thus incomputable for a mally defines an end-to-end availability property in terms
Turing-complete language. In this work, we propose a secu-of program traces and shows that the security type system
rity model in which an availability policy can be enforced enforces this property. As far as we know, this is the first se-
by a noninterference property [6]. It is well known that a curity type system for reasoning about availability.

Note that we assume that for any referencén the ini-
tial memory of a programf(m) = (Lo, T7, Ta). As a
result, if a prograns does not contain anyew statement,
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C1 andCs should also have equivalent low-confidentiality
or high-integrity parts. Therefore, the preservation of type
soundness in an AimpX evaluation implies the preserva-
tion of low-confidentiality or high-integrity equivalence be-
tween two Aimp evaluations. Thus, to prove the confiden-
tiality and integrity noninterference theorems of Aimp, we
only need to prove the subject reduction theorem of AimpX.
This proof technique was first used by Pottier and Simonet
to prove the noninterference result of a security-typed ML-
like language [14].

Interestingly, the availability noninterference theorem of
Aimp can by proved by grogressproperty of AimpX'’s
type system. This appendix details the syntax and seman-
tic extensions of AimpX, proves the key subject reduction
and progress theorems of AimpX, and then proves the non-
interference theorem of Aimp.

A.1l. Syntax extensions

The syntax extensions of AimpX include the bracket con-
structs, which are composed of two Aimp terms and used to



capture the differences between two Aimp configurations.

Values v == ... | (v |vg) (E]] = M(m)=v v none

Expressions e == ... | (n1|ng) {tm, M) 4 v

Statements s == ... | (s1]52) . (er, MYs bvi (e, MYs bvs v =v1 & vs
The bracket constructs cannot be nested, so the subterms of[ ] (e1+e2, M) v
a bracket construct must be Aimp terms. Given an AimpX
statements, let |s], and [s], represent the two Aimp gy (¢, M); y v |v]1 #none [v]s # none
statements that encodes. The projection functions satisfy (m:=e, M); — (skip, M[m— M(z)[v/m]]):
[(s1 | s2)]; = s; and are homomorphisms on other state-
ment and expression forms. An AimpX mematy maps [S10] (e, M) Y (n1 | n2)
references to AimpX values that encode two Aimp values. (if e then s; else 52, M) —
Thus, the projection function can be defined on memories ((if 71 then |s1]1 else |s2]1 |

too. Fori € {1,2}, dom(| M |;) = dom(M), and for any 1f ns then [51]; else |s2]2), M)

m € dom(M), | M|;(m) = |M(m)];.

Since an AimpX term effectively encodes two Aimp  [S11]
terms, the evaluation of a AimpX term can be projected into
two Aimp evaluations. An evaluation step of a bracket state-
ment(s; | s2) is an evaluation step of eithef or s;, and
s1 Or sy can only access the corresponding projection of the [auxiliary functions]
memory. Thus, the configuration of AimpX has an index

(i, M)i— (s;, M')i  s; =57 {i,j} ={1,2}
((s1]82), M) — ((s1 | s2), M")

[S12] ((skip|skip), M) — (skip, M)

i € {e, 1,2} that indicates whether the term to be evaluated v[v'/me] =0 Te V=10

is a subterm of a bracket expression, and if so, which branch v[o'/mi] = (V'] [v]2) mv=|v]|1
of a bracket the term belongs to. For example, the configu- v[v'/m2] = ([v]1 | V') T v = |v]2
ration (s, M), means that belongs to the first branch of a

bracket, and can only access the first projectionfof. We Figure 6. The operational semantics of AimpX

write “(s, M)" for “ (s, M),”, which meanss does not be-
long to any bracket.

