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Active Messages Communication
Architectures

The communication architecture plays a key role in the design of a parallel machine in that it is part of
the interface between the machine designer and its users, in particular the language system developers.
As such, the communication architecture must take many influences into account, from concrete con-
straints imposed by hardware technology to the more abstract requirements of parallel language sys-
tems. The central concern in Active Message is to address each of the four key communications issues
(data transfer, send failure, synchronization, and network virtualization) at the right level of the system.
The Active Messages approach is characterized by a particular choice of which aspects of communica-
tion are exposed to the language system and which are hidden within the architecture itself. Active Mes-
sages arrives at more efficient and versatile communication architectures that traditional approaches
because communication and compiler optimizations are coupled more tightly than before.

It is tempting to solve the key communications issues “once and for all” within the communication ar-
chitecture and to expose a conceptually simple interface to the language system. As argued in
Chapter 5, this is in essence what traditional communication architectures attempt, and, unfortunately,
it compromises the efficiency of communication because it requires either the complex general case to
be solved at a low level or the programming models to be restricted. Active Messages takes a different
approach and explores how the communication architecture can expose the key issues to the compiler
such that a combination of low-level primitives (potentially accelerated in hardware) and high-level op-
timizations can be used.

Exposing more of the communication micro-architecture to the language system requires a change of
mind-set in the definition of the communication architecture (in particular with respect to message
passing). Active Messages is a framework which defines a class of communication architectures joined by a
common central mechanism and a common set of trade-offs; Active Messages is specifically not a single
standard communication architecture which remains invariant across all platforms, because such a stan-
dard cannot offer the desired versatility and efficiency.

The concept of Active Messages as a class of communication architectures is analogous to that of
load/store architectures forming a class of instruction set architectures. Load/store architecture are pred-
icated on a layering model very similar to that of Active Messages. In particular, both assume the use of
high-level languages which are mapped to the architecture using a compiler and run-time substrate.
When porting a HLL from one load/store architecture to another it is assumed that the code generator
and run-time substrate require modification, although the essential algorithms, such as register alloca-
tion, remain the same. With Active Messages the notion of portability is similar: the algorithms to im-
plement higher-level communication operations, such as fetch&add or a remote task enqueue) are
portable while their implementation must be adapted to the peculiarities of the new platform. The le-
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Figure 4-1: Influences on Active Messages communication architectures.

verage offered by Active Messages is a consistent view of communication from higher software layers
that is portable and efficient.

The relationship among the various components and concepts influencing Active Messages is depicted
in Figure 4-1. The three design criteria and the communication layering model represent the abstract
constraints on Active Messages as a class of communication architectures while the four key issues rep-
resent the concrete issues presented by communication micro-architectures in general. A particular in-
stance of Active Messages must take the details of the communication and processor micro-
architectures into account and is defined in terms of seven aspects: message format, message placement,
send and receive operations, message reception and send completion events, and synchronization
events.

The first section of this chapter defines the Active Messages class of communication architectures.
Sections 4.2 and 4.3 describe two implementations of Active Messages on the nCUBE/2 and the CM-
5, respectively. The two implementations take different positions on several communication architec-
ture aspects to achieve high efficiency and versatility. Besides describing the implementation, the two
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sections examine the performance of several micro-benchmarks closely to demonstrate the efficiency of
the mapping onto the micro-architectures and to suggest further incremental improvements to support
Active Messages better.
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Active Messages

The key to both the versatility and efficiency of Active Messages lies in the ability to associate a small
amount of computation in the form of a handler with the reception of each message. The handler is
named in the message, typically by a pointer in the first word of the message, and is executed in the user
process context immediately on message arrival. The underlying model is that at all times a computa-
tion is “going on” on each node and that this computation is interrupted by message arrival. The role of
the message handler, illustrated in Figure 4-2, is then to transfer data into the computation’s data struc-
tures and interact with the scheduling of computation or, alternatively, it may provide a remote service
and send a reply message back.

Addressing the four key issues

Active Messages takes a strong position on the four key issues formulated in Section 3.3 (data transfer,
synchronization, send failure, and network virtualization) with the goal of maximizing communication
versatility and efficiency. This position manifests itself on the one hand through a set of micro-architec-
tural characteristics that Active Messages generally exposes to the handlers (and the run-time substrate
in general) to enable high-level optimizations. On the other hand, Active Messages imposes a set of re-
strictions on handlers in order to allow efficient implementation.

The general strategy employed to maximize efficiency is to take a compiled code approach in which
message handling code is directly executed. This is in contrast to most systems in which messages are
generally interpreted within the message layer®. While it is quite obvious that this direct execution ap-
proach provides the ultimate in versatility and efficiency during handler execution, care must be taken
to keep the dispatch of handlers efficient as well. In particular, if handlers were allowed to perform arbi-
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Figure 4-2: Active Messages model

The core idea in Active Messages is to use custom user-level handlers to dispose of messages quickly and optimally
Each message carries at its head the address of the user-level handler which is executed on message arrival. The role
of the handler is to get the message out of the network and transfer the data directly into the application data struc-
tures. In addition, the handler typically interacts with the scheduling on the node to enable the computation con-
suming the message data. Handlers may alternatively provide a small remote service and send a reply message back

L Active Messages, in some sense, interprets the head of the message as pointing to a handler and allows the handling
of the rest of the message to be directly executed.
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trary computation the handler dispatch would be equivalent to a full context switch to a new thread of
control. To avoid this cost, a crucial aspect of Active Messages is to restrict handlers by limiting the re-
sources available, requiring handlers to execute quickly and to completion, and restricting communica-
tion patterns to one-way and request-reply communication to prevent network deadlock (i.e., handlers
receiving a reply message are not allowed to send messages themselves).

The remainder of this subsection discusses in detail how Active Messages addresses the four key issues,
explaining the advocated general strategy as well as some typical implementation-specific choices. A few
related additional restrictions that are particular to Active Messages are also discussed.

Data transfer

Active Messages promotes direct access to the network interface from the run-time substrate whenever
this is compatible with virtualizing the network. A typical Active Messages implementation exposes the
micro-architecture and may even let the compiler manage data held in the network interface itself. This
is in contrast with most message layers which prescribe a standard data transfer mechanism. Current
micro-architectures differ considerably in their network interface access facilities (user-level vs. kernel-
only access, memory mapped FIFOs vs. registers vs. DMA) such that an implementation-specific ap-
proach is more appealing. The rationale is that the run-time substrate can transfer the data in and out
of the network interface just as fast as the message layer can, but that it can often move the data directly
into the application data structures without intermediate buffering.

Active Messages strives to eliminate the buffering common in other message layers. While buffering is
useful to absorb rate variations, this particular function is best done within the micro-architecture
where efficient VLSI structures can be used. Buffering in software does not yield good performance and
can easily lead to unbounded storage resources hidden within the message layer. In cases where the run-
time substrate requires queueing of messages, the message handlers can allocate and manage the re-
quired buffers more efficiently than the message layer. They possess more information on the purpose
of the queueing and can use a customized allocator. In addition, the allocation automatically occurs
within the application’s address space.

Synchronization

The Active Message handlers provide a very flexible means of synchronizing communication and com-
putation in that a handler encodes an arbitrary interaction between the message and the ongoing com-
putation. Beyond this versatility, the custom Active Message handlers also offer high efficiency. The
synchronization mechanism can be tailored as part of the implementation of a parallel execution model
and the compiler can special-case each handler to include only the synchronization operations required
for the particular type of message received. These possibilities are used extensively in the compilation of
TAM, discussed in Section 6.2.

Support for efficient atomic updates to scheduling data structures are key to enabling a close interaction
between handlers and the computation. Active Messages ensures that updates within handlers are
atomic by keeping handler execution atomic relative to the computation and relative to other handlers,
e.g., if additional messages arrive during the execution of a handler their respective handlers are not
started until the current one terminates. This implies that there is no notion of a handler “suspending”
and “resuming” later. Scheduling events in the computation are made atomic relative to handlers either
by using appropriate atomic instructions (if provided in the processor’s instruction set) or by efficiently
disabling handler execution during such updates. The details are implementation specific, but every Ac-
tive Messages implementation must support such atomic primitives.

Send failure

When attempting to send a message, the Active Messages implementation must be prepared to dispatch
handlers for incoming messages to avoid deadlock. While this does not pose a problem for sends within
the computation, it does imply that handlers attempting to send a reply message may have to be inter-
rupted to allow the execution of nested handlers. This is the only exception to the atomicity of handler
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execution: an attempt to reply breaks the atomicity. Typically this problem is dealt with by moving the
reply to the end of the handler such that all critical operations occur before the reply. The alternate ap-
proach of buffering the received messages and executing the handlers later may require an unbounded
amount of memory.

In order to prevent uncontrolled handler nesting, Active Messages limits communication patterns to re-
quests and replies and distinguishes the two types of messages. Messages sent from the computation are
requests and handlers receiving them may send replies back. Handlers receiving replies, however, may
not send any messages. If a nested handler were allowed to reply, an arbitrary number of handlers could
have to be nested. This situation can lead to a stack overflow or, from a different point of view, to a live-
lock of the lower handlers.

The solution adopted in Active Messages of limiting communication patterns relies on having (at least)
two levels of priority in the network hardware, either using virtual channels to implement different
message priorities or simply using two disjoint networks. This allows the deadlock/livelock problems to
be solved by using the lower priority for request messages and the higher priority for replies and by dic-
tating that a request handler can only send a reply message and a reply handler cannot send any mes-
sage. This restriction ensures that:

e the communication graph is acyclic (computation — request handler — reply handler),

< when a request handler sends a reply it is required to accept incoming reply (i.e., high-priori-
ty) messages, but can ignore request (i.e., low-priority) messages, and

< asequence of reply handlers can nest within a request handler one after another but request
handlers are never nested within other handlers.

While Active Messages requires at least two priority levels to ensure deadlock/livelock free request-reply
communication patterns, it is perfectly possible to provide additional priority levels to allow more flex-
ibility.

Network virtualization

Active messages lead to a relatively simple protection model: the destination handler address can be
viewed as a global address which must be checked at the originating node for a valid destination and
which is used at the receiving node to dispatch the correct handler within the appropriate address space.
Typically this global address consists of a node address, a process id, and the handler start address.

Active Messages is targeted at closely coupled parallel systems and therefore assumes that the scheduling
of communicating processors is coupled. In such systems, the communication latencies are several or-
ders of magnitude smaller than the scheduling quantum and coordinating context switches among the
processors ensures that the computation corresponding to arriving messages is currently running. On
platforms where the micro-architecture can compare the process id of the message with that of the cur-
rently running process the scheduling coordination can be relaxed such that message arrival for a sus-
pended process may occur. It is assumed that this remains infrequent enough such that it can be dealt-
with using a bounded amount of queueing in the message layer.

Processor and storage resource restrictions

Given that handlers are executed atomically one after another it is important to keep their execution
short enough to keep up with the network. For this reason the maximum execution time of a handler
should be less than the reception time of its message. Note, however, that this is not an absolute re-
quirement: in certain situations a handler may have to take special actions which take more time. This
is acceptable as long as it remains an infrequent event and does not represent a communication bottle-
neck.

An important issue is what storage resources should be made available to handlers. In particular, which
processor registers can be used in handlers. The general Active Messages approach is to keep handler
dispatch simple and to avoid unnecessary saving of processor state. Thus, handlers typically have access
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Figure 4-3: Components of a fetch&add implementation.

The computation on the initiating node formats a request Active Message and sends it to the fetch&add handler or
the remote node. The request message consists of the remote address, the addend, and the information necessary tc
send the reply message. The execution of the handler interrupts the ongoing (and in this case typically unrelated)
computation, performs the fetch&add, and sends a reply message with the result value back to the fetch&add reply
handler. That handler saves the result value and signals the completion of the operation which causes the computa:
tion to pick-up the value and continue.

only to a few registers which are saved and restored as part of the dispatch. Handlers requiring addition-
al resources may save and restore registers explicitly or, alternatively, the run-time substrate may perma-
nently reserve a set of registers for handlers by not allocating these registers in the compilation process.

Regarding storage in memory, handlers can, in principle, dynamically allocate memory, but it is gener-
ally unwise to do so. Not only does this require the memory allocator to be made atomic relative to
handlers, but also, if the memory allocation fails it is difficult to take corrective action within the han-
dler. In particular, saving the message data is impossible (memory being full) such that the only remain-
ing recourse is to send the message back with an error. The preferred approach is to preallocate the
storage required by the handler and to pass a pointer to it in the message. The designs of Split-C and of
TAM (described in Section 6.1 and Section 6.2, respectively) demonstrate how this preallocation can
occur with very little overhead in the context of appropriately designed run-time substrates.

4.1.2 Active Messages example: Fetch&add

In this subsection, a simple fetch&add example shows the typical use of Active Messages in implement-
ing simple higher-level communication operations.

The components involved in an implementation of a remote fetch&add primitive are depicted in
Figure 4-3. The computation on the initiating node formats a request message and sends it to the
fetch&add handler on the remote node. The request message consists of the remote address, the ad-
dend, and the information necessary to send the reply message. The execution of the handler interrupts
the ongoing (and in this case typically unrelated) computation, performs the fetch&add, and sends a
reply message with the result value back to the fetch&add reply handler. That handler saves the result
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value and signals the completion of the operation which causes the computation to pick-up the value
and continue.

In this simple example the computation on the source node busy-waits until the fetch&add completes.
A more advanced implementation could suspend the current thread and switch to some unrelated com-
putation while the fetch&add is in progress. In this case the reply handler would reenable the suspend-
ed computation by adding it to an appropriate scheduling queue.

An implementation of this simple fetch&add example would consist of the request and reply handlers,
and of the code sending the request message. The latter can be a library function or it could be directly
generated by the compiler. Concrete implementations on the nCUBE/2 and the CM-5 are presented in
§4.2.3.3 and § 4.3.3.3, respectively.
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4.2

4.2.1

Active Messages Architecture on the nCUBE/2

The send&receive architecture implemented in NCUBE/s Vertex system takes about 160ps end-to-end
to transmit an 8-byte message among neighbor nodes. Yet, the message injection time and the routing
accounts for only 14ps of these. Assuming an execution rate of about 5 MIPS the remaining 146 rep-
resent over 700 instructions of overhead which, contrasted to the hardware description in Section 3.1,
seems outrageously high: sending a message should involve entering the kernel, setting up the outgoing
DMA and returning to the user, and receiving should involve a similar path through the kernel with
possibly an additional interrupt routine. All in all, it seems that at most a few dozen instructions might
be involved in transmitting a message!

The goal of the Active Messages implementation is develop a message layer with the minimal possible
communication overhead. The desire to integrate this implementation into the existing nCUBE/2 soft-
ware environment presents a number of constraints summarized in Subsection 4.2.1. The highlights of
the nCUBE/2 implementation, in particular its handling of the four key issues, is presented in
Subsection 4.2.2. Subsection 4.2.3 describes the nCUBE/2 Active Messages communication architec-
ture interface, and illustrates its use with an implementation of fetch&add. Subsection 4.2.4 follows
with several micro-benchmarks measuring the performance of individual Active Message operations
and demonstrating a five-fold reduction in communication overhead over Vertex’s send&receive.
Subsection 4.2.5 describes the implementation and shows that the performance of Active Messages is
very close to the absolute limit of the hardware: a few dozen instructions indeed suffice and the result-
ing Active Messages layer succeeds in achieving low overhead and low latency communication with
small messages. Measurements of the implementation reveal the bottlenecks in the current hardware
and suggest avenues for further improvements. Subsection 4.2.6 measures the performance of two larg-
er benchmarks based on matrix operations and Subsection 4.2.7 concludes the nCUBE/2 section.

While this section focuses exclusively on Active Messages, Section 5.1 contrasts Active Messages with
send&receive such as implemented in Vertex and explains why send&receive is inherently a more ex-
pensive communication architecture.

