
CURIE Day 3: Frequency Domain Images
Curie Academy, July 15, 2015

NAME:

NAME:

TA SIGN-OFFS

Exercise 7 Making 8x8 pictures

Exercise 13 Compressing a grayscale image

Exercise 17 Satellite image debanding

As you learned in the lecture earlier, the Discrete Cosine Transform (DCT) is a way to
map an image from the pixel domain to the frequency domain. The transformed image
(which lies in the frequency domain) can be thought of as being composed of many wave
components, each with different frequencies. We will explore these concepts visually in
Matlab. Once we have the concepts down, we’ll look at how the DCT lets us compress
images to a small fraction of their original size. Feel free to browse through the Matlab
reference sheet if you need to refresh yourself on Matlab commands discussed so far. You
can also ask the TAs for help if you get stuck at any part of this activity and/or if you need
further clarification.

Not every little exercise needs to be checked by a TA, but make sure to get a TA’s initials
after you’ve finished each of the bigger exercises listed on this cover sheet.

1

1 Familiarizing yourself with DCT

Let’s start by getting our hands dirty with the Matlab command for the discrete cosine
transform in two dimensions, dct2. This Matlab command takes in an image matrix in
the pixel domain of size m× n and outputs an image matrix in the frequency domain also
of size m × n. As an example, let us compute the DCT of a matrix in the pixel domain
given by

A =

 3.5 2 6

1 4 6.8

10.1 2 7.5

 .

You can convert matrix A into an image A_f in the frequency domain by typing:

>> A = [3.5 2 6; 1 4 6.8; 10.1 2 7.5];

>> A_f = dct2(A)

What does it mean for A_f to be in the frequency domain? Recall that DCT decomposes an
image into various wave components. Each entry of the matrix A_f corresponds to a wave
component of a particular frequency. As you go down a row, or as you go across a column
from left to right, the frequency of the wave component increases. Consequently, the upper
left portion of the matrix A_f represent wave components of low frequency while the
lower right portion of the matrix A_f represent wave components of high frequency.

What do the numbers in the matrix A_f mean then? You can think of A_f(i,j) as the
“weight” of the wave component with row-frequency i− 1 and column-frequency j− 1, i.e.
how much this particular wave component contributes to the image in the pixel domain.

Key Fact 1 This reminds us of a concept introduced in the lecture in which an image can be
decomposed as a weighted sum of wave components of various frequencies! More specifically, if
A_f(i,j) is equal to 0, the wave component associated to it does not contribute to the image
at all.

Exercise 1 Consider a 2× 2 image of a wave component with row-frequency 1 and column-
frequency 0. How do you expect the DCT of this image to look like? (We’ll show you how to
check this in a moment).

Answer: []
.

2

Since we’ve been talking about these wave components a lot, it would be helpful to
produce plots of them to see how they look like. This will be the focus of the next section.
But before that, try to think about this exercise first:

Exercise 2 Without using Matlab, what do you think the DCT of 2*A look like? Check your
guess afterwards by performing the relevant Matlab computations.

Answer:

2 Plotting wave components through the IDCT

Next we will visualize wave components with the help of Matlab. To do this, we will need
the inverse discrete cosine transform, or IDCT.

The IDCT operates in the same way as the inverse of a function in math does. Take
f(x) = 2x+ 3 for example. If we evaluate f(1), we get 5, i.e. the function f maps the input
1 to the output 5. Consequently, the inverse function of f maps 5 into 1. This example
is boring, however, since 1 and 5 are both in the domain of real numbers. Instead, let us
consider the flag function which maps a country into its flag. This function operates by
taking an input from the country domain and producing an output in the flag domain.
The inverse of flag then takes an input in the flag domain and yields an output in the
country domain.

3

In a similar fashion, as DCT maps an image in the pixel domain to an image in the
frequency domain, IDCT maps an image in the frequency domain to an image in the pixel
domain. In Matlab, the command we use to apply IDCT to an image is given by idct2.
As an example, if we were to execute

>> A_f = dct2(A);

>> A_new = idct2(A_f); % A_new = A

we would get the matrix A back.
How do we use this concept to produce an image of a specific wave component?
For now, we will be working with images of size 8× 8. Let A be an image matrix in the

pixel domain and A_f be its DCT. If all entries of A_f are zero except for A_f(i,j), this
implies that only the wave component with row-frequency i− 1 and column-frequency
j − 1 is present in the decomposition of the image A. This tells us that the image A is just
a multiple of the image matrix of the aforementioned wave component. So, in order to
produce a plot of a specific wave component, we can start with an image in the frequency
space, make all entries except one equal to 0, and perform IDCT to recover the wave
component.