The operational semantics of AimpX is shown in Fig- an Aimp configuration. Thexs, M;) — (s, M) if and
ure 6. It is based on the semantics of Aimp and con- only if (s, M); — (s, M'); and|M'|; = M.
tains some new evaluation rules (S10-S12) for manipulat-
ing bracket constructs. Rules (E1) and (S1) are modified to
access the memory projection corresponding to indéke Lemma A.3 (One-step adequacy).If for i € {1,2},
rest of the rules in Figure 3 are adapted to AimpX by index- (5. a7} — (s/, M) is an evaluation in Aimp, and there
ing each configuration with The following adequacy and  exists(s, A7) in AimpX such that|s|; = s; and [ M]; =
soundness lemmas state that the operational semantics of;. then there existgs’, M) such that(s, M) ——T

AimpX is adequate to encode the execution of two Aimp (s, M), and one of the following statements holds:
terms.

Proof. By induction on the structure of O

Let the notation(s, M) 7 (s/, M’) denote that ~ 1- Fori € {1,2}, [T]; ~ [M;, Mj] and|s']; = s;.
(s, M) +— (s1, My) — ... — (sp, M) +— ii. For{j,k}={1,2}, [T|; = [M;]and|s'|; = s;, and
(s', M"Yy andT = [M,M;,...,M,,M'],ors = s and | 7)), = [My, My] and[s']), = s}..

M = M’ andT = [M]. In addition, let|T| denote the

length of ', and T} & T» denote the trace obtained by Proof. By induction on the structure o

concatenatingly; and T,. Supposely; = [M,..., M,] e s is skip. Thens; ands; are alsoskip and cannot
andTy = [M{,...,M]]. If mem, = Mj, thenT} & be further evaluated. Therefore, the lemma is correct
Ty = [My,..., My, M;, ..., M]]. OtherwiseI1 © Ty = because its premise does not hold.
[My,...,M,,M;{,...,M]]. . . . . .
e sism := e. In this case,s; is m = |e];, and

Lemma A.1 (Projection i). Supposele, M) | v. Then (m = |e];, My) — (skip, M;[m — v;]) where
(lels, [M]:) 4 [v]: holds fori € {1,2}. (le]:s Mi) | v;. By induction, we havele, M) |

. . v and |[v|; = wv;. Therefore,(m = e, M) —
Proof. By induction on the structure ef O (skip, M[m  v]). Since |M|; = M, we have
Lemma A.2 (Projection ii). SupposeM is an AimpX |M[m — v]|; = M;[m — |v];]. Finally, we have
memory, and M|, = M, for i € {1,2}, and(s, M;) is |s']; = s}, = skip fori € {1,2}.
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e sisif ethen s} elsesy. Supposée, M) || n. Then [M;, M]] for ¢ € {1,2}. Thus, the lemma holds for

(s, M) — (s7, M) for somej in {1,2}, ands; is this case.
if e then [s]]; else |s§|; for ¢ € {1,2}. There-

O
fore, (s;, [M ;) —— ([s}]:, [M]:) holds because
(e, | M];) | n. Itis clear that fori € {1,2}, |T']; = Lemma A.4 (Adequacy). Suppose (s;, M;) +——Ti
(LM ], [M]i] = [M;, M;] and[s']; = 87 | = si. (s, M) for i € {1,2} are two evaluations in Aimp. Then

Supposele, M) | (ny | na). Then(s, M) —T for an AimpX configurations, M) such thats|; = s; and

((Ls” 11 | 187, ]2), M) wherejy, j» € {1,2}. Because [ M|; = M; fori € {1,2}, we have(s, M) —T (s', M’)
(e, M) | (ny | na), we have(le];, |M];) | n; for ~ suchthaT|; ~ T; and|T]x ~ Ty, whereTj is a pre-
i € {1,2}, which implies(s;, M;) +— (s”, M;) for ~ fixof Ty and{k, j} = {1,2}.
ZL i{_l’ %};TF?’rTT?ﬁ;E%i Z L{J\fj;}z [Mi, MiJand oot By induction on the sum of the lengthsf and T
sli =8 = 1551 L 4x Ty | + | T3
e s is while e do s”. Then (s, M) +—* , .
) < .
(if e then s;while edo s” else skip, M). Further- * ITh| + T3] < 3. Without loss of generality, suppose