Design constraints

On the nCUBE/2, the network can only be accessed via the on-chip DMA channels and the instruc-
tions to control DMA operation are privileged (refer to Section 3.1 for details). This means that all
communication must involve the kernel which is also responsible for multiplexing network access be-
tween itself and all user processes. NCUBE’s Vertex operating system allows multi-user operation using
a space-sharing paradigm in which each parallel program is assigned to a power-of-two sub-cube and,
in essence, owns that sub-cube for the duration of the program execution. While each node thus exe-
cutes a single program at a time, the program can fork multiple processes on each node. Consequently,
the responsibilities of the kernel are to enforce protection boundaries around each sub-cube and to po-
tentially multiplex the network among multiple processes on each node.

To facilitate debugging, the Active Messages implementation is designed to coexist with, rather than re-
place, Vertex’s send&receive communication architecture. At start-up, a user process has only access to
the Vertex send&receive message passing primitives and must initialize Active Messages explicitly. From
then on both sets of communication primitives are available.

Achieving this coexistence required careful integration of Active Messages into the existing kernel archi-
tecture and ultimately required certain compromises to be made. The most severe is the elimination of
multitasking on nodes using Active Messages. This restriction was chosen for practical reasons: the Ac-
tive Messages implementation as such already stresses the existing kernel architecture beyond its limits
and nodal multitasking as implemented in Vertex is not of much use in parallel programs anyway (it
was mainly designed to support transaction processing systems in which each node handles indepen-
dent transactions and uses multiple processes per node to cover 1/0 latencies). A kernel redesign could
allow multitasking with Active Messages at little overhead, but such a redesign was beyond the scope of
the prototype effort discussed here.
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Figure 4-4: Steps involved in sending and handling an Active Message.

Implementation overview

Sending and handling an Active Message on the nCUBE/2 involves the following steps, illustrated in
Figure 4-4:

=

the kernel provides a message buffer to the user process in user address space,
2. the user process composes the message in this buffer and calls AMsend which traps to the kernel,

3. the kernel verifies message destination and length, starts the appropriate DMA, sets-up a new mes-
sage buffer, and returns to the user process,

4. the message arrives at the destination node into a DMA buffer and causes an interrupt,

5. the kernel re-initializes the input DMA to a new buffer, creates a stack frame for the Active Mes-
sage handler in the user process’ stack and returns—thereby starting the Active Message handler,
and

6. the handler consumes the message, possibly sends a reply, and returns to the interrupted computa-
tion.

The implementation consists of the following parts:
< new kernel traps to send request and reply Active Messages,
e new message reception interrupt handlers to launch Active Message handlers,
e auser-level library interface between the kernel and Active Message handlers, and

< various modifications to the kernel, in particular to the scheduler, to accommodate Active
Messages.
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Design highlights

The major design issues in the Active Messages communication layer revolve around addressing the
four key issues of Section 3.3. In addition, due to the fact that all communication has to involve the
kernel, streamlining the user-kernel interface is of prime importance.

Streamlining the user-kernel interface

To keep the cost of Active Messages low the number of interrupts and traps must be kept to a mini-
mum. This raises the question whether the nCUBE/2’s facility of sending the message header and the
data in separate message segments (cf. Subsection 3.1.3, page 29) is worth it. The benefit would be that
on the receiving end the information in the header can be used to set-up the DMA for the data. If the
headers are kept small, preallocating their buffer space is simple and the data itself can potentially be
transferred directly into the application memory, e.g., buffer allocation costs can be kept low or elimi-
nated altogether. The problem, however, is that the arrival of the header causes an interrupt (to set-up
the DMA for the data). Unless the kernel busy-waits for that DMA to complete—which can take a
long time for large messages—another interrupt must be signaled at the end of the data DMA. On the
sending side the problem is similar and typically requires one trap to send the header and one interrupt
to initiate the data DMA. (Note, however, that if the outgoing channel is idle the kernel can conceiv-
ably busy-wait for the header to be sent.) The bottom line is that using two message segments requires
twice as many traps and interrupts than using a single segment.

The Active Messages implementation avoids interrupts completely on the sending side by sending only
single-segment messages and by not queueing outgoing messages if the network is backed-up. The send
kernel trap simply busy-waits for the previous message to go out and then sets-up the new DMA. The
result of the efforts to minimize the number of privilege level switches is that, in the normal case:

e amessage send never involves more than one kernel trap,
e amessage reply involves one trap, and
e amessage reception involves one interrupt or trap.

If the network is backed-up a reply from within a handler can involve several traps (as explained in
more detail below). In addition, the first of a series of messages arriving during handler execution in-
volves both, an interrupt and a kernel trap.

Data transfer

The Active Messages implementation reduces buffering to a minimum. On the nCUBE/2, it is not
possible to forego intermediate buffering because all DMA data transfer has to be initiated by the ker-
nel. Exposing the network interface to user-level is therefore impossible. The necessary DMA buffers
are pre-allocated and buffer allocation and de-allocation is reduced to interchanging two pointers.

The DMA buffers are directly mapped into the user process address space in order to avoid copying of
the message data from a system buffer into user space. With the simplistic memory management
scheme supported by the nCUBE/2—only four contiguous data segments per user process—it is not
practical to map individual buffers into the user address space. Instead a shared buffer area is pre-allo-
cated in the data segment of the user process and used for all buffers.

The Active Messages implementation limits the message size and uses fixed-size buffers. The size is cho-
sen such that the overhead of splitting-up larger messages is small compared to the message injection
time, i.e., such that the message size limit does not affect peak communication bandwidth significantly.

To determine the minimal number of buffers required it is important to remember that Active Messag-
es guarantees, by definition, that buffers of arriving messages can be re-used immediately after handler
execution, and that the message layer blocks the sender until the outgoing network port is available,
i.e., no queueing of outgoing messages occurs. Thus the minimal number of buffers is:

e each input DMA requires a buffer set-up for reception,
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e each outgoing DMA has one buffer being sent?,
e one output buffer is “being filled” by the computation, and potentially
e one input buffer is “being consumed” by an Active Message handler,.

Figure 4-5 shows the resulting buffer system with it three possible state transitions:

e on message reception the incoming DMA input buffer is switched with the user input buffer,

e on message send the user output buffer is switched with the outgoing DMA output buffer,
and

e on message reply the user input buffer is switched with the outgoing DMA output buffer.

The last point implies that a handler must compose a reply message in its input buffer as the output
buffer may already contain a partial message. Using the input buffer to compose the reply message has
the benefit that information from the request message that is returned to the sender (e.g., to identify
the reply) does not need to be copied if the message formats are designed appropriately.

Virtualizing the network

Given the strict space-sharing used by the Vertex operating system, virtualizing the network simply
consists of ensuring that user messages are confined to the process’ subcube. This requires a simple des-
tination node check. In addition, the message length must be limited to the size of the buffers to avoid
overrun at the destination.

Unlike traditional message passing systems where the user process controls message buffers and indi-
cates to the kernel which buffer to send or receive next, the Active Message buffering scheme lets the
kernel control the buffers and dictate which one the user process must consume and in which one it
must compose the next message. This role reversal has the benefit that the user process never passes a
pointer to the kernel which the latter would have to validate. The kernel can pre-translate all buffer ad-
dresses to user virtual addresses when the buffers are initially allocated such that it can pass these pre-
translated addresses to the user process whenever necessary.

The disadvantage of this scheme is that the user process cannot send from its data structures without
copying the data. Given that it is only rarely practical to add the Active Message headers in-place in
front of the data to be sent this does not seem to be a severe restriction. Moreover, adding the capability
of sending an arbitrary buffer for the cases where the advantage of eliminating the data copy outweighs
the costs would be straightforward. Note that the overhead not only consists of the required buffer ad-
dress validation, but also of the send completion interrupt required to notify the user process that the
data has been sent and can be modified again. Such a direct send would validate the buffer addresses
and set-up the outgoing DMA engine without changing the normal buffer associated with that DMA
engine and without otherwise interfering with normal operation.

Send failure

On the nCUBE/2, the kernel and the user process must cooperate to deal with send failure within reply
handlers. This need arises from the fact that the nCUBE/2 does not provide multiple priority levels for
messages which would allow a straightforward implementation of deadlock/livelock-free request-reply
communication patterns. The Active Messages implementation distinguishes between request and reply
messages and uses separate kernel traps for each category. When sending a reply, the kernel attempts to
inject the message into the network. If it is unsuccessful after a short period of time it simply returns to
the handler with an error indication. At that point the handler is expected to free the reply message
buffer and trap back to the kernel to accept incoming messages and nest their respective handlers onto
the user stack. Eventually these nested handlers terminate and the original request handler can attempt
to send the reply message again. Unfortunately the nesting depth cannot be limited, thus a stack over-

2-The strict minimum would be one buffer for all outgoing DMA channels, but that does not bear any significant
advantage.
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Figure 4-5: nCUBE/2 Active Messages buffer management scheme.

The buffering scheme minimizes buffer management. All buffers are pre-allocated and mapped into user-space. Or
send, buffer management consists of exchanging the buffer holding the message with the DMA engine buffer. Or
receive, the DMA buffer is switched with the buffer of the previously received message.
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flow could cause termination of the program. It is recommended that handlers issuing reply messages
use as small a stack frame as possible3.

The solution of returning an error to the handler and have it free the reply message buffer was chosen
to avoid user memory allocation within the kernel. In addition, the handler can decide whether it is
best to save the reply message itself, or whether it is better to save a descriptor of the request. For exam-
ple, while it is preferable to save the acknowledgment reply of a block-write it is probably better to save
a descriptor for a block-read request.

Synchronization

In order to allow atomic sections in the computation, the kernel must somehow be notified when the
program enters and leaves such a critical section so it can prevent Active Message handlers from inter-
rupting. In addition, while the kernel must manage the DMA buffers it does not get notified of all the
buffers state transitions. In particular, the kernel does not automatically know when an output DMA
completes and thus the corresponding buffer becomes available again. It also does not know when an
Active Message handler completes at which point its buffer becomes available and the next handler can
be dispatched. While all these events could simply be signalled via kernel traps and interrupts, the Ac-
tive Messages implementation uses a sophisticated user-kernel handshake in order to avoid the high
cost of the straightforward solution.

The user-kernel handshake is based on a set of flags in a memory region shared by the user process and
the kernel (the same region as for the DMA buffers is used). The user process controls two atomicity
flags indicating the execution of an Active Message handler or of a critical section. If messages arrive
while one of these flags is set the kernel ignores the message, sets a message pending flag and lets the
user process proceed. At the end of the handler or critical section the user process checks the message
pending flag and traps into the kernel if it is set. This scheme eliminates kernel traps to enable or dis-
able interrupts which would be necessary in a more traditional approach.

Another difficulty arises from the fact that Active Message handlers are executed “at interrupt time” and
that to guarantee the atomicity of handlers further interrupts must be prevented. In order to avoid
deadlock in the case of a non-terminating Active Message handler the kernel starts a short timer when-
ever it disables message interrupts. Should the timer be exhausted without the user process having made
any progress (e.g., completing the handler or leaving the critical section) the user process is considered
to violate the protocol and is aborted. Given that all user-level communication is restricted to within
the sub-cube “owned” by the parallel program slow handlers cannot hurt the performance of other pro-
grams. Setting the timer to a generous value (e.g., several hundred microseconds) is therefore acceptable
as it really only needs to prevent a node from becoming unreachable to the point where it is impossible
to force termination of the program.

3 In hindsight, a different implementation strategy which deals with the reply failure problem using flow-control
should have been used.
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User-kernel handshake details

The user-kernel handshake uses three variables in memory shared between the user process and the ker-
nel:

RetPC PC of interrupted computation, set by kernel
RetPSW PSW of interrupted computation, set by kernel
Flags Handshake flags:
i nHandl er ; handler currently executing,
set by kernel, reset by user
inCritical: critical section currently executing,
set/reset by user
msgPendi ng: additional message(s) pending,
set/reset by kernel

On message reception, the interrupt handler starts the Active Message handler only if both i nHan-
dler andinCritical flags are clear. If either one is set the interrupt handler delays the message by
turning off the DMA to clear the interrupt cause, starting the time-out, setting the nsgPendi ng flag,
and returning to the user. When an Active Message handler or a critical section completes it checks the
megPendi ng flag and traps back into the kernel to pick-up the pending message.

Communication architecture interface

From the description of the design highlights it may seem that the Active Messages communication ar-
chitecture is very complicated and requires its users to thoroughly understand the kernel-level imple-
mentation. Fortunately this is not the case: part of the implementation is a user-level library that hides
the details of the user-kernel handshakes and presents a simple interface. This Subsection describes this
interface to the nNCUBE/2 Active Messages communication architecture. It is intended as a self-con-
tained unit and therefore repeats some information presented above.

Overview

The nCUBE/2 Active Message layer implements an Active Messages communication architecture opti-
mized for moderate sized messages with low-latency. On message arrival the handler referenced by the
message is executed at interrupt time.

Message format

The maximum message size is fixed at boot time and on the order of one Kbyte. The first word of the
message holds the address of the handler and the remainder is available for data.

Message placement

Messages are composed in memory in the outgoing buffer whose address is indicated by a global vari-
able set by the message layer. Similarly, during handler execution, a global variable points to the memo-
ry buffer holding the received message. Replies are composed in the same buffer that the request
message was received in. The rationale is that a request typically contains information to be returned in
the reply. Using the same buffer can avoid copying this return information.

Message send and receive operations

The AMsend call sends the request message held in the outgoing buffer. AM epl y similarly send the re-
ply message held in the incoming buffer. No particular receive operation is provided as the handler is
invoked automatically and is passed the address of the received message.
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Message reception events

Handlers interrupt the ongoing computation and are nested on the normal execution stack, i.e., appear
as if a spontaneous function call had been executed. The message buffer address is passed as an argu-
ment and is also available in a global variable. The message length is unknown; it may be placed in the
message if the handler needs to know. The handler must “consume” the message quickly and return; as
soon as the handler terminates, the message buffer is reused by the message layer.

Synchronization

Handler execution is atomic in that a message arriving during the execution of a handler is delayed un-
til the handler terminates. To delay a message the message layer disables network interrupts in hard-
ware. To safeguard from network deadlock, a timer is started when interrupts are disabled and the user
process is aborted if the Active Message handler does not complete within a millisecond. Critical sec-
tions in the computation can be formed by setting a flag in memory to disable message reception.

Send completion

In principle Active Messages restricts communication patterns to requests and replies and expects the
micro-architecture to provide some form of message priorities so that such patterns can be implement-
ed deadlock and livelock free. While the nCUBE/2 does not support priorities of any form in hardware
and there is little advantage to this restriction, the implementation still distinguishes between request
and reply messages to help avoid stack overflow due to excessive handler nesting. This allows applica-
tions to guarantee that no overflow can occur by limiting the number of requests outstanding to any
one processor at the same time and allocating enough stack space.

When sending a request message the message layer accepts incoming messages and dispatches the ap-
propriate handlers. When sending a reply message, i.e., from within a handler, the message layer does
not accept incoming messages. If the reply message cannot be injected into the network because of con-
gestion the message layer returns an error to the handler. At that point the handler is expected to free
the reply buffer and call the message layer to accept incoming messages, nesting the respective handlers.

Interface definition

Send request and reply Active Messages

voi d *AMsendBuf ; pointer to current send buffer

voi d AMsend(int node, int length); send request message

voi d *AM epl yBuf; pointer to receive/reply message buffer

int AMeply(int node, int |ength); send reply message

voi d AM ecv(void); handle incoming message after reply failure

AMsend sends the message pointed-to by AMsendBuf and sets AMsendBuf to a new free buffer
for the next message. At the destination the first word of the message is interpreted as the Active
Message handler.

AM epl y attempts to send the message pointed-to by AMr epl yBuf and sets the latter to a new
free buffer for another message. At the destination the first word of the message is interpreted as
the Active Message handler. AM epl y returns 0 if the message injection succeeds and a non-zero
result otherwise. In case of failure, the handler must save the message buffer contents and call AM
r ecv to initiate handling of pending messages. When AM ecv returns the handler may attempt
another AMr epl y. Note that AM ecv should only be called when a reply fails.
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Handler execution

t ypedef void Avhandl er(void *buffer);
inline void AMi sabl e(void) { AMlags |= inCritical; }
voi d AMenabl e(voi d);

The handler is called as if a spontaneous function call had been executed with the first argument
pointing to the received message (AM epl yBuf points to the message as well). The message length
is unknown. After “consuming” the message the handler simply returnsat which point the message
buffer is reused by the message layer. Critical sections in the computation can be formed by using
AMli sabl e and AMenabl e to control handler execution.