Let’s now try to do this in Matlab. To get started, open the Matlab script
visualize_wave_components.m which can be found in the day 3 folder at
http://www.cs.cornell.edu/workshop/curie2015. This script creates a blank
image img_f in the frequency space through the command:

>> img_f = zeros(8,8);

Since we are interested in only one wave component, we modify only one entry of
img_f and make it non-zero. Suppose that we want to visualize the image of a wave
component with row-frequency 2 and column-frequency 2. We only have to change the
value of img_f(3,3) and set it to 1.

4

Exercise 3 In the above, why do we set A_f(3,3) to 1, when we are interested in row and
column frequencies being 2? Shouldn’t we set A_f(2,2) to 1 instead? (Hint: What is the
lowest possible frequency?)

Answer:

Exercise 4 One section of the code in visualize_wave_components.m is missing. Fill
in the missing part of the given code in order to draw pictures of the wave component with row
and column frequencies 2.

Once you complete exercise 4, running the script will call imagesc(img_f), and you
will see this plot of the image in the frequency space:

As a side note, since we aren’t done walking through the code yet, we included the
Matlab command pause to prevent Matlab from running the rest of the script, since we
haven’t discussed it all yet. Once you’re ready to proceed, just hit enter on the command
line.

The next thing the script does is to convert img_f into a frequency domain image with
idct2, and then it shows us the image. If everything goes well, the plot of the wave
component with both row- and column-frequency 2 should look like

5

Why do we say this has row and column frequencies 2 and 2? For the DCT wave
components, the frequency is that number of times that the wave passes from high to low
or from low to high.

Now it’s your turn to try things out! Complete the following exercises:

Exercise 5 In the code above, what do you think would happen if instead of setting img_f(3,3)=1,
we had img_f(3,3)=3.14? Verify your answer by modifying the Matlab code provided.

Answer:

Exercise 6 Modify visualize_wave_components.m to plot images of different wave
components. Can you produce plots of the wave component with the lowest frequency and the
wave component with the highest frequency?

Checkpoint: get a TA to sign off for your answers in this section.

Exercise 7 Challenge: Modify visualize_wave_components.m to try to come up with
a matrix img_f in the frequency domain whose corresponding image in the pixel domain
contains the following patterns: two vertical lines? diagonal lines? something circular?

3 Basics of Image Compression

Now that we have played around with the DCT wave components, it’s time to use them
to do something useful—image compression. As some of you may have experienced,
uploading a high quality image into Facebook may take some amount of time, depending
on the internet traffic. Did you realize that these images are already cleverly compressed
to take up less than 10% as much space as an array of pixels would? You can only imagine
how long you’d have to wait if you send multiple uncompressed high resolution photos of
your family vacation to your relatives over e-mail.

On a more serious note, image compression is widely used in addressing different
challenges associated with transmitting data in the real world. Because of the difference in
medium and other factors, there are difficulties and impediments of sending data from
a facility or instrument underwater to a facility or instrument onshore. For example,
transmitting numerous underwater images are essential for offshore drilling, for searching
objects on the seafloor, or for detecting military submarines. If it would take too long for
images to be sent from an underwater camera, we might not have access to relevant timely
information which would aid in making decisions.

6

Aside from underwater image transmission, another cool application of image com-
pression arises in sending images taken by satellites or rovers from outer space. As most
of you are probably familiar with, Curiosity rover has been patrolling Mars since 2012
and has been taking images of Martian landscape for scientific research. Have you ever
thought how data is relayed from outer space? In an activity later on in this lab, we will
illustrate the importance of image compression by making quantifiable estimates of how
long it takes to send a picture from Mars!

Here’s the insight that we’ll base everything on:

Key Fact 2 The human eye is most sensitive to low frequency details. We can take out the
high frequency content and then apply IDCT to recover a compressed image.

Here’s a flowchart of how this process ought to look:

Exercise 8 Suppose you are writing a system to upload photos to social media. At what point
in the flowchart would you transmit data? What would the receiver have to do to view the
photos?

Answer:

In what follows, we will walk you through how to carry this out in Matlab. To get
started, open the Matlab script (compress_image.m. The next few paragraphs will walk
through this script and explain what it does.