|Th| = 1. ThenT} = [M,]. LetT = [M]. We have

T i —
(if |e];then|s|;;while|e];do|s” |;elseskip, |M];) E{;JMEE] iész’i A{éﬂ: (')Sﬂ?lear that|T'|, = Ty, and
fori e {1,2}. Itis clear that|T|; = [|[M],, | M]] S P >
and|s'|; = s, hold fori € {1,2}. o [Ih] + T3] > 3. 1f |T1| = 1 or [T5| = 1, then the
same argument in the above case applies. Otherwise,
we have(s;, M;) — (s, M) —Ti (s}, M!) and

more,(s;, | M |;) —*

e sisss;sy. There are three cases:

— s3 is skip or (skip | skip). Then T, = [M;] @ T/ for i € {1,2}. By Lemma A.3,
(s, M) +—=" (s4, M), and T =~ [M]. (s, M) —T" (s", M") such that
For i € {1,2}, sinces; = skip;|s4]i,

i. Fori € {1,2}, |T"]; = [M;, M/ and|s"]; =
s, Since|Ty| + |T5| < |T1| + |T»|, by induction
we have(s”, M") —T" (s', M') such that for
{k,j} ={1,2}, [T"]; = T} and[T" | = T}/,
and 7} is a prefix of 7}. Let T = T" & T".
Then(s, M) —T (s, M'), and |T'|; ~ Ty,
and|T|, = T}, whereT; = [My, M}/ & T} isa

([s)io IMJi) " (lsa)i, [M],). There-
fore, the lemma holds for this case.

— s3 is (ss | skip) or (skip | s5) where
s5 is not skip. Without loss of general-
ity, suppose ss is (s5 | skip). Then s;
iS s5;|s4]1, and sy is skip;|s4]1. Since
(ssilsali M) — (s}, M{), we

have (ss, [M))) +— (si, M]) and _ prefix of 7.
is st;[sa)1- By (S11) and Lemma A.2, ii. For {j,k} = {1,2}, [T']; ~ [M;] and|s]; =
(s, M) +—— ((s, | skip);ss, M'), and sj, and [ 1", ~ [My, Mj/] and [s], = s
M|y = M{,and| M|y = | M|y = M. Itis Without Io_ss of generality, S;Jppo/gezll and
clear that statement (ii) holds. k=2 5'”CeT§517/M1>I s </S17 M) and
—For i € {1,2}, |s3]; is not skip. For <Sga M >/’/—’ ? <3/27 My), and|s'|, = 1 and
i € {1,2}, because(s;, M;) ~— (s}, M/) [s']a = 5, and|T3| < |Tz[, we can apply the
and s, — Is3li [s4)iy we  have induction hypothesis tds”, M"). By the simi-
(|ss)i» Mi) +— (ss;, M!). By induction, lar argumentin the above case, this lemma holds
(s3, M) T (s4, M"), and statement (i) for this case.
or (i) holds for T and s;. Suppose state- O

ment (i) holds forl" andss. Then fori € {1,2}, .o
|T|; ~ [M;, M!] and |s}|; = s3;. By evalua- Lemma A.5 (Soundness).Suppos€s, M) — (s', M’).
tion rule (S2),(s, M) —1 (sy; 54, M’). More-  Then([s]i, [M]:) —" ([s]s, [M']5).

over, we have{ss;si|; = sai;[sali = s; for — proof. By induction on the derivation ofs, M)

i € {1,2}. Therefore, the lemma holds. For the (g ). O

case that statement (ii) holds f@r and s3, the

same argument applies. A.2. Typing rules

e 5iS (s3] s4). In this case,s; = s3 andss = s4. The type system of AimpX includes all the typing rules in

