Algorithm to store the Web Graph.

Date: 10/27/04

Jerrin Kallukalam

Karthik jayabalan

We plan to partition the matrix into blocks, and store only those blocks that are non-empty. Before partitioning into blocks, we convert this matrix into a band matrix, so that it is easy to identify blocks that are non-empty.

We use the Cuthill-McKee algorithm to reduce the sparse matrix into a band matrix. We then divide this band matrix into blocks. Many of the blocks will be empty. We can compress each non-empty block using Compressed Sparse Row method depending on the sparseness of the block. The compressed blocks are kept in an array. We use arrays of pointers to index the blocks. Each URL has a number id, and this number is stored in a hash table. To find the id of the URL, we have to hash the URL and lookup the hash table.

Following algorithm is Cuthill-Mckee algorithm extended to deal with certain conditions Cuthill-Mckee doesn’t deal with. Basically the following algorithm produces an array of sets S, that gives the way the matrix should be ordered so that the resulting matrix looks like a band matrix.

Algorithm:

Let A_Old be the adjacency matrix corresponding to the in-links and out-links.

Let U be the set of all row or column number corresponding to A_Old.

Let S be Vector;

Let S[0] = {a random element in U}.

U = U - S[0];

i = 0

While U not empty, repeat

S[i+1] = (

For each u in S[i],

S[i+1] += {link | link (Outlinks(A_Old,u) s.t. all y <i+1 link (S[y]}

End For

If (S[i+1]==()

S[i+1] = {a random link (U}

End If

U = U – S[i+1]

i = i +1

End While

Now, the rows and columns of the adjacency matrix can be reordered in the order of elements in S[i] from i = 0 to |S|-1. The result will be a band matrix, with most of the entries concentrated at the diagonal.

We now construct a block matrix A from the band matrix such that the height of all the blocks in the given row i = |S[i]| and column j = |S[j]|. Since A is a band matrix, the block Aij is probably empty when |i – j| is large. When |i – j| is close to zero, the block is near the diagonal, and there is a high probability that the block is relatively dense.

We can compress the non-empty blocks using Compressed Sparse Row method depending on the sparseness of the block. We store each compressed block sequentially in an array. Then we use two arrays of pointers to index it. The first array indexes the blocks using the column number of the block. The second array of pointers indexes the first array using the row number of the block.

To find the out-links of a URL, we first find the number id of the URL from a hash table. Now, using this number: id, we can find the row j of matrix A s.t the id corresponds to the id of the row in the block matrix. Of course, row j of matrix A provides the out-links corresponding to the id.