4233 Example of use: Fetch&add

4.2.4

The fetch&add example introduced in Subsection 4.1.2 is easily implemented with Active Messages on
the nCUBE/2. Figure 4-6 shows the complete implementation consisting of an internal synchroniza-
tion variable, a stub to format and send a fetch&add request message, the request handler performing
the fetch&add and sending a reply message back, and the reply handler completing the operation. In
this simple implementation the processor busy-waits after launching the request message awaiting the
reply. A more sophisticated version could continue computing, possibly launching additional
fetch&adds and only checking the flag when the result is actually needed. In such a case the message
would have to contain an synchronization identifier so that each reply can be matched with the correct
request.

Micro-benchmarks

The objective of the micro-benchmarks is to obtain detailed best-case timings of the various Active
Messages operations. The benchmarks are organized around a simple signal primitive which sends an
Active Message to a handler incrementing a counter whose address is passed in the message. The mes-
sage length can be varied from 1 to 256 words although no data is moved in and out of the buffer. The
benchmark operates in four phases:

1. Node 0 sends N 4-word signal messages back-to-back to node 1. The total time divided by N gives
the message handling overhead®.

2. Node 0 sends N 4-word signal messages back-to-back to node 1 and node 2, alternating between
the two. The total time divided by N gives the sending overhead.

3. Node 0 sends one 4-word message to node 1 which replies immediately, this is repeated N times.
The total time divided by N gives the round-trip delay. This phase is repeated for nodes 2'-1,
i=1..10 and serves to verify the parameters of the network hardware.

4. Node 0 sends N 256-word signal messages back-to-back to node 1. The total time divided by N al-
lows to verify the network injection time.

The results of running these benchmarks on a 1024-node nCUBE/2 system are shown in Table 4-1 and
demonstrate that the Active Messages implementation achieves almost a 7-fold reduction in overhead
over send&receive from 194us to 28us! Phase 3 shows an average increase in the round-trip delay
of 4.5ps per extra hop which (divided by 2 to account for the round-trip) corresponds to the 2.2ps
routing time claimed by the manufacturer. The per-byte injection time is also as expected.

The minimal round-trip time of 76.2ps is unfortunately not easily explained. The overhead of one mes-
sage (28ps) plus the injection time (5.9us for 3 words with an end-of-message byte) yields a round-trip
time of 67.8us. The missing 8.4ps are probably due to a combination of delays in the DMA start-up
and the memory system. The memory cycles stolen by the DMA are relatively expensive because they
cannot use the single cycle DRAM page mode access.

4 Really: the maximum of the sending and handling overheads. It turns out that handling is more expensive.
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# Synchronization variable

# Message format
2: typedef union {

3 struct { request message
4: voi d handl er;

5: fetch_add_sync *sync
6: i nt *addr, incr;
7. i nt ret _node;

8 } req;

9: struct { reply message
10: voi d handl er;

11: fetch_add_sync *sync
12: i nt val ue;

13: '} repl;

14.} fetch_add_nsg;

15:int fetch_add(int node,

# Handler for fetch&add request

# Handler for fetch&add reply

40: nsg->repl.sync->val ue =
41:  nsg->repl.sync->flag = 1;
42:}

1: typedef struct { volatile int flag,

# Initiate fetch&add request, wait for completion and return result
int *addr,

nsg- >req.incr
MYPRCC;

si zeof (fetch_add _nsg.req));

16: fetch_add_sync sync;

17: fetch_add nsg *nsg = AMsendBuf;
18: nsg->req. handler = fetch_add_h;
190 nsg->req.sync = &sync;

20:  msg->req. addr = addr;

21:  msg->req.ret_node =

22: sync.flag = 0;

23; AMsend( node,

24: while(sync.flag '=1) ;

25:  return sync. val ue;

26:}

27:void fetch_add_h(fetch_add_nsg *nsg) {

28: fetch_add_nsg tenp;

29: int ret_node = *nsg->req.ret_node;
30: int value = *nsg->req.addr + neg->req.incr;
31: *nsg->req.addr = val ue;

32: nmsg->repl.handler = fetch_add rh;
33:  msg->repl.value = val ue;

34:  whil e(AMepl y(ret_node,

35: tenp.repl = nmsg->repl;

36: AM ecv();

37:

38:}

39: void fetch_add_rh(fetch_add_nsg *nsg) {
nsg- >repl . val ue;

val ue; } fetch_add_sync;

request handler
synchronization variable
address to increment
node to send reply to

reply handler
sync. variable (same location as in request message)
fetch&add result

int incr) {
synchronization variable

compose request message

= incr;

init synchronization flag
send request
busy-wait for completion
return result

... in case of reply failure

perform fetch&add

compose reply message

si zeof (fetch_add_nsg.repl))){
nmsg = &t enp; reply failure: save message

... handle incoming messages
... and try again

Figure 4-6: Fetch&add implementation with nCUBE/2 Active Messages.
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4.2.5

Phase | Metric Active _Messages Send&receive
time time
receive overhead 15.0ps 102ps
send overhead 13.1ps 92us
round-trip node O to node 1 76.2Us 328ps
round-trip node O to node 3 80.7ps 334ps
round-trip node O to node 7 85.2ps 337us
round-trip node O to node 15 89.1ps —
round-trip node O to node 31 94.0ps —
round-trip node 0 to node 63 98.51s —
round-trip node 0 to node 127 102.8ps —
round-trip node 0 to node 255 106.9ps —
round-trip node 0 to node 511 111.6ps _
round-trip node 0 to node 1023 116.3ps _
4 per-byte injection time 0.45ps 0.45ps

Table 4-1. Micro-benchmark results for Active Messages on the nCUBE/2.

Performance modeling

The timings gathered with the micro-benchmarks can be expressed more conveniently using the perfor-
mance models introduced in Section 2.3. Converting s to clock cycles yields around 700 CPM (clocks
per message) for small messages. The message start-up cost o is 28s and the per byte cost 3 is 0.45ps.
The maximum communication throughput R, is 2.2Mb/s and half this throughput is achieved with a
message length N4/, of 62 bytes. Table 4-2 expresses the performance in terms of the LogP model. Giv-
en that LogP assumes fixed size messages, the table shows two sets of values, one for short 8-word mes-
sages and one for long 1Kbyte messages.

Active Messages implementation

While the micro-benchmarks show an impressive performance improvement of Active Messages over
send&receive, it is not immediately obvious why Active Messages are not even faster: the entire path to
send a signal message, as used in the micro-benchmark above, is only 24 instructions long. How can
these take 260 clock cycles (13ps at 20Mhz) for a CPI of almost 11 when the average CPI is close to 4?
The situation on message reception is similar: 37 instructions take 300 clock cycles (15ps at 20Mhz)
for a CPI of over 8. The paragraphs below discuss the interesting phenomena in the micro-architecture
that explain the observed performance and that point out simple hardware fixes that would increase the
performance substantially. Given that the relevant parts of the implementation are short they can be
shown here.
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Short 8-word (32-byte) messages

L = 25us Injection for 8 word message + 5 hops = 14.4us+10ps
(5 hops is avg. distance for P=1024)

0 =145 (Send overhead + Recv overhead) / 2 = (15us+13ps)/2

g = 14ps g=0, possibly a bit larger
On avg. the network volume is 2 messages per node, given that L = 20 there should
be little contention

P =2.1024

Long 256-word (1K-byte) messages

L =471ps Injection for 256 word message + 5 hops = 461ps+10ps
(5 hops is avg. distance for P=1024)

0 =14 (Send overhead + Recv overhead) / 2 = (15us+13s)/2

g =236 g=L/2, probably significantly larger
On avg. the network volume is 2 messages per node, but g should be even larger to
account for routing contention

P =2.1024

Table 4-2. LogP parameters for nCUBE/2 Active Messages

Message send

The 15-instruction path taken through the kernel when sending an Active Message is shown in
Figure 4-7 with Table 4-3 defining the kernel variables used. Noteworthy details are:

e Thefirst 4 instructions adjust the destination node address for the sub-cube origin and store it
at the front of the message buffer. The message length is limited in instruction 6 through a
simple mask.

e Adifficulty with the nCUBE/2 routing is that the message must be initially sent out on the
correct network port. Furthermore, while the DMA instructions require the register number
corresponding to the chosen port, the information in status registers has one bit per port and
thus must be masked appropriately. In order to determine all the required values quickly, the
kernel maintains a table mapping the node number to a port index into several tables, one for
each type of value needed (lines 5, 8, 10, 11, 12, and 14).

e The entire instruction sequence contains only a single conditional branch (instruction 9).
This branch is nominally taken if the output DMA engine is busy. However, the node map-
ping tables are set-up such that the local node address and the addresses of nodes beyond the
user processes’ sub-cube are mapped into bits of the status register which are always zero. Thus
the branch is also taken for messages which should be looped-back on the local node and for
messages causing an error.

«  Buffer management is reduced to flipping two pointers in instructions 12 and 14.

e The physical-to-virtual address adjustment for the message buffer addresses is precomputed
and can be applied in a single instruction (line 13).

From the code it becomes clear that one of the factors contributing to the observed CPI for this instruc-
tion sequence is the high frequency of complex addressing modes and of operands in memory. To help
the analysis, Table 4-4 breaks the instruction count down into categories representing the functions
performed® and shows the number of memory accesses performed. The 18 memory accesses shown,
however, explain only part of the cost. As it turns out (and only a run on the hardware simulator at
NCUBE could confirm the details) a large fraction of the cycles is lost in pipeline bubbles in the instruc-
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# AMsend: Active Message send system call interface
l:inline void AM send(int dest_node, int |ength)
# -> R0=dest_node, R1=length
2. {
3: asnm(“trap #SEND');
4:1}
# Active Message send system call
1: SEND: addw3 cubase,r0,r?2 adjust destination for sub-cube origin
2: andw  #cumask, r2 limit destinations to machine size
3: movw  send_buf,r3 buffer to be sent
4: movw r2,(r3) store dest in message
5: mvub  out _port(r2),r2 xlate node to output port offset
6: andw  #l enmask, r1 limit message length
7 stpr  #outtrr,r4 get output DMA status register
8: bitw bitnmsk(r2),r4 test for channel ready
9: be sl not ready: busy-wait
10: sO: Iptr r3,out_reg(r2) load dma pointer
11: lcnt  rl,out_reg(r2) load dma count
12: movw  out _buf (r2), send_buf set new user output buff
13: addw3 segof f, send_buf, send_usr buf xlate to virtual user addr
14: movw 13, out_buf(r2) set new channel buffer
15: s4: reti return to user
# channel not ready, first test if send to self or send beyond sub-cube
1: s1: cnph  nodeid, (r3) compare node to local node id
2. be snd_sel f send to self (not shown)
3: cnph  cusize, (r3) check for node beyond sub-sube
4: bl e s4 error, drop message
# wait for previous message to go out
5: | dpr  #nskin, #psw enable vertex's output interrupts
6: s2: stpr #inrdy,r4 get input DMA status reg.
7 bne snd_recv just recvd a msg? service it (not shown)
8: stpr #outtrr,r4 get output DMA status register
9: bitw bitmsk(r2),r4 wait for prev msg to go out
10: bne s0 ready, send message

Figure 4-7: Send system call implementation for nCUBE/2 Active Messages.

The Active Message send system call interface uses the calling convention to load the destination node and the mes:
sage length into registers RO and R1 and traps to the kernel. The typical path through the kernel is 15 instruction:
long and includes protection checks, DMA set-up, and buffer management. If the outgoing DMA channel is busy
the kernel busy-waits and allows handlers for incoming messages to be dispatched.

prefetch pipeline. The reason is that these instructions are implemented in the prefetch unit. This pre-
vents any prefetching from occurring during their execution, which takes almost a “dozen cycles”. (The
exact details remain company confidential, but do not provide further insights anyhow.) The interest-
ing observation is that the hardware designers did not feel compelled to particularly optimize the net-
work access instructions given that normally (i.e., in the send&receive implementation) they are

5t obviously would be more precise to break the costs down into cycles instead of instructions. Unfortunately the
CISC nature of the instruction set and the lack of precise information on the operations of the micro-engines pre-
vents precise accounting of clock cycles.
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Kernel variables and constants

cubase origin of sub-cube current program runs in

cunask cube mask; 2(machine size)_j

culimt number of nodes in the subcube

nodei d number of local node

| enmask mask to limit message length

segof f user data segment physical to virtual offset

usrstk user stack base (where the PC/PSW is saved on kernel entry)
usrint PC and PSW of handler stub

tstanmp time stamp when interrupts disabled

send_buf current user send buffer address

recv_buf current user receive buffer address

out _port table of output port number indexed by destination node

bi t nsk table of channel bit mask indexed by port number

in_reg table of input DMA register offsets indexed by port number
i n_buf table of input DMA buffers indexed by port number

out _reg table of output DMA register offsets indexed by port number
out buf table of output DMA buffers indexed by port number
User-kernel shared handshake variables

send_usr buf current user send buffer user virtual address

recv_usr buf current user receive buffer user virtual address

flags handshake flags

usrret PC and PSW of computation interrupted by handler

Table 4-3. Kernel variables for nCUBE/2 Active Messages implementation.

Instruction category instructions | memory
accesses
kernel trap 2 6
check destination+length 4 2
determine output port 1 4
check port ready 3 0
set-up DMA 2 0
buffer management 4 6
total 16 18

Table 4-4. Instruction breakdown by category for nCUBE/2 Active Message send.
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# Input DMA interrupt handler (for channel 0)

l.intr0: novd r15,stk push user reg onto stack
2: movw i n_buf +0* 16, r 15 load DMA buffer pointer
3 xorb flags, 3(ri5) fizzzz...
4: cnpb  #0x40, 3(r 15) test msg type and handshake flags
5: bne bsy0 user busy or vertex message
6: I ptr recv_buf, #0 set new DMA input buffer
7 lcnt  #0, #0 start DMA (count is ignored)
8 orb #i nHandl er, f| ags set inHandler bit
9: movw  recv_buf, i n_buf +0*16 swap buffers
10: nmovw 115, recv_buf
11: addw3 segoff,ri15, recv_usrbuf setuser's pointer
12: movw usrstk,ri5 where to find user's PC
13: movd  (r15), usrret save user's interrupted PC and PSW
14: movd usrint, (r15) set user's int. handler PC and PSW
15: movd  stk,r15 restore user reg
16: reti return to user to handler
17: bsy0Q: user busy or vertex message
18: bg vt x0 vertex message (code not shown)
19: xorb  flags, 3(r15) unfizzzz
20: | dpr  #0x80000000, #i nen  disable input ints
21: stpr #timo,tstanp take time-stamp
22: orb #nmsgPendi ng, fl ags  set msgPending flag
23: movd  stk,ri15 restore user reg
24: reti return to user

Figure 4-8: Input DMA interrupt handler for nCUBE/2 Active Messages.

hidden among 100’s of instructions and do not contribute a significant fraction of the communication
overhead.

Besides highlighting the need to optimize the DMA instructions, the instruction category breakdown
in Table 4-4 shows that a few simple additional hardware features could cut down the communication
overhead dramatically. The checks on the destination node address and on the message length could be
performed in hardware easily. The selection of the correct output port could be simplified or eliminated
altogether by multiplexing the DMA engines onto a single set of interface registers. Given the small vol-
ume of the network, it is actually not clear whether multiple DMA engines are of great benefit. Reduc-
ing the buffer management further is somewhat difficult without eliminating the DMA altogether. For
small messages, such as the ones used in the fetch&add example, this may well be worthwhile.

Message reception

The reception of Active Messages occurs in two phases: first the kernel interrupt handler switches buff-
ers, re-initializes the DMA for the next message, and starts a user-level stub which, in a second phase,
dispatches the Active Message handler proper, checks for additional messages, and finally returns to the
computation.