Since (s;, M) ~— (s;, M') for i € {1,2}, we Figure 5 and has two additional rules for typing bracket con-
have (ss, M), — (s}, M"); and(sq, M)y — structs. In general, both confidentiality and integrity nonin-
(sh, M")o. Therefore,(s, M) T ((s} | sb), M') terference properties are instantiations of an abstract non-

whereT = [M,M",M']. By Lemma A.2,|T|; =~ interference property: inputs with security labels that sat-
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isfy a conditionV” cannot affect outputs with security labels
that do not satisfy. Two Aimp configurations are called
V-equivalent if they differ only at terms and memory loca-
tions with security labels that satisty. The abstract nonin-
terference property means that thieequivalence relation-
ship between two configurations is preserved during evalu-
ation.

The bracket constructs captures the differences betwee
two Aimp configurations. As a result, any effect and result

isfiesV. Let V' (¢) andV (int,) denote that satisfies). If

v1 andvy are notnone, rule (V-PAIR) ensures that the value
(v1 | v2) has a label that satisfids$; otherwise, there is no
constraint on the label df; | v2), becauseone is indistin-
guishable from other values. In rule (S-PAIR), the premise
V(pc’) ensures that the statemést | s2) may have only ef-
fects with security labels that satisF).

I'tov:7 I'Foy:7
V(7) or v1 = none Or v = none
V-PAIR
[ ] Pk (vi|v2):7
T;|R|i;pc’ Fsi:T
[;|Rl2;pc’ Fsa:T V(pc)
[S-PAIR]

I'sRipek (s1]s2):7

Intuitively, noninterference between the inputs with la-
bels satisfyingl” and the outputs with labels that does not
satisfyingV is achieved as long as all the bracket constructs
are well-typed.

An important constraint that conditidn needs to satisfy
is thatV (¢) impliesV (¢ U ¢') for any ¢’. In AimpX, if ex-
pressiore is evaluated to a bracket valge, | n» ), statement
if e then s; else s would be reduced to a bracket state-
ment(s] | s5) wheres!, is eithers; or so. To show(s) | s5) is
well-typed, we need to show that ands, are well-typed
under a program-counter label that satisfyingand we can
show it by using the constraint drii. Suppose: has type
int,, then we know that; andss are well-typed under the
program counter labegic LI ¢. Furthermore( satisfies)” be-
cause the result of is a bracket value. Thus, by the con-
straint thatl”(¢) impliesV (¢ U £'), we haveV/ (pc LI £).

Supposd’; R ;pc - (s1 ] s2) : 7, andm € R. By the
evaluation rule (S11), itis possible th@t; | s2), M) —*
((s} | s2), M"Yy and M'(m) = (n | none), which means
thatm still needs to be assigned i3, but not ins). As-
sume there exist®’ such thatl'; R’ ;pc - (s | s2) : 7.
Then by rule (S-PAIR), we havE;|R/|1;pc - s : 7
andT';|R'|2;pc F s2 : 7. Intuitively, we want to have
m ¢ |R'|1 andm € | R’ |2, which are consistent with/’.

To indicate such a situation, a referengen R may have
an index:m! or m? means thatn needs to be assigned only

n

m?® is the same as:. The projection ofR is computed in
the following way:

IR]i={m | m" € Rvm € R}

Note that indexed references are not allowed to appear in

a statement typetmt. To make this explicit, we require
that the typestmtx is well-formed only if R does not
contain any indexed referene#. For convenience, we in-

Let the notationR < R’ denote|R|]; C |R’]; and
|R]2 C [R']2, and letR —m? denote the reference set ob-
tained by eliminatingn’ from R, and it is computed as fol-
lows:

_ R/ - fR=R U{ml}Ai€ {j e}
R—m'={ R'U{m’} fR=RU{m}A{ij}={1,2}
R if otherwise

A.3. Subjection reduction

Lemma A.6 (Update). fI';RFv:7andl’';RE v : T,
thenI'; R F o' /m;] : 7.