Let’s work with the image of a mosaic called ’mosaic.jpg’. In order to read this into
Matlab, we use imread which converts the image into a matrix whose entries range from
0 to 255, and then we apply im2double to rescale the values into the range 0 to 1. The
above operation looks like:

>> img = im2double(imread(’original.jpg’));

7

In this activity, we want to focus on grayscale images first. (You can look at color image
compression for a final project.) Since our mosaic photo is in color, we can convert this
into grayscale by typing the following:

>> img = rgb2gray(img);

Before processing the image, let us try to see what it looks like first. The following plot
commands should be mostly familiar to you by now:

>> figure;

>> imagesc(img)

>> colormap(gray)

>> axis(’equal’)

>> title(’original pixel domain image’)

Notice that we used axis(’equal’) instead of axis(’square’). Can you point
out the difference between the two? Here’s what the image is supposed to look like:

Now that we have our image in the pixel domain all set up, the next thing to do is to
apply DCT to img

>> img_f = dct2(img);

Exercise 9 The scripts draws img_f. Unfortunately, we can’t see much! Try adding some
debugging lines to get more info: how do the magnitude of the entries in the upper left corner
compare with the entries in the lower right corner?

8

Answer:

The problem with the image in the frequency domain is that some of the entries in
the matrix are substantially larger than the others. Because of this, you mostly see black.
In order to be able to see what’s going on in our frequency domain image, we’d like to
rescale the values in img_f. A commonly used function for this is the base-2 logarithmic
function, log. The command log(img_f) takes the logarithm of every element in the
matrix img_f. Try applying this change to the code above.

Why do you think there is an error when log is applied to img_f?

If you guessed it right, that’s because img_f has negative values which causes log to
fail. To fix this, we can take the absolute value of img_f before applying the logarithm. As
a summary, we should instead use imagesc(log(abs(img_f))); in the code above. If
everything goes well, here’s what it’s supposed to look like:

Exercise 10 Modify compress_image.m so that the plot of img_f is scaled with the log
function. Do you get the picture below?

Here comes the interesting part. In order to compress the image, we can take out
the high frequency content since, as you may have noticed, most of the weights of large
magnitude reside in the upper left corner of img_f. Recall that the upper left corner
corresponds to wave components of low frequency.

To do this, we perform a mask operation. In a nutshell, our aim is to make a huge
chunk of the entries of img_f equal to 0 with the help of the matrix mask. This matrix is

9

of the same size as img_f with entries equal to 0 or 1, i.e. a binary mask. If mask(i,j)=1,
this means that we wish to retain the information contributed by the wave component
with row-frequency i− 1 and column-frequency j − 1 and if mask(i,j)=0, we discard it.
Here are two possible ways we could go about it.

A rectangular block mask is one of the easiest to create. The script compress_image.m
comes with code for this already written. Since we want to preserve the upper left corner
of img_f, mask has to be created such that a portion of the upper left corner of mask is
equal to 1 with the rest of the entries being equal to zero. To set this up, we first specify
row and column numbers, m_trunc and n_trunc, up to which we wish to preserve the
entries of img_f. Take note that these variables cannot take values larger than the number
of rows and columns of img_f. Once we have set these values, we declare a matrix of
zeros of the same size as img_f and set the values in the sub-matrix defined by the first
m_trunc rows and n_trunc columns to 1. In Matlab code, here’s what it looks like:

>> mask = zeros(size(img_f));

>> m_trunc = 100;

>> n_trunc = 125;

>> mask(1:m_trunc,1:n_trunc) = 1;

You might want to make a plot of how the mask matrix appears to visualize what’s
going on.

A diagonal block mask is trickier to create. This is used when we only desire to keep
frequencies in the upper left triangular corner. The matrix

1 1 1

1 1 0

1 0 0

0 0 0


is an example of a 4× 3 diagonal block matrix. Notice that there are other possibilities

as well. We let the variable num_diagonal_rows represent the row or column index
(doesn’t matter which one) up which to preserve entries of img_f. In the above example,
num_diagonal_rows is equal to 3. Observe that the value of num_diagonal_rows
cannot exceed the minimum between the number of rows and the number of columns of
img_f.

Exercise 11 Fill in the missing part of compress_image.m to construct a diagonal mask.
Comment out the rectangular mask and add your new code in the indicated place. Don’t forget
to check whether this newly added code works by drawing a picture of the mask!