Figure 4-7 shows the path through the kernel interrupt handler. The code is straightforward with two
exceptions:

e An otherwise uninterpreted bit of the destination node address word is used to flag Vertex
messages allowing Active Messages to coexist with Vertex’s send&receive. The only condition-
al (lines 3-5) combines this “vertex bit” with the user-kernel handshake flags (the bit encod-
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instructi ‘ instructions memory accesses
instruction category
kernel user stub | kernel user stub

interrupt 2 — 7 —

check for Vertex message

1 1

buffer management 4 6
restart DMA 2 — 1 —

3 5

3 4

start user-level interrupt handler

handler atomicity handshake 2 2
dispatch Active Message handler — 3 — 3
return to computation — 7 — 6
save registers 2 6 2 6
total 17 18 26 17

Table 4-5. Instruction breakdown for n"CUBE/2 Active Message reception

ings were chosen to allow this) and simultaneously checks both with a single compare and
branch.

e In order to start the user-level stub the interrupt handler substitutes the PC and PSW of the
stub for those of the interrupted computation. A precomputed pointer points to the base of
the kernel stack to allow the quick location of the saved PC and PSW.

The user-level stub is shown in Figure 4-9. Besides saving a few registers and dispatching to the actual
Active Message handler, the stub implements the user-kernel handshake and simulates a r et i (return
from interrupt) instruction to return to the interrupted computation. The difficulty in returning to the
computation lies in restoring the PSW. The condition codes in the PSW must be shifted before being
set with a load condition codes instruction (I df I g), there is no direct way to restore the IEEE round-
ing mode, and, worst of all, the repeat mode (used to emulate vector instructions) cannot be restored.
The solution adopted in the implementation is to check the PSW for the default setting of the round-
ing and repeat mode bits and to break out to a special restore sequence which traps to the kernel to ex-
ecute areal reti if necessary.

Note that in order to perform the user-kernel handshake the stub must atomically clear the i nHan-
dl er flag and check the msgPendi ng flag. Thanks to the powerful CISC instruction set and to an ap-
propriate bit encoding this is possible with a single and instruction (line 13) which clears the flag and
compares the resulting byte against zero.

Table 4-5 shows the breakdown of instructions into categories by the function performed. Again, the
interrupt is expensive in terms of memory accesses and the DMA instructions take many cycles each.
However, the numbers also show that the Active Messages dispatch does not come for free. Passing the
interrupt through to user-level is not cheap and the second dispatch to the Active Message handler adds
to it. The difficulty of returning to the interrupted computation is also out of proportion. If restoring
the PSW were simple it could be incorporated directly into the Active Message handler together with
the user-kernel handshake, eliminating the stub as such altogether. The kernel could then dispatch the
Active Message handler directly saving a significant number of cycles.

Summary

The instruction sequences implementing Active Messages are very short. A major part of the execution
cost stems from the privilege level crossings and from the DMA instructions which any message layer
must include. Only a few instructions could hypothetically be eliminated by another message layer and
would not affect performance dramatically. The precise cost breakdown possible due to the simplicity
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1: out buf . equ
2:inbuf .equ
3iiret . equ
4:ipsw .equ
5. flags .equ
# Bits in uflags

6: i nHandl er

7: msgPendi ng

8. up_crit.equ

# User-Kernel handshake variables, in user space

0x80000000
uout buf +8
uout buf +12
uout buf +16
uout buf +20

.equ 1
.equ 2

4

output buffer pointer

input buffer pointer

save area for interrupted PC
save area for interrupted PSW
user-kernel handshake flags

in handler
additional message(s) pending
in critical section

#

1. AM hstub
2: novw
3: novd
4. novd
5: novd
6: novd
7 novd
8: novd
9: r ot w3
10: novw
11: novw
12: cal
13: andb
14: bne
15: novw
16: bitw
17: bne
18: ldflg
19: novd
20: novd
21: novd
22: novd
23: novd
24: novd
25: ret

# Active Messages handler stub

iret,stk

ro, stk
rl,stk
r2,stk

r3, stk
r4,stk

r5, stk

#2,1 psw, stk
inbuf,roO
(r0),r1

(ri1)

#~i nHandl er, f1 ags
stub_nore
stk,r0
#0x0c000003,r0
st ub_speci al
ro

stk,r5
stk,r4
stk,r3
stk,r2
stk,ri
stk,r0

# More messages arrived while servicing this one
26: stub_nore

#i nHandl er, fl ags
#RECV
#nmsgPendi ng, fl ags
stub_n2

push the interrupted PC
save caller-saves registers

push int. PSW, ready for restore

get input buffer address

get Active Messages handler addr
dispatch to handler

clr up_hand&up_crit, check up_pend
oops, another message is pending

pop interrupted PSW

test if rounding control or repeat mode bits set
yes, play tricks (not shown)

restore PSW: load CC and RC=0
restore saved user registers

return to interrupted computation

set up_hand flag again
trap to get next message
got one?

nope

got one: ... handler dispatch code similar to above elided...

27. orb
28: trap
29: bitb
30: be

#
31: stub_nR:

#

none: return to user code similar to above elided...
32: st ub_speci al :
play special tricks to deal with repeat-mode and rounding-mode

Figure 4-9: User-level interface to interrupt handler in nCUBE/2 Active Messages.
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of the implementation suggests a number of evolutionary hardware changes that could further reduce
the overhead dramatically.

4.2.6 Macro-benchmarks

The micro-benchmarks have shown that Active Messages are capable of high peak performance. But
does this performance level carry through to real programs? The following two simple benchmarks sug-
gest that meaningful higher-level communication abstractions can be layered on top of Active Messages
without compromising performance.

426.1 Matrix multiply

The first benchmark implements a simple version of matrix multiply using split-phase remote memory
fetches. The benchmark shows that it is possible to obtain close to peak performance using the small
Active Messages. The design decision to concentrate on small messages in order to provide the lowest
possible overhead is shown to pay off.

The benchmark program multiplies two 64-bit floating-point matrices stored as blocks of columns per
processor as shown in Figure 4-10. For NxR and RxM input matrices A and B spread across P proces-
sors, each processor starts with R/P and M/P columns and ends up with M/P columns of C (the bench-
mark code assumes that M and R are multiples of P).

Algorithm

In the inner loop shown in Figure 4-11, each processor fetches one, typically remote, column of A and
multiplies it (outer product) by a local sub-row of B, summing the result into the local part of C. The
program is derived from a simple uniprocessor version using an outer product formulation:

=0to R1do
j =0to M1 do
i =0to N1 do

di,jl =di,j] + Ali,k] + B[k,j]

An efficient method to access the remote values of A is to fetch a column of A in one block before oper-
ating on it. The following matrix multiply sample code uses a get to fetch remote memory. The se-

A X B = C
R
N N
M
R

M
Figure 4-10: Matrices layout in blocks of columns for matrix multiply.
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Figure 4-11: Matrix multiply inner loop.

mantics of get are described in detail as part of the Split-C language in Section 6.1. In summary, get
fetches a remote memory block described by memory address and length. It is split-phase in that it only
initiates a request Active Message and immediately returns. The handler for the reply stores the data in
memory and increments a flag which can be used by the computation to determine that the get has
completed.

The straight-forward multiprocessor version shown below is adapted from the uniprocessor code. It ini-
tiates the fetch for a column of A and immediately busy-waits for it to complete. In addition, the itera-
tion order of the outer loop is shifted such that processor i starts with its columns of A, the fetches from
processor i+1, and so forth. This staggering of the communication pattern avoids that processors 1
through P-1 start by requesting a column from processor 0 which would create a hot-spot.

l:for dk = 0 to R 1 do

2. k = (kO+dk) %R stagger communication pattern
3: get(k/P, Al* kuP], V, flag); get column into temp vector V
4: wait(flag, 1); wait for column to arrive

5 for j =0to MP-1 do

6: for i = 0to N1 do

;2 di. il =di,j] + Vi] + B[k,j]

This simple version can be optimized by taking advantage of the split-phase nature of get to pipeline
the remote fetches. The final version uses two temporary vectors and prefetches the column used in the
next iteration. This prefetching permits the processor to continue computing while communication oc-
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curs. Note that the final matrix multiply code unrolls the two inner loops in order to achieve peak flop

rate:
1: get (kO, Al *,k0%], Vi, flag); get first column (prime the pump)
2: nk = kO;
3:for dk = 0 to R 2 by 2 do unroll 2 times, assume dk mod 2 = 0 for simplicity
4: k =nk; nk = (k+1) %R advance column index
5 wait(flag, 1) wait for this column to arrive
6: get(nk/P, Al *, nk%®], V2, flag); prefetch next column
7. for j =0to MP-1 do
8 for i = 0to N1 do
9: ai,jl =di,j] + Vvi[i] + B[k, j]; _
10 k = nk; nk = (k+1) %R advance column index
11: wait(flag, 1) wait for this column to arrive
12:  get(nk/P, Al *, nkd], Vi, flag); prefetch next column
13: for j =0to MP-1 do
14. for i =0to N1 do
15: qi,jl = di,jl + V2[i] + B[k,j]
16:wait(flag, 1) wait for last column to arrive
17:for j = 0to MP-1 do
18: for i =0to N1 do
19: di.jl =di,j] + V2[i] + B[k,j]

Performance

The performance of the matrix multiply can be predicted using a detailed analysis of the outer loop
timing. In each iteration of the outer loop computation and communication are performed simulta-
neously. The computation time consists mainly of the outer product whose execution time can be esti-
mated using the uniprocessor Mflops rate and the communication time can be estimated from the
individual overheads and latencies involved. Figure 4-12 shows the timing diagrams for the outer loop
for the cases where either the communication or the computation forms the bottleneck.

Communication-bound case:

sendl compute | recv copy replyf compute rech copy
xmit Ihop xmit Ihop
send| compute rech copy I repl compute recv copy

Computation-bound case:

sendl comput rech copy Irepl compute Irecvl copy
xmit [hop Xmit hop
send| compute | recv copy reply compute recv copy

Figure 4-12: Timing diagram for outer matrix multiply loop.
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Figure 4-13: Matrix multiply performance in Mflops.

In order to validate the performance model the benchmark was run on a series of matrix sizes chosen to
vary the computation/communication ratio. Figure 4-13 shows the results of 6 runs on 128 processors
where the message size (determined by N) is kept constant, the communication to computation ratio
(determined by M/P) is varied from 256 flops per message to 8192 flops, and the total number of flops
is kept constant (by adjusting R). The figure shows that the model predicts the performance character-
istics of the actual program rather well. The absolute numbers predicted are a little higher than the
achieved performance due to the fact that the model does not take any network congestion into ac-
count.

While matrix multiply performance is generally measured by the processor performance, it is also inter-
esting to look at the network performance. Figure 4-14 superimposes the processor utilization (in % of
peak Mflops) and the network utilization (in % of peak Mb/s) for the same six runs. At low computa-
tion to communication ratios (e.g., small values of m) the processor is not very heavily utilized but the
network is. Here the discrepancy between the model and reality is largest because the model does not
take congestion into account.

Overall the performance of the matrix multiply benchmarks shows that due to the low overhead of Ac-
tive Messages peak performance can be achieved with moderate size messages (here 1Kb) and small
compute/communicate ratios (1/4 flop per byte at m=1 to 8 flops per byte at m=32). In addition, by
building the right communication abstraction on top of Active Messages this peak performance can be
achieved by a simple program.

4262 Matrix transpose

The matrix transpose benchmark is intended to demonstrate that optimizing for small messages pays
off doubly: not only is the communication overhead of Active Messages low, but the small messages
create less network congestion. In matrix transpose the maximum message size is inherently small, as it
scales at best with the square root of the matrix size.
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Figure 4-14: Matrix multiply processor and network utilization.

The matrix layout used in the transpose is identical to that used in the matrix multiply. For an NxM in-
put matrix spread across P processors, each processor starts with M/P columns and ends up with N/P
columns (the benchmark code assumes that both M and N are multiples of P).

The basic algorithm is simple: each processor walks through its sub-matrix, gathers data into a message,
and sends a Split-C st or e message6 to a remote processor. Each st or e message carries a destination
address at which the data is placed. In addition, the handler increments a counter by the number of
bytes received. After sending all messages, each processor waits until the counter indicates that it has re-
ceived all its data from the other processors. For timing purposes all processors start with a barrier and
enter another barrier at the end.

The actual benchmark consists of three variations on the basic algorithm differing in the amount of
data sent in each message. Processors send the their data in a staggered order in which processor i starts
sending data to itself, then processor i+1, and so forth. The three variants measured are:

1. word—a single value is sent per message,
2. row—a sub-matrix row is gathered and sent in one message, and

3. block—all sub-matrix rows destined to a processor are gathered in one message.

The performance of these variants is measured in two series of runs described in Table 4-6. The first
one varies the message size (by adjusting the matrix dimension) and keeps the number of processors
constant, and the second one varies the number of processors and keeps the message size constant.

8- The semantics of store are explained in detail in the discussion of Split-C in Section 6.1. While this benchmark is
not written in Split-C (in fact there is no Split-C compiler for the nCUBE/2) it uses some of the Split-C primitives.
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constant machine size constant message size

matrix size 256| 1024 2048| 4096| 256| 1024| 2048| 4096| 8192

word 8 8 8 8 8 8 8 8 8

MESAgE  row 16| 64 128 256| 64| 64| 64| 64| 64
payload size

block 32| 512| 2048 8192| 512| 512| 512| 512| 512

total word 29 29 29 29 29 29 29 29 29

message row 37 85 149 277 85 85 85 85 85

size block 65| 545| 2081| 8225| 545| 545 545| 545| 545

L 458 458| 458| 458| 36.8| 458 50.3| 548 59.3

0 63 63 63 63 63 63 63 63 63

LogP word 65/ 65 65 65| 65/ 65 65 65 65

params |g row 83| 19.1| 335 623| 19.1| 191 19.1| 19.1| 19.1

block 14.6| 122.6| 468.3| 1851| 122.6| 122.6| 122.6| 122.6| 122.6

P 128| 128 128 128 32| 128 256| 512| 1024

Table 4-6. Message sizes and LogP parameters for the various matrix transpose runs.

The message and matrix sizes for two series of runs are shown. The first series keeps the machine size constant (al
128 processors) and varies the message size. The second series keeps message size constant and varies the machine
size. For each machine/message size combination three versions of matrix transpose are measured: the first (vord)
sends a single 64-bit value per message, the second (row) sends a sub-row in each message, and the third (block)
sends a sub-matrix per message. In each case, the total message size (e.g., including headers) as well as the size of the
payload is indicated.

To evaluate the performance of the benchmark the algorithms are modeled using LogP. Because the
model leaves the message size implicit, it is necessary to calibrate the parameters for the various message
sizes used (the resulting LogP parameter values are shown in Table 4-6):

e 0isthe overhead of a st or e which is measured to be 36,

« g is limited by bisection bandwidth and is assumed to be n/4.44Mb/s, where n is the gross
(i.e., incl. headers) message length in bytes,

e Lis 14.3ps+log,P*4.5ps for the average distance, and

e C, the per byte copy time, which is derived from an additional preliminary run on a single
node.

Figures 4-15a and 4-16a compare the communication (payload) bandwidth measured in the various
runs with the execution time predicted by the LogP model using the formula:

The results show that the version sending a single value per message performs poorly and the LogP pa-
rameters indicate that the communication is purely overhead limited. As a result the average network
wire utilization during these runs, shown in Figures 4-15b and 4-16b, is around 12%.

Sending a row per message amortizes the overhead and brings the wire utilization above 30%, and that
with messages as small as 85 bytes (64 bytes of data payload). Larger messages in the fully blocked ver-
sion brings the utilization up to 40%. The comparison of the LogP predictions with the real runs is ac-
curate for the runs which do not push the network to the limits, but the fact that the model does not
take routing contention within the network into account yields optimistic predictions in the other cas-
€s.
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Figure 4-15: Matrix transpose on 128 processors.
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Figure 4-16: Matrix transpose with constant message size.
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Overall the gross wire utilization achieved with the better algorithm variant is impressive in absolute
terms: all wires in the entire hypercube are kept busy 40% of the time for a quite irregular communica-
tion pattern. Achieving this with a very simple algorithm which does not take the network topology
into account and which uses short messages (well under 1Kbytes in all cases) demonstrates that Active
Messages provides access to the full hardware performance.