Proof. If i ise, thenv[v'/m;] = v/, and we hav& F o' : 7.
If ¢is 1, thenv[v'/m;] = (v’ | |v]2). Sincel’ + v : 7, we

havel' - |v]2 : 7. By rule (V-PAIR),T" I (v’ | |v]2) : 7.
Similarly, if i is 2, we also havé& - v[v' /7] : T. O
Lemma A.7 (Relax). If T';R;pcU ¢ F s : 7, then

I';R;pcks:T.

Proof. By induction on the derivation df ; R ;pclU{ F s :
T. O

Lemma A.8. Supposel’;R + e :
(e, M) J v. ThenT'; RFwv: 7.

7, andT" = M, and

Proof. By induction on the structure ef O

Lemma A.9. Supposd’ ;R ;pc - s : stmtr/. f m* € R

wherei € {1,2}, thenm ¢ R’.

Proof. By induction on the derivation of ;R ;pc - s :
stmtyr/. O]

Definiton A.1 (I' - M). T' - M if dom(I") = dom(M),
and for anym € dom(T"),T'; R F M(m) : T'(m).

Definition A.2 (I';’R + M). A memory M is consistent
with T, R, writtenT'; R + M, if ' = M, and for anym

in dom(M) such thatAr(m) £ L, M(m) = none implies

m € R, andM(m) = (none | n) impliesm! € R, and
M(m) = (n | none) impliesm? € R.

Theorem A.1 (Subject reduction). Suppose’; R ; pc +

s : r,andl + M, and (s, M); — (s’, M’');, and
i € {1,2} implies V(pc). Then there exist®’ such that
the following statements hold:

in the first or second component of a bracket statement, and i. I'; R’ ;pct s’ : 7,andR’ < R, andI' - M’.
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ii. Foranym’ € R — R/, | M’|;(m?) # none.

iii. SupposeV (¢)isI(¢) < L.Thenl'; R+ | M |; implies
TR (M),

iv. If |M];(m) = none, and |[M'|;(m) =
A(T(m)) £ I(pc), thenm ¢ R'.

n, and

Proof. By induction on the evaluation stefs, M); —

(s', M");. Without loss of generality, we assume that the

derivation ofl"; R ; pc I s : 7 does not end with using the
(SUB) rule. Indeed, iT";R;pc - s : stmtg, is derived
byI';R;pc - s : stmtgr, and';R;pc - stmtgr, <
stmtg,, and there exist®” such that statements (i)—(iv)
hold forI"; R ; pc - s : stmtg,, then by Lemma A.9, we
can show thaR’ = R"” U (R, — R,) satisfies statements
()—(iv)forI'; R ;pctk s : stmtg,.

e Case (S1)In this casesism := e, s’ is skip, andr
iSstmtr _ (. By (§1),M"is M[m— M (m)[v/m;]].
By Lemma A.8, we havd” + v : I'(m), which
implies thatM (m)[v/m;] has typel'(m). Therefore,
I' = M’. The well-formedness of implies thatR
does not contain any indexed references. Rétbe
R — {m}. Itis clear thatR’ < R. By rule (SKIP),
;R ;pc b skip : stmtg . Becausg M’ |;(m) =
v # none, andR — R’ = {m}, statement (ii) holds.
Since| M’ |;(m) = nandR — R’ = {m}, we have
thatl'; R - [ M |; impliesT'; R’ ; L+ | M'|;.

e Case (S2)Obvious by induction.
e Case (S3)Trivial.

e Case (S4)In this caseg is if e then s; else s5. By
the typing rule (IF), we havE ; R ; pcLi{. - s1 : 7. By
Lemma A7 ;R ;pct s;: 7. Inthis caseM’ = M
andR’ = R, so statements (ii) and (iii) immediately
hold.

e Case (S5)By the similar argument of case (S4).