10

Now that we have constructed the matrix mask, it’s time to take out the high frequency
content. This line of the script does that:

>> img_f_truncated = img_f.*mask;

Recall that the operation ’.*’ indicates entry-wise matrix multiplication. As such
img_f_truncated(i,j) = img_f(i,j)*mask(i,j). If mask(i,j)=0, then
img_f_truncated(i,j) = 0, meaning that the weight of the wave component with
row-frequency i− 1 and column frequency j − 1 has been changed to zero.

The final step of the image compression process is to take our truncated matrix
img_f_truncated in the frequency domain and convert it back to the pixel domain
using IDCT:

>> img_compr = idct2(img_f_truncated);

If everything went well, this is how the compressed image ought to look:

As you can see, the resulting image is not as sharp as the original image but the main
features are still visible. However, the size of this image is greatly reduced.

Exercise 12 Explore both rectangular and diagonal masks of different sizes in
compress_image.m. What gets the most compression (the most zeros in the mask) without
losing too much quality?

Comments:

11

Exercise 13 Pick an image of your choice, convert it to black and white, and try to com-
press it by deleting frequency information. (Watch out that m_trunc and n_trunc or
num_diagonal_rows are within the size of the image, or else you will get an error). How
good of compression can you get before the image starts to look bad?

Comments:

Checkpoint: get a TA to sign off for your answers in this section.

Exercise 14 (Optional, but interesting!) What happens if instead of masking away high
frequency information, you keep the high frequencies and mask out low frequencies?

Answer:

4 Realistic Application of Color Image Compression

Now that you’re familiar with image compression, let’s address more realistic problems in
which image compression is an indispensable tool. For this activity, we will consider the
image below taken by Curiosity rover.

As usual, we will start by loading this image ’curiosity.jpg’ into Matlab and call
it curiosity. Don’t forget to convert the image to double. After doing this, you will
notice that the image has large dimensions and that it takes Matlab quite some time to read

12

the image and to plot the image. If you apply dct2 to each channel of the image you just
read, there is a high chance that Matlab (and your computer) will hang up due to memory
issues so please do not attempt to do this! This already suggests that for the purposes of
our implementation, resizing the image would be the most practical option.

But before we proceed in that direction, let us try to make estimates of how long it
would have taken Curiosity to transmit this image back to earth. To do this, we can look at
the space that the variable curiosity occupies. If you type in

>> whos(’curiosity’)

on the command line, you will see that this image takes up 166461757 bytes. Yikes,
that’s a lot! Now according to the information provided by NASA on
mars.nasa.gov/mer/mission/comm_data.html, the rover can send data direct-to-
Earth at a rate between 3,500 and 12,000 bits per second . This process, however, is
complicated by the fact that issues related to power and thermal limitations imply that
rovers can only transmit data at most three hours/day. This brings up the question:

Exercise 15 With the information provided, how long would it have taken Curiosity to send
the above image back to Earth assuming that it did not make use of image compression? Recall
that 1 byte is equivalent to 8 bits.

Answer:

Hopefully, that calculation made the importance of image compression more tangible.
At this point, you should create a new Matlab script in order to carry out the succeeding
tasks. To process this image, we first have to resize it so we can perform calculations with
it on Matlab. If were using very big computers we might not have to do this, but it could
still be a good idea. As a reminder, the command imresize accomplishes this. Let’s try a
scale of 0.05—20 times smaller than the original image. How much less memory does it
now take up?

The next step in this activity is to compress the image. This process should be familiar
to you by now after the previous section.

Exercise 16 Construct a rectangluar matrix mask such that you achieve a great degree of
compression while simultaneously producing a compressed image that is nearly indistinguish-
able, upon first inspection, from the original resized image. Ideally, the closer the sharpness of
the compressed image is to the original, uncompressed image, the better. Use a scale of 0.05 in
rescaling the original image.

13

5 Application: Image Debanding (Optional)

Here is a very different application of images in the frequency domain. This satellite image
shows weird striping artifacts—a pattern of darker and lighter stripes across the image.
How can we get rid of these artifacts?

Exercise 17 Complete the Matlab script debanding.m to read in striping.png and
remove the striping artifacts. Hint: do you see anything weird in the frequency domain
image?

6 The Takeaway

The main takeaway of this lab activity is that there are instances wherein working in a
different domain might be much more convenient than working in the original domain.
We saw this in the image compression exercises in which compressing an image would be
hard to do in the pixel domain but simple to do in the frequency domain. This concept is
not only limited to image processing applications but also presents itself in other scenarios
such as trying to make noisy audio recordings more audible.

14