Conclusions

The design of the Active Message layer focuses on delivering low-overhead communication with small
messages. This is achieved through a minimalist approach in which every feature in the communication
layer is carefully weighted against its execution cost. In particular, the Active Messages layer does not
manage storage, does not queue messages, and performs only the simplest scheduling. These tasks are
pushed up to the next layer of software where they can often be solved in a simpler more specific man-
ner. For example, the two macro-benchmarks (matrix multiply and matrix transpose) did not require
any special memory allocation because all matrices are allocated before communication occurs, they do
not need queueing of messages because simple staggering of the message order generates a well balanced
communication pattern, and the handlers maintain a few completion counters which allow simple syn-
chronization of computation and communication.

The micro-benchmarks and the study of the implementation show that the efficiency of mapping Ac-
tive Messages onto the micro-architecture is very close to the limits of the hardware. Implementing Ac-
tive Messages instead of some ad-hoc access to the DMA has a measurable cost, but it is small. The cost
is mainly in the dispatch of hardware interrupts to user level and could be reduced if minor instruction
set problems were fixed, such as the difficulty in returning to the computation from the Active Message
handler.

The macro-benchmarks demonstrate the efficiency of the mapping onto Active Messages. The perfor-
mance achieved in the benchmarks is high and predictable (e.g., using the LogP model) and the limita-
tion on message size is no obstacle to peak performance. In fact, while small messages do not always
achieve quite as high performance as larger ones, the performance is more predictable because network
congestion is less severe.

Beyond demonstrating performance, the macro-benchmarks also show that the versatility of the Active
Messages communication architecture is conducive to the development of higher-level communication
abstractions such as st or e and get without compromising efficiency.

Developing these higher-level abstractions is straightforward, as the fetch&add example show. Even
though the details of the kernel implementation are subtle and the user-kernel handshake is intricate,
the clean interface of the Active Messages communication architecture isolates the run-time substrate
developer from these concerns. In the application itself these higher-level abstractions completely hide
the details of sending and handling messages and of respecting the restrictions imposed by Active Mes-
sages such as request-reply communication.

The main problem in the Active Message interface is the semantics of AM epl y which can return with
an error without sending the message. The source of the problem lies in the lack of priorities in the net-
work which does not allow for a clean solution. While the chance of a stack overflow is statistically very
small if communication is random, very regular communication patterns can cause worst case behavior.
In the matrix multiply benchmark, if one processor is delayed due to network congestion it will quickly
receive additional get requests which then are likely to cause reply failures. Unfortunately in this case
the failures have a positive feed-back effect as they delay the processor further. To solve this problem
without hardware support requires either a more rigid global synchronization, for example a barrier ev-
ery few get s, or some form of flow-control.

The Active Messages implementation uncovered a number of problems in the nCUBE/2 instruction set
architecture and in the present implementation. The small number of instructions involved in an Ac-
tive Message transmission allows a fairly careful accounting of where the time is spent and reveals a
number of inadequacies in the hardware which are not really due to particular design difficulties but
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simply to the fact that, buried in the 100’ of instructions the send&receive message layer takes to trans-
mit a message, they were not deemed worthwhile worrying about. The most serious inadequacies are:

the high cycle cost of the t rap, reti and DMA instructions which are executed in the
prefetch unit and cause prefetching to stall,

the inability to inspect the message header before setting-up the DMA transfer of the data,

the requirement of selecting the correct output DMA channel in software instead of having
the router take care or instead of having only a single output DMA, and

the fact that it is difficult to restore the PSW in user-mode in order to return from a user-level
interrupt handler.

A number of interesting hardware features were found to be tempting but in the end inefficient to use:

The support for messages composed of multiple message segments, each requiring a separate
DMA transfer, is intended to allow the separation of the message header from the data such
that the latter can be moved directly into user space. However, the cost of the additional
DMA (including the additional interrupt) is too high to make this option useful. It would
have been better to allow programmed access to the network FIFO to send and receive the
header.

The multiple sending and receiving DMA engines are intended to provide ample bandwidth
between the memory system and the network. On the receiving side the many channels gen-
erate separately vectored interrupts and thereby do not cause additional software complexity
over a single DMA channel. On the sending side however, the cost of choosing the correct
output DMA channel is significant and does not seem worthwhile. Investing the real-estate
used for the 14 output DMA controllers into deeper channel output buffers might have ab-
sorbed bursts just as well without software cost.

The message multicast and message forwarding features built into the network routing are vir-
tually useless during normal operation because they pose significant livelock and deadlock
problems. However, note that message forwarding is required to send messages to/from 1/0O
subsystems.
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Active Messages Architecture on the CM-5

The send&receive message passing library provided by Thinking Machines Corp. (TMC) takes over
90ps end-to-end to transmit a small message between neighbor processors [LTD+92]7. Starting from
the hardware performance numbers presented in Section 3.2 it is difficult to explain such a high end-
to-end latency: a few accesses to the network FIFOs plus the network routing time can account for at
most 10ps. Clearly there must be a way to obtain better communication performance on the CM-5!

This Section demonstrates that an Active Messages communication architecture reduces the communi-
cation overhead on the CM-5 by over an order of magnitude. The important features of the design of
the CM-5 Active Message layer (CMAMB) revolve around addressing the four key issues described in
Section 3.3. The highlights of the CMAM design are presented in Subsection 4.3.2 which is followed
by a description of the programmer’s interface in Subsection 4.3.3 and includes an implementation of
the fetch&add example sketched in Figure 4-3. Detailed performance data from micro-benchmarks in
Subsection 4.3.4 demonstrates that the overhead of communication is less than 3ps. Subsection 4.3.5
uses the Active Messages instruction sequences to highlight that this level of performance represents the
limit of the hardware capabilities. The performance of a larger benchmark program is shown in
Subsection 4.3.6 and analyzed using the LogP model of parallel computation. The trade-offs between
synchronous and asynchronous message reception are discussed in Subsection 4.3.7. Subsection 4.3.8
concludes the CM-5 Section with a review of the important implementation features.

While this Section focuses exclusively on the CMAM communication architecture Section 5.1 discuss-
es the reasons for the low performance observed using send&receive.

Design constraints

One the major innovations in the CM-5 architecture is that the network interface is accessible from
user-level. This considerably simplifies the implementation of the Active Messages communication
macro-architecture, in particular as compared to the nCUBE/2 implementation. The CM-5 version of
Active Messages does not require any modifications to the kernel: the CMAM message layer is a con-
ventional user-level library.

While the ability to implement Active Messages without any kernel modifications had important bene-
fits in terms of ease of development and compatibility with all CM-5 installations there is a serious
drawback. Although the kernel is not involved in normal message send and reception, message arrival
interrupts are dispatched to the kernel by the hardware. Without kernel modifications it was not possi-
ble to optimize the dispatch of these interrupts to user-level which, in the current kernel version, is pro-
hibitively high. As a consequence, CMAM does not use interrupts and relies on regular network
polling. This means that handlers are executed synchronously to the computation and only when the
network is polled. A newer version of Active Messages implemented as part of CMMD 3.0 uses inter-
rupts and is briefly discussed in Subsection 4.3.7.

Implementation overview

The CMAM implementation is heavily influenced by the fact that messages in the CM-5 are limited to
five words in hardware. CMAM exposes this limitation, i.e., Active Messages on the CM-5 are limited
to four words of data, the fifth being used to name the handler.

The combination of this short message length and the Sparc calling convention allows for a very effi-
cient interface between C (or other similar HLL) and CMAM in that the message data can simply be

7 These measurements are for versions 1.3 and 2.0 of the message passing library CMMD. The performance of
CMMD 3.0is discussed in Ch.6.
8 Pronounced \'se-mam\.
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passed in registers as arguments to or from the CMAM functions. Sending and handling an Active
Message on the CM-5 involves the following steps:

e the CMAM send function CMAM 4 is called with all message information passed in registers,
e the message is pushed into the outgoing FIFO, if the FIFO drops the message CMAM 4 retries,

e at the destination node the network interface status register is polled and indicates message ar-
rival,

» the message is extracted from the FIFO and the Active Message handler is called with the mes-
sage data passed as arguments in registers,

e the handler consumes the message, possibly sends a reply, and returns to the dispatch which
polls for further messages and eventually returns to the interrupted computation.

The implementation of CMAM is contained in a normal user-level library and consists of the following
parts:

« functions to send request and reply Active Messages and automatically poll the network,
« functions to explicitly poll the network,

e code to receive messages and dispatch to the appropriate handlers, and

« special handlers to receive bulk data requiring streams of messages.

Design highlights

This subsection discusses in detail the approach taken in CMAM with respect to the four key issues:
handling send failure, supporting efficient synchronization, transferring data in and out of the network,
and virtualizing the network. In addition, the short message size supported in hardware on the CM-5
poses additional challenges in defining a unique message format and in transferring bulk data which are
also discussed.

Send failure

The two separate data networks in the CM-5 are perfect to support the request-reply communication
patterns advocated by Active Messages. CMAM distinguishes request from reply messages and uses the
“left” network for requests and the “right” network for replies (henceforth referred-to as the “request”
and “reply” networks). When sending a request, incoming messages on either network may have to be
handled before the FIFO accepts the outgoing message. However, when sending a reply, only messages
arriving on the reply network need to be accepted and the request network can be safely ignored. Thus,
only reply handlers will nest within request handlers and no further nesting is possible given that a reply
handler is not allowed to send a message.

Synchronization

Without kernel modifications the cost of interrupts on message arrival is rather steep on the CM-5:
while the hardware interrupt itself costs only a few tens of cycles, the path through the kernel takes a
few hundred. In addition to this per-interrupt cost, forming critical sections in the computation is very
expensive. The atomic Sparc instructions (I dst ub and swap) which can be used to perform atomic
memory updates issue an uncacheable read-modify-write memory cycle and thus operate at DRAM
speed, taking 30 cycles each! Bracketing multi-instruction critical sections with interrupt disable and
enable requires expensive kernel traps. Changes to the kernel could bring all these costs down, but were
not considered in this version of CMAM.

Fortunately, the computation can periodically poll the network interface status to detect the arrival of
messages instead of using message arrival interrupts. In many cases this turns out to be far simpler than
one might expect: because sending messages requires checking the status register anyway (to make sure
the message got sent), it is simple to include a poll in every message send. This means that as long as a
node keeps sending messages, it will automatically poll the network. Only when the program enters a
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compute-only section of the code it is necessary to insert explicit polls. Depending on the compilation
path these explicit polls can be inserted by the compiler or they remain the responsibility of the applica-
tion programmer. Note that in all cases the polls must respect the use of the two networks, thus: when
sending a request message both networks are polled, when sending a reply message, only the reply net-
work is polled, and both types of explicit polls are available and must be used appropriately. When a
poll detects the presence of a message, it inspects the first word and dispatches to the appropriate han-
dler. When the handler returns, the network is automatically polled again such that successive messages
are handled quickly.

Forming critical sections in the computation is trivial: it just entails not polling, thus, any instruction
sequence not containing any message send or any explicit polls is atomic relative to Active Message han-
dlers. The combination of having such “free” critical sections and of saving the cost of interrupts on
message arrival compensates for the cost of explicit polling.

Message format

A difficult design decision was not to directly support Active Messages larger than the native CM-5
message size, which means that CMAM Active Messages are limited to four words of arguments. (Sup-
port for large transfers is available in the form of an extension to CMAM which provides a set of hard-
coded Active Message handlers described in § 4.3.2.5.) This decision was taken because larger messages
sent in multiple fragments cannot be reassembled at the destination transparently, i.e., without signifi-
cant performance or storage impact. The origin of this problem lies in the fact that the network can de-
liver messages out of order; therefore each message must carry the equivalent of a sequence number and
the receiver must keep track of the number of fragments received in order to detect the arrival of the en-
tire message.

A hypothetical implementation of long Active Messages could operate as follows:

< Before sending the first fragment, the sender allocates a unique counter at the destination
node to keep track of the fragments.

e When the first fragment arrives at the destination, the receiver allocates memory for the mes-
sage.

e When all fragments have arrived, the Active Message handler proper is called and the memory
can be deallocated after the handler terminates.

»  Before the counter can be reused, the sender must be notified that it is available again.

Instead of hiding synchronization counters, memory allocation, and acknowledgment messages within
the message layer it is more efficient to let higher software layers implement equivalent protocols be-
cause they can be tailored to each particular use. For example, a node requesting a large amount of data
can allocate the counter and the memory before sending the request message. The replying node can
then send the data in many small messages to a handler which knows the counter and memory address-
es. Similarly, if the sending processor knows the destination address for the Active message data on the
remote node (e.g., in a remote block-write) a dynamically allocated buffer is not necessary and if the
high-level protocol itself requires an acknowledgment the availability of a synchronization counter can
be signalled in the same message.

The bottom line is that in most cases the run-time substrate can transfer bulk data more efficiently than
a universal low-level message fragmentation and reassembly protocol in CMAM could.

Data transfer

In order to achieve peak communication it is essential to streamline the data transfer into and out of the
network interface. The position taken in Active Messages allows each implementation a large degree of
flexibility such that mechanisms allowing direct data transfer between the network and application data
structures can be devised.
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The CM-5 communication micro-architecture allows the user-level code to directly access the network
interface and store data into the outgoing FIFO or load data from the incoming FIFO. This raises the
temptation to simply expose the FIFOs in the communication architecture in the expectation that the
higher software layers can inline the instructions to move data directly from the application data struc-
tures into the FIFO and vice-versa. Upon closer inspection of the instruction sequences, however, two
facts become apparent: the scheduling of the load and store instructions accessing the FIFOs is very
critical to prevent processor stalls due to the slow network interface access across the MBUS, and inlin-
ing the instructions to access the network interface inflates the total code size and increases the register
pressure9 such that the benefits are substantially smaller than expected.

Using a conventional function call interface to CMAM proves to have many advantages. The Sparc
calling conventions allow the first six words of arguments to a function to be passed in registers (the
calling convention details are summarized in Subsection 3.2.2). Given that all the information neces-
sary to send a message fits into six words (destination node, handler address, and four words of data)
the entire message can be passed to CMAM in registers. Thus for sending messages, CMAM exposes
the responsibility of loading the message data into the processor registers and hides the details of opti-
mally pushing it into the outgoing FIFO. For handling messages, the situation is reversed. The message
dispatch code loads the message from the incoming FIFO into processor registers and calls the handler,
again passing the entire message in registers as supported by the calling convention. It is up to the han-
dler to move the data into the application data structures as appropriate.

Temporary registers

The Sparc register windows prove convenient for allocating temporary registers in both the CMAM
functions and the Active Message handlers themselves. With two instructions the CMAM functions
can acquire a new register window with enough registers for all the temporary variables and, similarly,
Active Message handlers can use a fresh register window if the eight input registers are not sufficient.

Unfortunately the floating-point register set is not windowed and the calling convention designates all
FP registers as caller-saves. This means that any call to CMAM saves all FP registers in use. While this
means that handlers can perform floating-point calculations freely, it would have been better if only the
few handlers which actually do save the FP registers explicitly.

The use of registers in a typical scenario is illustrated in Figure 4-17. The communication substrate calls
CMAM 4 to send a request Active Message, passing the message itself in the i 0/00 through i 5/05 regis-
ters. CMAM 4 bumps the window pointer and uses the local registers to hold pointers, masks, etc. In the
example shown, the poll included in CMAM 4 (as in all other message send functions) indicates that a
message has arrived. The dispatch code loads the message into its i 0 through o5 registers and calls the
Active Message handler as a normal function which receives the message as arguments. The handler can
acquire another register window for local variables but most handlers operate as leaf functions and only
use the eight argument registers.