e Case (S6)In this cases is while e¢ do sy, andr is
stmti. By rule (WHILE), T';R;pcU ¥l F s1 : T,
where ¢ is the label of e. Then we have
I'sR;pc U ¢ F sp;while e do s; : 7. Further-
more,I"; R ;pc U ¢ F skip : stmtg. By rule (IF),
I';R;pctk if e then s;while edo s else skip : 7.
SinceM’ = M andR’ = R, statements (ii) and (iii)
hold.

e Case (S10)In this casegs is if e then s; else $o,
and i must bee. Supposel’ F e inty. By
Lemma A8, + (nj | ny) : int,. By rule (V-
PAIR), V(¢) holds, which implies V(pc U ).
By rule (IF), T;R;pc U {¢ + s; : 7, which im-
pliesT"; R ;pcU £ if n; then |s1]; else |s2]; : T.
By rule (S-PAIR),T';R;pc - s’ : 7. Again, since
M’ = M andR’ = R, statements (ii) and (iii) hold.
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e Case (S11)In this cases is (s1 | s2). Without loss
of generality, suppos€sy, M); —— (s}, M')q,
and (s, M) — ((s} | s2), M'). By rule (S-PAIR),
I';|Rli;pe B s 7. By induction, there ex-
istsR} such thal’; R} ;pct s} : 7,andR}| C R4,
andT’ - M’. Let R’ be R} e |R]2, which is com-
puted by the formula:

RieRy, = {m‘mERlﬂRg}U
{ml | meRl—Rz} @]
{m2 | mGRngl}

Since |R'|; = R} and [R']2 = |[R]2, we have
;R |1;pck s} : 7. Byrule (S-PAIR).,I'; R’ ; pc -
s’ : 7 holds. Sincd R’ |s = |R s, for anym’ € R —
R’,it must be the case that= 1, andm € |R |1 —R].
By induction, | M'];(m) # none. Therefore, state-
ments (ii) holds.

If I';R = M, thenI';| R |1 F | M];. By induction,
I'; Ry F [ M|y Thereforel' ; R’ - M’ holds.

e Case (S12)In this cases is (skip | skip). We have
I';[R]ispe B oskip : stmtg), for i € {1,2}.
By rule (S-PAIR),T';|R|;;pc + skip : 7. There-
fore,I';|R]i;pc’ - stmt|g), < 7. By the subtyp-
ing rule,7 = stmt|g),. SO|R]; = [R]2 = R and
7 = stmtg. By rule (SKIP),I'; R ; pc - skip : 7.

O

A.4. Progress

Theorem A.2 (Progress).Let V(¢) be I(¢) < L, and let
|s| represent the size of the statemente. the number of
syntactical tokens in. Supposé’; R ; pc - s : stmt. and
I';RE M. If Ap(R) £ L then there existés’, M’) such
that (s, M) — (s, M’). Furthermore, ifiR]; # |R ]2,
then|s’| < [s].

Proof. By induction on the structure 6f O

A.5. Noninterference

Theorem A.3 (Confidentiality noninterference). If
I;R;pct s: 7, thenl - NIc(s).

Proof. Given two memoried/; and M in Aimp, let M =
My @& M, be an AimpX memory computed as follows:

M (m) it M (m) = Ma(m)

Maida(m) :{ (My(m) | Ma(m)) it M (m) # Ma(m)

Let V(¢) beC(¢) £ L. ThenT + My ~c<p M, im-
plies thatl' - M. Suppose(s;, M;) —Ti (s}, M') for
i € {1,2}. Then by Lemma A.4, there exis{s’, M")
such that(s, M) —* (s, M’), and |T'|; =~ T and
|T |, ~ Tj where{j,k} = {1,2} andT} is a prefix of
T;. By Theorem A.1, for eacd/’ in T', T' = M’, which
implies that|M'|1 ~c<r |[M’']s. Therefore, we have
[+ T; ~c<p T} Thus,T - NI (s). O



Theorem A.4 (Integrity noninterference). If I'; R ; pc -
s:7,thenl’ F NI;(s).