Due to the Sparc calling convention and the register windows the overhead of calling CMAM func-
tions, rather than inlining the equivalent code, is rather small. The call linkage costs 3 cycles and the
register window allocation costs 2 cycles (assuming no window overflow occurs). Compared to inlining,
spilling a single register due to the increased register pressure costs 5 cycles as well.

Variable message length

As a consequence of the data transfer mechanism CMAM always sends full (5-word) messages even
though the communication micro-architecture supports variable message sizes ranging from zero to five
words. While sending shorter messages has the benefits of reducing the number of FIFO accesses—an
attractive perspective given the cost of accessing the Nl—and of using less network bandwidth, the ma-

9- A substantial number of registers re required to hold pointers to the NI, status words, bit masks, and, last but not
least, hold the message itself in order to push it into the FIFO.
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Figure 4-17: Usage of the Sparc register windows in CMAM.

In a typical scenario the application program calls CMAM 4 to send a message, passing the message itself in regis-
ters. CMAM_4 acquires a new register window for its temporary variables which include pointers to the NI and sta-
tus register values and masks. In the case shown, CMAM_4 polls the network, detects a message arrival and
dispatches to the appropriate handler. The dispatch loads the message from the network interface its output regis
ters such that the handler is called as a normal subroutine with the message as arguments. Small handlers typically
work within the eight output registers (like any small leaf subroutine on the Sparc) but large handlers can acquire ¢
full register window, as shown here.
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jority of messages uses the full payload and supporting variable-size messages requires an additional dis-
patch at the receiving end.

The following table describes the trade-off by comparing the cost of fixed-size 5-word messages with
variable length messages. The values take the cost of accessing the network interface in to account as
well as the fact that checking the message length after reading the status register requires an additional
4 cycles:

message change in cost
length (in cycles relative to fixed-size 5-word message)
(in words) dispatch stores loads total
5 +4 0 0 +4
4 +5 -1 -7 -3
3 +7 -4 -8 -5
2 +8 -5 -15 -12
1 +8 -8 -16 -16

Early experience with Split-C indicated that more than 75% of all messages use the full payload and
consequently lead to the decision to only support full-size messages in CMAM. Note that by passing
the messages in registers neither the sender nor the handler need to be aware of this fact: as long as the
sender and the handler agree on the number of arguments the extra data in the message is of no impor-
tance.

Bulk data-transfer

The fact that the CM-5 hardware only supports small messages may lead to the conclusion that there is
no particular benefit to sending large blocks of data in a single (logical) transfer; this is in contrast to the
nNCUBE/2 where the DMA hardware naturally seems to favor long messages. Just as short messages
were demonstrated to perform well on the nCUBE/2, long transfers have advantages on the CM-5 be-
cause the payload of each (hardware) message can be used more efficiently. For this reason, using
CMAM directly for bulk data transfer is not optimal. Instead of placing a handler address into the first
word of each message it is more efficient to use it to encode transfer and message identifiers such that
the four remaining words remain available for two double-words of data. With CMAM only three
words of data could be transmitted per message.

To cater for bulk transfer CMAM introduces the concept of a communication segment. A communica-
tion segment is a memory region on the receiving node into which other nodes can transfer data. Each
segment is set-up by specifying a base address, a byte count and an end-of-transfer handler function.
The receiver can hand the segment identifier to any number of senders which then use a special proto-
col, called xfer, to transfer data into the segment. Each xfer message holds up to two double-words,
stores the data into the segment at an offset indicated by the sender, and decrements the segment’s byte
count. When the count expires and end-of-transfer handler is called at the receiver.

While the xfer protocol appears as being distinct from the normal CMAM Active Messages, it really ex-
tends CMAM with a small set of hard-wired Active Message handlers to transfer data at the peak hard-
ware bandwidth. Messages can be sent to these hard-wired handlers using a special set of message send
functions. Thus, even though the bulk transfer extension is, strictly speaking, not part of CMAM it fits
into the same Active Messages framework and could be integrated into CMAM if the hardware were
improved to support longer messages (thereby reducing the overhead of dedicating the first word to the
handler address).

The xfer protocol can be seen as being part of Active Messages at two levels. Each individual xfer mes-
sage is an Active Message which happens to be sent to a hard-coded handler. In addition, an entire bulk
transfer acts as a long Active Message sent to the end-of-transfer handler.

The xfer protocol achieves a peak data transfer rate of 10Mb/s while keeping the overhead low. It
achieves that by decoupling the data transfer itself from the coordination and memory allocation. The
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former has to do with efficient communication which is appropriately addressed in the communication
architecture, while the coordination and allocation are better left to higher software layers which can
deal with these issues more efficiently.

Virtualizing the network

On the CM-5 virtualizing the network is handled by the hardware and the kernel. The CMAM com-
munication architecture therefore does not deal with this issue.

Communication Architecture Interface

The combination of the small CM-5 hardware message size and the Sparc calling conventions allow a
very simple interface to the CM-5 Active Messages (CMAM) layer: the message send functions and the
handlers receive the message as arguments such that communication libraries based on Active Messages
can written in C without loss of efficiency. This Subsection defines the details of the CMAM library as
well as a sample implementation of the fetch&add example. It is intended to be a self-contained unit
and therefore repeats some information presented above.

Overview

The CMAM layer constitutes a very thin veneer over the communication micro-architecture, providing
the functionality of Active Messages while retaining most of the hardware characteristics. The core Ac-
tive Message functionality is provided in the form of two message send functions (one for request mes-
sages, the other for reply messages) and a small number of explicit network polling functions. In
addition to these, a set of pre-defined Active Message handlers use a specialized message format to im-
plement the notion of a communication segment which supports bulk data transfers more efficiently
than the core Active Message primitives.

Message format

The CMAM layer exposes the hardware message length limit of five 32-bit words and does not attempt
to fragment larger messages. In the assumption that more than 75% of all messages use all four data
words, no attempt is made at sending messages of less than five words. Thus, all CMAM messages carry
exactly four words of data, the first word of each message being used for the handler address.

Message placement

Messages are composed and received in registers. The sender passes the outgoing message as arguments
to the CMAM send functions which, due to the calling conventions, has the effect of composing the
message in the register window output registers. On reception, the CMAM dispatcher passes the in-
coming message as arguments to the handler, again in registers.

Message send operations

Messages are sent using CMAM_4 or CMAM 1 epl y_4 for request and reply messages, respectively.

Message receive operations

No particular receive operation is provided as the handlers are invoked automatically.

Message reception events

The current implementation does not use message arrival interrupts and instead polls the network. To
simplify the usage, all message send functions poll automatically such that code sections which send
messages do not need to poll explicitly. For computation-only sections a number of explicit polling
functions are provided.
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Send completion

To provide deadlock and livelock-free operation, CMAM uses the two CM-5 networks and limits the
communication patterns to one-way and request-reply communication. When sending a request mes-
sage, the CMAM layer repeatedly attempts to inject the message into the “request network”10, handing
incoming requests and replies until the outgoing message is sent. When sending a reply message, the
message is injected into the reply network and only that network is serviced.

Synchronization

Due to the absence of message arrival interrupts critical sections can be formed trivially by not polling.
Thus any code sequence without message sends and without explicit polls is atomic relative to handler
execution. Handlers are atomic relative to other handlers, with the exception that reply handlers may be
executed when a request handler attempts to send a reply message.

Interface definition

Send request and reply Active Messages

void CMAM 4(int node, void (*fun)(), ...);
void CMAM reply_4(int node, void (*fun)(), ...);

CMAM 4 sends an Active Message to the remote node where the message is handled by f un. While
the message always carries 4 32-bit words of data, CMAM 4 is declared as a varargs function and can
be called with fewer arguments to transfer less data. Due to SPARC calling conventions, the argu-
ments can be any combination of integer and floating-point values but not C structs.

CMAM 4 sends a request Active Message and services both, the request and reply networks.
CMAM r epl y_4 is identical to CMAM 4, but sends a reply message and services only the reply net-
work.

Handler execution

typedef void CMAM handler(int wl, int w2, int w3, int w4);
voi d CMAM pol | (voi d);

voi d CMAM request _pol | (voi d);

void CMAM reply_pol I (voi d);

void CMAM wai t(volatile int *flag, int value);

Handlers are executed during a send attempt or during an explicit poll. The handler named in the
first message word is called with the four data words as arguments. Again, due to the calling con-
ventions, the handler can be defined with any combination of integer and floating-point argu-
ments.

A number of explicit poll functions allow servicing of the network during compute-only sections.
The most common situation requiring explicit polling is when a node busy-waits for the reception
of specific messages (e.g., signalling the completion of a communication step). For this purpose,
CMAM wai t polls both (left and right) data networks while waiting on a synchronization f | ag to
reach val ue (i.e., until *f 1 ag >= val ue), then subtracts val ue from f | ag before returning.
(This scheme supposes that, in general, handlers increment a flag to signal when they have execut-
ed.) Other wait mechanisms may be implemented using CVAM pol | which polls both data net-
works. CMAM r equest _pol | and CVMAM r epl y_pol | are similar, but poll only one network.

10 The current implementation uses the left network for requests and the right network for replies.
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Communication segments

typedef int CMAM end_xfer (void *info, void *base);

int CMAM open_segnent (void *base_addr, int byte_count,
CVAM end_xfer *end_xfer_fun, void *info);

voi d CMAM shorten_segnent (i nt segnent _id,
unsi gned int delta_count);

In addition to the above core Active Message primitives, CMAM provides a number of pre-defined
handlers which support efficient bulk data transfer using an abstraction called communication seg-
ments. A communication segment represents a memory area on a given processor into which other
processors can transfer data. When opening a segment (using CMAM open_segnent ) the recipi-
ent specifies the segment base address, the number of data bytes to be received, and an end-of-
transfer function. CMAM open_segnent returns a segment identifier or -1 if no segment is avail-
able. The end-of-transfer function is called when all the data has arrived and is passed the base ad-
dress and an arbitrary i nf o argument specified when opening the segment. The end-of-transfer
function must return a new byte count or 0 if the segment is to be closed. Note that the segment
identifiers returned by CMAM open_segnent encode the segment number and the alignment of
the base address. Currently, there are 256 segments available and CMAM open_segnent always
returns the highest free segment.

CMAM short en_segnent reduces the remaining byte count of the specified segment. This is
useful, for example, when the sender cannot provide as much data as the recipient asked for.

Transfer data into a remote segment

void CVMAM xfer_4i (int node, int segnent _id,
unsigned int offset, int dil, int d2, int d3, int d4);
void CMAM xfer (int node, int seg_addr,
void *buff, int byte_count);
void CMAM reply_xfer_4i (int node, int segment_id,
unsigned int offset, int dil, int d2, int d3, int d4);

void CMAM reply_xfer (int node, int seg_addr,
void *buff, int byte_count);

A set of special CMAM xf er functions must be used to send data to the handlers implementing
communication segments. CMAM xf er _4i transfers 16 bytes of data to a segment on the remote
node. The destination address for the data on node is specified as a segment plus an unsigned byte
offset. The segment and the offset are encoded in seg_addr which is the sum of the remote seg-
ment id (as returned by CMAM open_segnent ) and the unsigned byte offset. This encoding lim-
its the offset to 24 bits.

On arrival at the destination node a pre-defined handler stores the data in memory and decrements
the byte count associated with the segment. If the count becomes zero, the end-of-transfer func-
tion is called as described in CMAM open_segnent .

CMAM xf er is similar but transfers the block of memory at address buf f and of length
byt e_count to a segment on the remote node.

CvAM xf er _4i and CMAM xf er send packets on the request data network and poll both, the re-
quest and reply networks. CMAM r epl y_xf er _4i and CMAM r epl y_xf er are similar but send
packets on the reply data network and poll only that network.

4333 Example of use: Fetch&add

As a simple example for the use of CMAM Figure 4-6 shows an implementation of the fetch&add in-
troduced in Subsection 4.1.2. As an additional twist the implementation shown provides a split-phase
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# Synchronization variable
1: typedef struct { volatile int flag, value; } fetch_add_sync;

# Initiate fetch&add request
2:void fetch_add_initiate(int node, int *addr, int incr,
: fetch_add_sync *sync)
A
sync->flag = O;

5:
6: CMAM 4(node, fetch_add h, MYPROC, sync, addr, incr);
7.}

Wait for fetch&add reply and return result
int fetch_add_conpl ete(fetch_add_sync *sync)
{

10: CMAM wait (&sync->flag, 1);
11: return sync->val ue;
12:}

»w

#
8:
9:

# All-in-one blocking fetch&add
13:int fetch_add(int node, int *addr, int incr)
14: {
15: fetch_add_sync sync;
16: fetch_add_initiate(node, addr, incr, &sync);
17 return fetch_add_conpl et e(&sync);
18:}

# Handler for fetch&add request
19: void fetch_add_h(int ret_node, void *sync, int *addr, int incr)
20: {
21: int value = *addr + incr;
22:  *addr = val ue;
23. CMAM reply_4(ret_node, fetch_add_rh, sync, value);
24:}

# Handler for fetch&add reply
25: void fetch_add_rh(fetch_add_sync *sync, int val ue)
26: {
27:  sync->val ue = val ue;
28: sync->flag = 1;
29:}

Figure 4-18: Fetch&add implementation with CM-5 Active Messages.

version of fetch&add as well, allowing the processor initiating the fetch&add to continue computing
while communication is in progress. In order to use this split-phase version the caller of fetch&add
must allocate a synchronization variable which is used in matching the reply with the fetch&add com-
pletion check.

The f et ch_add_i ni ti at e function initializes the synchronization variable, starts the fetch&add by
sending a request message to the remote node, and immediately returns. A call to
f et ch_add_conpl et e then waits for the reply message to arrive and returns the result.

The f et ch_add function combines the individual parts to implement the original blocking version.
In this case the synchronization variable is simply allocated on the stack. To actually take advantage of
the split-phase version the synchronization variables have to be allocated on a per-thread basis.
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4.3.4 Micro-benchmarks

The micro-benchmarks measure the various CMAM operations in isolation to determine best-case tim-
ings. In order to be able to distinguish the sending overhead, the handling overhead, and the network
latency each CMAM operation is measured in several phases:

1. one node sends a stream of messages alternating between two destination nodes to ensure that the
sender is the bottleneck,

2. two nodes send a stream of messages to one node such that the receiver is the limiting factor, and

3. two nodes ping-pong a message back and forth to measure the round-trip latency.

As can be seen in Table 4-7 an Active Message costs well under 2ps on each end! The overhead of send-
ing a request message is slightly higher than that of sending a reply due to the fact that both networks
have to be polled. Handling a message is slightly more expensive than sending it—the handler used in
this example is minimal and only increments a counter in memory.

The costs for the xfer protocol show more variation. Sending a block of memory using CMAM xf er _4
achieves 7Mb/s while using CMAM xf er _r epl y_4 peaks at over 9Mb/s. The difference is again due to
the additional poll when sending request messages. Sending the same memory block using CMAM xf er
improves the performance due to a tighter loop. The handler for xfer messages operates in two regimes:
for messages arriving back-to-back the segment descriptor is kept in registers allowing to handle the
messages quickly if they are destined for the same segment. If successive messages are for different seg-
ments, the respective descriptors have to be fetched from memory for each message. Note that the xfer
benchmarks use buffers smaller than the 64 Kb cache. Sending from out-of-cache buffers takes a 10 cy-
cle hit per message, but receiving is not affected given that the cache is in write-through mode and the
writes are absorbed by the write-buffer.

The table also shows the cost of explicit polls: a normal explicit poll takes 0.7ps while polling only the
reply network (in the unlikely event that a handler requires an explicit poll) costs about half of that.

operation overhead bandwidth

(per message) (16bytes/msg)
Send request 1.5us 50.7cyc 10.6Mb/s
Send reply 1.3 42.8cyc 12.3Mb/s
Handle request or reply 1.6ps 52.2cyc 10.0Mb/s
Open/close segment 6.7 221.7cyc n/a
Xfer_4 request 2.3 75.4cyc 7.0Mb/s
Xfer_4 reply 1.6 54.1cyc 9.8Mb/s
Xfer_N request 1.7us 56.7cyc 9.3Mb/s
Xfer_N reply 1.6 52.9¢cyc 10.0Mb/s
Handle xfer for 1 segment 1.6ps 52.6¢yc 10.0Mb/s
Handle xfer for 2 segments 2.2U8 71.1cyc 7.4Mb/s
Explicit poll request&reply 0.7us 22.0cyc n/a
Explicit poll reply 0.3us 11.0cyc n/a
Round-trip to neighbor 11.2ps 368.1cyc n/a
Latency per hop 0.8s 8.0cyc n/a

Table 4-7. Micro-benchmark timings for CM-5 Active Messages.



ACTIVE MESSAGES ARCHITECTURE ON THE CM-5 89

4341

4.3.5

The round-trip time to a neighbor node is measured by sending a request message to a handler which
immediately sends a reply back. The total time can be estimated to be the sum of a request and a reply
Active Message overhead (6s) and two message injection and routing times (2.8s). The actual time
measured is 2.4ps higher which is probably due to a combination of additional latencies in the NI itself
and of not hitting the poll loop optimally.

The performance of the fetch&add example is shown in Table 4-8 and presents no surprises: all over-
heads are slightly higher than in the previous benchmark due to the extra memory accesses required to
perform the fetch&adds.

Performance modeling

The timings gathered with the micro-benchmarks can be expressed more conveniently using the perfor-
mance models introduced in Section 2.3. Converting s to clock cycles yields around 100 CPM (clocks
per message) for CMAM messages. It is difficult to express the communication performance for long
messages in terms of start-up cost and per-byte cost. Using the xfer bulk data transfer protocol, the
minimal start-up cost is opening a segment and passing the segment id to the sender. This results in
an 4 of 15.5ps and a per byte cost varying from a 3 of 0.1ps to 0.14ps depending on which xfer func-
tion is used. Expressed as throughput, R, is 10Mb/s and half this throughput is achieved with a mes-
sage length N, of 155 bytes. Table 4-2 expresses the performance of core Active Messages in terms of
the LogP model.

CMAM Implementation

The results demonstrated in the micro-benchmarks are impressive: for short messages CMAM im-
proves the overhead of approximately 80us of send&receive by more than an order of magnitude. In-
stead of taking several thousands of cycles to send and handle a message CMAM takes around a
hundred. But even so, why does it still take fifty cycles to push a six-word message into the network in-
terface FIFO and check a status register? And a similar time to check the receive status, pull five words
out of the FIFO, and perform an indirect call through the first word? Part of the answer is that each
load and store accessing the NI takes 7 to 8 cycles. This subsection examines the CMAM send and han-
dle code sequences carefully to determine where all the cycles are spent and how the CM-5 communi-
cation micro-architecture could be modified to better support communication architectures such as
Active Messages.

Fetch&add cost

Requesting node overhead 4.3 143cyc
Service node overhead 3.5 115cyc
Round-trip time (neighbor) 12.2ps 404cyc

Table 4-8. Fetch&add benchmark results for CM-5 Active Messages.

Short 4-word (16-byte) messages

L =6us Injection + 8.3 hops = 1.7ps+6.6s
(8.3 hops is avg. distance for P=1024)

0 =16ps (Send overhead + Recv overhead) / 2 = (1.5ps+1.6s)/2

g =4 The network bisection bandwidth is 5Mb/s at 20 bytes of payload per message.
P =2.1024

Table 4-9. LogP parameters for CM-5 Active Messages
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Message send

The instruction sequence for sending a request Active Message is shown in Figure 4-19. The first four
instructions acquire a register window and set-up pointers to the network interface. The address for
pushing the first message word into the FIFO encodes the message tag and length and is loaded from a
variable. This allows the tag used by CMAM to be chosen at run-time in order not to conflict with oth-
er message libraries (such as CMMD). Instructions 6 and 7 correct for a chip bug related to the high-
order address bits. After this set-up which takes 7 cycles comes the loop attempting to inject the mes-
sage and receive incoming messages.

Figure 4-20 shows the cycle-by-cycle timing of a message send (assuming the injection succeeds and no
messages arrive). The three double-word stores and the status register loads are ordered to avoid stalls
(refer to Figure 3-8 for the timings of individual loads and stores). The three branches jump to instruc-
tion sequences (not shown) which receive messages and/or retry the send, as appropriate.

The timing diagram shows that most of the cycles are spent in the load and store instructions. While
the cost of checking the request network receiver is low (2 cycles), the 9 cycles it takes to check the reply
network are noticeable.

The total number of 44 cycles for a send matches well with the 50 cycles measured in the micro-bench-
mark given that the latter includes the loop calling CMAM 4 repetitively.

Network poll

Most of the time message arrival is detected by the automatic polls in the message send functions. Dur-
ing compute-only sections or when a processor busy-waits for a reply explicit polls must be inserted.

# CMAM_4 — Send request Active Message, service both networks
# void CMAM _4(int node, void (*fun)(), ...);
1: _CVAM 4: Set-up registers

save %sp, - SA(M NFRAME) , % p get register window
sethi %i (_CMAM NI first), Rni1st load addr for first msg word
I d [ Rni 1st +% o(_CMAM NI _first)], Rni 1st
set NI _BASE, Rni base get base address of NI chip
sethi  %i (~0x8007ffff), Rtnp mask destinations (N1 bug)
andn Rnode, Rt np, Rnode
Loop: send, check right, check left

sl: I d [ Rni base+NI _RDR STATUS {, Rstat 2 load reply net status
std Rnode, [ Rni 1st ] push message
std Rout 1, [ Rni base+Nl _LDR_SEND_Q

std Rout 3, [ Rni base+NI _LDR_SEND Q|
andcc Rstat 2, 1<<Nl _REC OK_P, %g0 reply message arrived?
bne s5 ...yes (code not shown)
I d [ Rni base+Nl _LDR STATUS J, Rst at load request net status
andcc Rstat, 1<<Nl _SEND OK_P, %g0 message sent?
be s4 ...nope (code not shown)
andcc Rstat, 1<<NI _REC OK P, %90 request message arrived?
bne,a s3 ...yup (code not shown)
sethi %i (_CMAM | eft _htab), R tab start of dispatch code

i s2: ret done
restore pop register window

Figure 4-19: Send CM-5 Active Message (CMAM _4) implementation.
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Figure 4-20: Send CM-5 Active Message (CMAM _4) timing.

Sending an Active Message on the request network takes a total of 44 clock cycles. The timing diagram shows dur-
ing which clock cycles each instruction occupies the Sparc execute pipeline stage (CPU), the cache bus (CBUS)
and the memory bus (MBUS). The instruction numbers refer to the lines in Figure 4-19. Note that during cycle 3¢
a load interlock stalls the processor and an annulled instruction executes during cycle 40.

# CMAM_poll - poll network once and handle all waiting messages
# Note: the original is written as a GCC inline function, shown here is the code generated by GCC.
1. _CVAM pol |
2: set NI _BASE, %0 get base address of NI chip
3: Id [ %©0+NI _LDR STATUS (J, %01 load request net status
4; andcc %01, 1<<Nl _REC OK_P, %g0 request message arrived?
5: be,a pl ...nope
6: Id [ %00+NI _RDR_STATUS (4, %©1 load request net status
7. call _CvAM got left handle message
8: nop
9: Id [ %00+NI _RDR_STATUS (, %01 load request net status
10: p1: andcc %1, 1<<Nl _REC OK_P, %g0 request message arrived?
11: be,a p2 ...nope
12: nop
13: call _CvVAM got right handle message
14: nop
15: p2: ret
16: nop

Figure 4-21: Poll CM-5 network for Active Messages.

The code for an explicit poll is written in C as a GCC in-line function. To simplify the accounting of
clock cycles Figure 4-21 shows the code generated by the compiler.

The code for polling both networks is straightforward: read request status register, check and call tag
dispatch if a message has arrived, and repeat with the right network. Due to the nested conditionals
most of the delay slots can unfortunately not be filled. The total cost for an unsuccessful poll is 22 cy-
cles of which the two loads alone take 16 (note that there is an interlock pipeline stall after each load).
Polling only the reply network requires about half the code and half the time.
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# CMAM_got_left — poll indicates message arrival, now dispatch on message tag
# void CMAM _got_left(int *ni, int status);
# Note: CMAM_got_right is similar, but with different names
1. _CVAM got _| eft: dispatch to tag-handler
2: save %sp, - SA(M NFRAME) , %sp acquire register window
3: set _CMAM | eft _htab, Rjtab base of handler table
4: srl % 1, Nl_DR REC TAG P- TAB_SHI FT, % 1; extract tag bit-field
5. g1: and % 1, Oxf <<TAB_SHI FT, % 1;
6: j mpl R tab+% 1, %07, dispatch to tag-handler
7. nmov % 0, Rni base; pass pointer to NI
8: | d [% O+NI _LDR STATUS O, % 1; get status again
9: andcc % 1, 1<<Nl _REC OK_P, %g0; check recv bit
10: bne,a g1; dispatch again
11: srl % 1, Nl_DR _REC TAG P-TAB_SHI FT, % 1
12: ret done
13: restore

4353
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Figure 4-22: Dispatch on message tag for CM-5 Active Messages.

Tag dispatch

Once a poll has detected the arrival of a message the message tag must be checked. The message tag
consists of four bits which can be used to differentiate among several communication protocols. In ad-
dition, the kernel reserves message tags for its use and controls which message tags generate interrupts
and which do not. The current kernel reserves eight tags for its use. CMAM uses two tags to differenti-
ate Active Messages and xfer messages.

The use of the tags might seem peculiar given that the Active Message mechanism is exactly designed to
avoid the use of a limited idiosyncratic message type selector. In fact, the alternative of not using tags
and saving the tag-check and dispatch cycles is very appealing. This is unfortunately not feasible. Due
to the latency of interrupts from the NI, it is possible that a user-level poll detects the arrival of an inter-
rupting kernel message before the Sparc processor recognizes the interrupt input. By the time the user
process attempts to read the message, the kernel has already retrieved it and the reads of the empty
FIFO cause an error. Thus the user process must check the tag and ignore messages with kernel tags and
using the tags productively incurs no additional overhead.

The tag dispatch code shown in Figure 4-22 is called from the poll and is passed the status register. The
dispatch is done by jumping into a table which contains the tag-handlers (the tag-specific code). Each
entry in this table has space for 64 instructions and each tag-handler is copied into the table at initial-
ization time. The first instruction in Figure 4-22 acquires a new register window and is not executed for
polls embedded in the message send functions. Instructions 3 to 7 shift the tag into the appropriate po-
sition and jump into the tag-handler table. The remaining instructions are executed after the message
has been handled and perform another poll such that all pending messages are handled one after anoth-
er.

The cost of the tag dispatch itself is 10 cycles plus 11 cycles for the integrated poll.

Active Message handler dispatch

In the case of an Active Message, the tag-dispatch mechanism jumps to the tag-handler shown in
Figure 4-23 which loads the message into the in/out registers and dispatches to the actual Active Mes-
sage handler. Note that this dispatch is a tail-call which causes the handler to return directly into the
tag-dispatch code.
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# CMAM _handle_req — Dispatch to Active Message request handler
1: _CMAM handl e_r eq:

I d [ Rni base+Nl _LDR RECV_J, Rt np load function ptr

| dd [ Rni base+Nl _LDR RECV_Q, %0 load message data
jm Rt np tail-call to handler
| dd [ Rni base+Nl _LDR RECV_ O, %2 load message data

4355
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Figure 4-23: Dispatch to CM-5 Active Message handler.

The Active Message dispatch is expensive due to the cost of the loads from the network interface. The
four instructions take a total of 25 cycles!

An estimate for the total overhead of handling an Active Message can be obtained by summing up the
costs of a poll, a tag-dispatch, and a handler dispatch. However, the result of 69 cycles is higher than
the value measured by the micro-benchmark (52 cycles) which can be explained by the fact that the
poll integrated in the tag-dispatch picks-up the back-to-back messages that were used in the bench-
mark. Taking this into account reduces the estimate to 47 cycles which leaves a few cycles for the han-
dler used in the benchmark to increment a memory location. Thus, the handling of sporadic messages
costs a little over 2ps whereas the handling of back-to-back messages is cheaper.

Data transfers using xfer

The xfer protocol uses a separate tag from Active Messages and the messages are consumed by the tag-
handler itself. While at first sight this seems to save only the two cycles of the j np instruction in the Ac-
tive Message tag-handler, the real savings come from the fact that the first word of the message can be
used to encode the segment id and the offset for the data. In addition, the xfer tag-handler “cheats” by
polling the network to handle additional xfer messages immediately. For back-to-back messages into
the same segment the segment descriptor can be kept in registers to arrive at the data transfer rate
of 10Mb/s (counting only the 16 bytes of payload per message) shown in Table 4-7. Without these
tricks the peak transfer rate would be 8.7Mb/s.

FFT macro-benchmark

The fast Fourier transform benchmark demonstrates that the performance characteristics determined
by the micro-benchmarks are applicable in an (albeit small) application program. The benchmark is
taken from the work on the LogP parallel model of execution [CKP*93] in which the LogP model is
used to estimate and analyze the program behavior.

The benchmark uses the “butterfly” algorithm [CT65] for the discrete FFT problem, most easily de-
scribed in terms of its computation graph. The n-input (n being a power of 2) butterfly is a directed
acyclic graph with nlog(n + 1) nodes viewed as n rows of log (n + 1) columns each. For 0<r<n
and 0<c<logn, the node (r,c) has directed edges to nodes (r,c+1) and (r,,c+1) wherer, is
obtained by complementing the (¢ + 1) -th most significant bit in the binary representation of r.
Figure 4-24 shows a 16-input butterfly.

The nodes in column 0 are the problem inputs and those in column logn represent the outputs of the
computation. (The outputs are in bit-reverse order, so for some applications an additional rearrange-
ment step is required.) Each non-input node represents a complex operation.

In order to achieve good performance the FFT algorithm must take particular care in mapping the but-
terfly structure onto the CM-5. While one might be lead to investigate mappings of butterfly networks
onto fat trees the approach advocated by the LogP model and followed here is to ignore the structure of
the network. One simple justification is that n data inputs and the nlogn computation nodes must be
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Figure 4-24: An 16-input butterfly laid-out on four processors

results in mostly all-to-all communication patterns instead of butterflies as the algorithm might at first
suggest.

The layout chosen in this benchmark is a combination of a blocked layout and a cyclic layout. The cyclic
layout assigns the first row of the butterfly to the first processor, the second row to the second processor
and so on. Under this layout, the first log (n/p) columns of computation require only local data,
whereas the last logp columns require a remote reference for each node. An alternative blocked layout
places the first n/P rows on the first processor, the next n/P rows on the second processor, and so on.
This means that each of the nodes in the first logp columns requires a remote datum for its computa-
tion, while the last log (n/p) columns require only local data.

The hybrid layout chosen for the benchmark combines the best of the two above layouts: the initial
computation of the first logP columns uses a cyclic layout and the final computation of the last logP
columns uses the blocked layout. The only communication required is remapping from cyclic layout to
blocked layout which can occur at any column between the logP -th and the log (n/P) -th (assuming
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that n > P2). Thus the algorithm has a single “all-to-all” communication step between two entirely lo-
cal computation phases.

Timing estimate

The model predicts that the computational time for the hybrid layout, assuming that a butterfly com-
putation takes unit time, is (n/p) logn and that the communication phase in which each processor
sends n/P2 messages to every other requires g (n/P —n/P2) + L time. Achieving this communica-
tion time, however, requires a well-crafted balanced communication schedule. A naive schedule would
have each processor send data starting with its first row and ending with its last row. Notice, that all
processors first send data to processor 0, then all to processor 1, and so on. All but L/g processors will
stall on the first send and then one will send to processor O every g cycles. A better schedule is obtained
by staggering the starting rows such that no contention occurs: processor i starts with its (in) /P2-th
row, proceeds to the last row, and wraps around.

Measurements

The benchmark implementation'* measures the performance of the three phases of the algorithm: (1)
computation with cyclic layout, (I1) data remapping, and (111) computation with blocked layout.
Figure 4-25 demonstrates the importance of the communication schedule: the three curves show the
computation time and the communication times for the two communication schedules. With the naive
schedule, the remap takes more than 1.5 times as long as the computation, whereas with staggering it
takes only 1/7 th as long.