Proof. Let V(¢) be I(¢) < I. By the same argument as

in the proof of the confidentiality noninterference theo-

rem. ]

Lemma A.10 (Balance).Let V' (¢) beI(¢) < L. Suppose
I'sRi;pctk s: 7, andl’;R F M. There exists’, M’)
such that(s, M) —* (s, M'), andT' - |M'|1 =441
[M']s.

Proof. By induction of on the size of.

e |s] = 1. In this case,s must beskip. However,
I';R;pc - skip : stmtg implies [R|1 = [R]2,
which is followed byI" - | M |1 =441, |M ]2 because
I''RFM.

e |s| > 1. By the definition of ;R + M, T F
I_MJ1 #AﬁL \_MJQ |mp||eS I_RJI 7& LRJ2 By the
progress theorenis, M) — (s’, M') and|s’| < |s|.
By the subject reduction theorem, there exi8tssuch
thatl'; R’ ;pct &' : 7andl'; R'; L - M’. By induc-
tion, (s', M') —* (s, M")andl' - |[M" ]y ~axrL
|_M/lj2-

O

Theorem A.5 (Availability noninterference). |If
I';Ripck s:7,thenl’; R F NI4(s).

Proof. LetV'(¢) beI(¢) < L. Given two memoried/; and
M, in Aimp such thafl” = My ~;4;, M, and for anym in
dom(T"), m ¢ RandA(T'(m)) £ Limply M;(m) # none.
To proveI' F NI4(s), we only need to show that there
exists (s}, M!) such that(s, M;) —* (s;, M), and for
any (s{, M!") such that(s;, M') —* (s/, M"), T
M{/ RALL Mé/ holds.

Let M = M,WM,. Intuitively, by Lemma A.10, evaluat-
ing (s, M) will eventually result in a memory/’ such that
' [M']i =agr | M']2, and if any high-availability ref-
erencem is unavailable inM/’, m will remain unavailable.
This conclusion can be projected t@ M;) fori € {1,2}
by Lemma A.5.

Suppose there exists’, M') such that(s, M) ——*
(s, My, and for any m with Apr(m) <« L,
|M'|; # mnone for i € {1,2}. By Lemma A.5,
(s, M) —* ('], [M'];). Moreover, for any(s}, M)
such that(|s'|,, [M'];) —* (s}, M]), and anym with
Ar(m) £ L, it must be the case that//(m) # none.
Thereforel’ - M{ ~ 45 Mj.

Otherwise, there exists (s’, M') such that
(s, M) +—* (s, M'), there existsm such that
A(T(m)) £ L and|M'];(m) ~ume for somei € {1,2},
and for any(s”, M") such that(s’, M') —* (s, M"),
r - |M];, =agr |M"|;. By Lemma A.10,
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I' & [M']i =agr |[M']; must hold. Otherwise, as-
sumel’ - |[M'|, ~aqr |[M']2 does not hold. Then there
exists (s, M") such that(s’, M') +—* (s", M")
and ' + |M"|1 =~agr |M"]2. Because for
i e {1,2}, T + |M|;, =agr |[M"];, we have
I' - [M']1 =agr |[M']2, which contradicts the original
assumption. In addition, we can show that, M’) would
diverge and generate a trace of infinite size. Indeed, by The-
orem A.1, there exist®’ such thatl'; R’ ;pc - s : 7,
andT';R';L + M'. ThenA(R’) £ L, because there ex-
ists m such thatA(I'(m)) £ L and [M’];(m) ~none
for somei € {1,2}. By Theorem A.2, there exists
(s", M) such that(s’, M') +—— (s”, M"). Since
' [M']; magr [M"]; fori e {1,2}, (s, M") can
make progress by the same argument. Therefore, eval-
uating (s’, M') will generate a trace of infinite size.
Fori € {1,2}, suppose there exists,, M/) such that
(18" )ey | M']:) —* (s}, M]). Since the trace from eval-
uating (s’, M’) is infinitely long, fori € {1, 2}, there ex-
ists (s, M!") such that(s’, M"y ~—* (s/, M") and
|M!]; = M]. Therefore,I' = M] =~ag; |M’']; for
xS {172} Thus,I' - M{ RALL MQ/

O

B. Typing the new statement

The type system of Aimp needs to be extended to manipu-
late reference variables and check e statement. First,
variable z represents a reference that can be used in the
typing environment: the typing assignmdntmay mapz

to a type, and the reference setmay containz. For ex-
ample, consider the statemerdw = : ¢, = ref({) in s.
Suppose the typing environment for thew statement is
“T";R; pc”. Then the typing environment fos should be
“T',z : inty; R U {x}; pc”. Second, to control the implicit
information flow arising from the creation of a new refer-
ence, the typing rule for checking the statemeat x :

¢, = ref({) in s needs to ensure that the confidentiality
and integrity components df, are bounded by the current
program counter labeglc. Formally, the corresponding con-
straints are”(pc) < C(¢,) andI(¢,) < I(pc).

Intuitively, the value or availability of a reference cre-
ated at a program point is not affected by whether control
reaches this point, because the reference itself does not ex-
ist if control does not reach the point. As a result, the typ-
ing rules in Figure 5 may be over-restrictive for reasoning
about the security policies of a reference created at run time.
For example, consider the following code:



if ('m) then
new z:4, = ref({) in
while !mjy do my := myp - 1;
r =1
else
skip

Supposd’ ;R ; pc is the typing environment for thehile
statement in the above code. ThEipc) < I(T'(m)) holds
by the typing rule (IF). Furthermore, we havec R, which
requires thatd(¢) < I(pc) by the typing rule (WHILE).
Therefore,A(¢) < I(I'(m)) needs to be satisfied for the
above code to be well-typed, which contradicts the intuition
that the availability ofr is not affected by whether control
reaches theew statement. To increase the precision of the
static security analysis, we extend the type system to keep
track of the program counter label for each reference vari-
ablex from the program point where is created. As a re-
sult, the typing environment is extended with a new compo-
nentA that maps references to program count labels.

The typing rule (NEW) is used to check thew state-
mentnew z : ¢, = ref(¢) in s. In this rule, statement
is checked with variable in scope. In the typing environ-
ment of s, the program counter label mappedatds L,
which iS{Lc, T, TA}.

Fyz:int; RU{x}; Az Lpespek s T
Clpe) < C(lz)  I(£z) < I(pe)

E
[NEW] I'sR;A;pckneva:l, =ref({)ins: T

In addition, typing rules (ASSIGN), (IF) and (WHILE)
need to take into account th& component in the typ-
ing environment. To abuse the notation a little bit, we use
A U ¢ to denote the program counter may that sat-
isfies dom(A) = dom(A’) and A’(r) = A(r) U ¢ for
anyr € dom(A). In addition, letA(r, pc) denoteA(r) if
r € dom(A), andpc if otherwise. The adjusted typing rules
are shown as follows:

I';RE7:inty ref T';REe:inty
C(A(r,pe)) LC(') < C(0)
I(6) < I(A(r,pe)) MI(L)

ASSIGN
[ ] I'sRiAspckri=e:stmtr_(y
I'yREe: int,

I DsR;AUL;peUlEs; i 1€{1,2}

[IF] I'yR;A;pct if ethens) else sy : 7
I'Fe:inty, T';R;AUf;pclUlE s: stmtr
Ar(R) < I{¢ Vr e R, A(r) < I(A(r,pc

[WHILE] (R) < 1(¢) (r) < I(A(r, pe))

T';R;A;pck whileedo s: stmtr
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