The two computation phases involve purely local operations and are standard FFTs. Figure 4-26 shows
the computation rate over a range of FFT sizes expressed in Mflops/processor. For comparison, a CM-
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Figure 4-25: Execution times for FFTs of various sizes on a 128 processor CM-5.

The compute curve represents the time spent computing locally. The bad remap curve shows the time spent remapping the

data from

a cyclic layout to a blocked layout if a naive communication schedule is used. Thegood remap curve shows the time

for the same remapping, but with a contention-free communication schedule, which is an order of magnitude faster. The X
axis scale refers to the entire FFT size.

1 Note that the implementation does not use the vector accelerators.
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Figure 4-26: FFT computation rates.

Per processor computation rates for the two computation phases of the FFT in Mflops (millions of floating-point operation:
per second).

5's Sparc node achieves roughly 3.2 Mflops on the Linpack benchmark. This example provides a conve-
nient comparison of the relative importance of cache effects and communication performance. The
drop in performance for the local FFT from 2.8 Mflops to 2.2 Mflops occurs when the size of the local
FFTs exceeds cache capacity. (For large FFTs, the cyclic phase involving one large FFT suffers more
cache interference than the blocked phase which solves many small FFTs.) The implementation could
be refined to reduce the cache effects, but the improvement would be small compared to the speedup
associated with improving the communication schedule.

Quantitative analysis

Using Figure 4-26 the computational performance can be calibrated with respect to the LogP model: at
an average of 2.2 Mflops and 10 floating-point operations per butterfly each butterfly operation corre-
sponds to 4.5us and § 4.3.4.1 determined LogP parameters of L=6ps, 0=1.6ps, and g=4ps. In addition
to these costs, there is roughly 1ps of local computation per data point to load/store values to/from
memory. Analysis of the staggered remap phase predicts the communication time is
(n/P) max(1us + 20, g) + L. For these parameter values, the transmission rate is limited by process-
ing time and communication overhead, rather than bandwidth. The remap phase is predicted to in-
crease rapidly to an asymptotic rate of 3.2 MB/s. The observed performance is roughly 2 MB/s for this
phase, nearly half of the available network bandwidth.

The analysis does not predict the gradual performance drop for large FFTs. In reality, processors exe-
cute asynchronously due to cache effects, network collisions, etc. It appears that they gradually drift out
of sync during the remap phase, disturbing the communication schedule. This effect can be reduced by
adding a barrier synchronizing all processors after every n/P2 messages. Figure 4-27 shows that this
eliminates the performance drop.

The effect of reducing g can be tested by improving the implementation to use both fat-tree networks,
i.e., using both request and reply xfers to send the data, thereby doubling the available network band-
width. The result shown in Figure 4-27 is that the performance increases by only 15% because the net-
work interface overhead (0) and the loop processing dominate.
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Figure 4-27: FFT predicted and measured communication rates.

Expressed in Mbytes/second per processor for the staggered communication schedule.

The staggered schedule is theoretically contention-free, but the asynchronous execution of the processors causes some conten-
tion in practice. The synchronized schedule performs a barrier synchronization periodically (using a special hardware barrier).
The double net schedule uses both data networks, doubling the available network bandwidth.}

4.3.7

Summary

The communication performance achieved with the FFT demonstrates the efficiency of Active Messag-
es, and, in particular, that the performance parameters established through micro-benchmarks translate
well into an application setting.

In addition to efficiency, the versatility of Active Messages is an essential assumption underlying the al-
gorithm design. In effect, the algorithm design is only concerned with the actual information transfer
and an not at all with the communication mechanisms. The fact that the final algorithm can be
mapped efficiently onto Active Messages is taken for granted.

Pros and cons of asynchronous handler execution

One of the major debatable CMAM design decisions is not to use interrupts. While having to poll the
network periodically seems rather cumbersome at first, the fact that all message sending functions in-
clude automatic polls makes them invisible in most applications. Problems do, however, occur during
compute-only phases. One typical example is an all-to-all communication pattern in which each pro-
cessor fetches the remote data it needs for the following compute phase. If processors enter the compute
phase as soon as they have gathered all their data then they stop servicing the requests of other proces-
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sors which lag behind. The typical solution is to slow down the fast processors either by synchronizing
all processors at the end of the communication phase using a barrier or by having each processor wait
until it has serviced the appropriate number of requests. An alternative would is to add explicit polls
into the computation phase such that processors service requests at all times, but this is often not very
compatible with software engineering as it requires two versions of computational kernels such as ma-
trix multiply: one with polling and one without.

Besides these drawbacks, synchronous handler execution has many benefits. One is that a few polls are
cheaper than an interrupt. The more significant advantage, however, is that atomic operations and crit-
ical sections in the computation are free. For example, Split-C’s get operation (described in
Section 6.1 and used in the nCUBE/2 matrix multiply example in § 4.2.6.1) becomes more complicat-
ed to implement. The difficulty is maintaining the counter of outstanding requests: when issuing a get
the computation increments this counter and the reply handler decrements it. This means that the
counter increment must be made atomic relative to handler execution. In this case, and in most others,
bracketing the short load-add-store sequence by kernel traps to disable and enable interrupts is a steep
price to pay! Fortunately, changing the representation of the variables to be updated atomically can
sometimes help. In the case of get , using a counter of issued requests and a separate counter of received
replies solves the problem. Testing for the completion of all outstanding operations requires subtracting
the reply counter from the issue counter (using appropriate modulo arithmetic) and comparing the re-
sult against zero.

This simple example illustrates the trade-off: synchronous message reception is cheaper and simplifies
writing handlers but asynchronous handler execution avoids having to insert explicit polls or to syn-
chronize processors before entering a compute-only phase. Given that handlers are in general designed
by the language implementor while compute phases are written by application programmers, software
engineering issues alone suggest that the cost of asynchronous handler execution, at least as an option,
is worthwhile.

Asynchronous handler execution in CMMD 3.0

Thinking Machines’ message passing library, CMMD 3.0, uses Active Messages as the foundation and
supports synchronous as well as asynchronous Active Messages handler execution. Interrupts are dis-
patched into the kernel which checks the message tag to determine whether it is a kernel 1/0 message
or whether it is an Active Message. In the latter case, the kernel returns to a user-level stub which reads
the first word of the message and dispatches the appropriate handler. When the handler returns, the
stub checks for the arrival of further messages and traps back into the kernel if none are present.

Unfortunately on the Sparc it is not possible to return from the Active Message handler directly to the
computation. The last instruction of the handler would have to simulate a return from trap instruction
which is not possible. The problem on the Sparc is that the last two instruction must restore the PC,
the nPC (next PC), and restore the previous register window. In addition, on the CM-5, interrupt
would have to be re-enabled. As consequence, each message interrupt requires two traps into the kernel.

In order to form critical sections, CMMD 3.0 provides a flag in memory which can be set to disable in-
terrupts. The flag is checked by the user-level interrupt stub and, if an interrupt occurs in a critical sec-
tion, causes the stub to trap back into the kernel and disable interrupts instead of dispatching the
handler. This mechanism could be improved substantially if the kernel cooperated with the user-pro-
cess in a manner similar to the nCUBE/2 Active Messages implementation.

The cost of an interrupt is approx. 9.5ps, but the fact that a sequence of messages arriving back-to-back
can be handled within a single interrupt amortizes the cost of interrupts. To help estimating the per-
message cost of interrupts it is useful to classify program behavior into three categories:

1. infrequent communication: the cost of interrupts does not affect overall performance significantly
and the software engineering value of asynchronous message reception is high,

2. frequent communication: most messages arrive back-to-back and are received without interrupts,
the cost of an interrupt on the first message of a series can be amortized, and
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3. moderate communication: each message causes an interrupt and communication is frequent
enough to affect overall performance, switching to synchronous message reception during such
phases may be a solution.

Fast path for user-level interrupts

The current version of the kernel running on the processing nodes does not particularly optimize the
dispatch of message reception interrupts to the user process. The interrupt vector used for message ar-
rival is shared with multiple other network interface interrupt sources. Thus, the interrupt handler
must first read several NI registers to determine that a message has arrived on the data network. It then
must examine the message tag to separate user-level messages from kernel-kernel messages and from
kernel-1/0O subsystem messages. The current interrupt dispatch is not optimized for user messages and,
in addition, information such as the message tag is not passed to user-level where it must be read again
from the network interface. Experiments with a modified version of the kernel have achieved a reduc-
tion of the interrupt overhead down to approximately 8ps.

The most interesting aspect of the kernel interrupt handler is hidden in the return-from-interrupt sys-
tem call. After handling the interrupt, the user-level interrupt routine must trap back to the kernel in
order to re-enable interrupts and resume the interrupted computation. The interesting detail here is
that an apparently benign characteristic of the network interface costs a significant number of cycles:
the network interface interrupt signal is edge triggered and not level sensitive (as in most 1/0O devices).
This means that if an interrupting event (such as a message arrival) occurs while interrupts are disabled
this event goes by unrecorded and when interrupts are re-enabled again no interrupt is signalled (if in-
terrupts are level sensitive, such an event would cause the interrupt signal to be asserted but prevented
to reach the processor until the interrupt mask is changed). As a result, the kernel must check explicitly
for the presence of another message after re-enabling interrupts.

The bottom line is that careful attention to minute details in the kernel interrupt handler path and in
the network interface interrupt logic could reduce the interrupt overhead significantly.

Cheap critical sections

Another possible kernel enhancement could provide cheap critical sections. The cost of critical sections
is often overlooked when the cost of user-level interrupts is evaluated. Yet, the cost of critical sections is
often more important that the overhead of interrupts! In cases where a data structure (such as a sched-
uling data structure) is accessed frequently by local computation and less frequently by interrupt han-
dlers the cost of forming a critical section around each local access can quickly dominate the cost of the
less frequent interrupts. (An example of this situation is described in Section 6.2.)

The idea underlying cheap critical sections is to move CMMD’s flag indicating the execution of a criti-
cal section from memory into a global register. The Sparc ABI (Application Binary Interface) specifies
that register g7 (together with g5 and g6) is reserved for the “execution environment”. By using this
register the user process can form critical sections with an overhead of two cycles as follows:

e the third least-significant bit of register g7 (i nCri ti cal ) indicates the execution of a critical
section and the least significant bit (msgPendi ng) indicates the arrival of a message during a
critical section,

e the user process setsi nCri ti cal with an add instruction before entering a critical section,

e the kernel disables interrupts and sets nsgPendi ng should a message arrive whilei nCri ti -
cal isset, and

e the user process clearsi nCri ti cal using a tagged-subtract instruction which causes a kernel
trap if the msgPendi ng bit is set and allows the kernel to dispatch the delayed message.

Note that this solution requires all parts of a program to conform to the ABI and use register g7 appro-
priately (or at least not clobber it).
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4.3.8 Conclusions

The CMAM implementation of Active Messages on the CM-5 demonstrates the versatility, efficiency,
and incrementality of the Active Messages communication architecture. The design of CMAM follows
the principles described in Section 4.1 and pays careful attention to deadlock-free request-reply com-
munication, cheap synchronization of communication and computation, and effective data transfer
into and out of the network interface.

The micro-benchmarks demonstrate that Active Messages can achieve more than an order of magni-
tude reduction in communication overhead over send&receive for short messages. For long messages a
set of “hard-wired” message handlers provide data transfer rates equal or superior to send&receive in
the form of a more flexible protocol based on the notion of a communication segment.

The analysis of the instruction sequences sending and handling messages show that the performance of
the CMAM implementation is at the hardware limit. The only possible way to achieve higher perfor-
mance is to use the first word of the message to encode more specific information than a pointer to a
handler can. This is, in fact, why “hard-wired” handlers are necessary to support long messages at peak
bandwidth. If the message size were a little more generous, say 10 words, the advantage of using a cus-
tom encoding for the first word would not be worth the sacrifice in versatility.

The careful integration of the CMAM primitives with the Sparc calling conventions allows higher-level
communication primitives such as fetch&add to be implemented in C without compromising the per-
formance demonstrated in the micro-benchmarks. The communication library underlying Split-C, de-
scribed in Section 6.1, is written entirely in C and without direct access to the data network
hardware!?.

In order to reach the goals set forth, it was necessary to carefully trade-off which characteristics of com-
munication on the CM-5 to expose to the higher software levels and which to hide. The most stringent
restriction exposed is the limitation of CMAM messages to four words of arguments which corresponds
to the maximal message size supported by the hardware. Exposing this restriction is necessary because
the potential reordering of messages occurring in the network makes it impractical to transparently sup-
port larger messages. In most cases where the message size is too small the higher levels can use a proto-
col that is more efficient than the type of universal message fragmentation and reassembly that CMAM
would have to use. The difficulty is in allocating memory in which the individual parts of a longer mes-
sage can be reassembled and in initializing the synchronization variable necessary to detect the arrival of
all fragments. Instead CMAM provides a communication segment abstraction which allows data to be
transferred efficiently while leaving the allocation of storage and of synchronization variables up to the
higher software levels.

The CMAM implementation does not use interrupts because of their cost. This means that polling of
the network has to be exposed to a certain degree. By incorporating polling in all message send func-
tions CMAM succeeds in hiding the polls to a surprisingly large degree, but the application program-
mer must be aware of the consequences. For example, during compute-only phases a processor does not
service requests unless explicit polls are inserted. The CMMD 3.0 implementation of Active Messages
supports both synchronous and asynchronous handler execution. Because a series of back-to-back mes-
sages generates only a single interrupt the cost of the latter can be amortized if communication is fre-
quent. However, due to a lack of kernel support, critical sections are expensive and some of the savings
from not having to worry about polls is offset by the difficulty in implementing atomic accesses to vari-
ables shared by handlers and the computation.

Possibilities for improvement

Of the 50 cycles it takes to send an Active Message 26 are spent in load and store instructions accessing
the network interface. The situation on message reception is worse: 32 out of 52 are spent in loads.

12. A few primitives use the control network which is not available via Active Message and therefore access the net-
work interface directly.
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Simply bringing the network interface chip closer to the processor could speed-up communication con-
siderably. The problem in doing so is that placing the NI closer to the processor is more difficult and
less supported with every new generation of microprocessors. With the Cypress Sparc chipset used in
the CM-5 it is conceivable to place the NI on the cache bus as a coprocessor with single-cycle access.
However, the next generation processor (superSPARC) does not support the coprocessor interface any-
more and the first-level cache bus is on-chip. Access to the second-level cache bus is conceivable but not
supported by the architecture. Thus, while it is not impossible to bring the NI closer to the processor,
recent microprocessor development trends clearly make it more and more difficult.

The remaining cost of sending and receiving messages could be cut down further by improving the NI
status registers. For example, having to read separate registers to detect the arrival of messages on both
networks costs over 15% of the CMAM 4 execution time. If, in addition, variable length messages are to
be supported the status register layout should be carefully optimized such that a single dispatch into a
code table can decode all combination of events in a minimum of instructions.

The use of interrupts is painful in part because the network interface does not help dispatching message
reception interrupts quickly to user-level. The kernel must spend considerable number of cycles detect-
ing and resetting the interrupt cause before returning to the user process. After handling the message,
the user-process must trap into the kernel which must again access the NI several times. In addition,
forming critical sections in the computation by disabling interrupts in hardware must involve the ker-
nel. If the NI provided a user-accessible interrupt enable register the cost could be cut down dramatical-
ly.
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Summary

The goal of Active Messages is to provide an efficient and versatile communication architecture opti-
mized for the use of high-level parallel languages on current and up-coming communication micro-ar-
chitectures. The core of Active Messages consists of a strategy to address the four key issues: data
transfer, synchronization of communication and computation, handling send failure, and network vir-
tualization. This defines a class of communication architectures which present a uniform approach to
communication. Individual implementations of Active Messages expose a number of micro-architec-
ture features to fully exploit the performance of the hardware which means that the run-time substrate
is expected to change from machine to machine.

By concentrating on resolving the key issues rather than on the specifics of the communication archi-
tecture interface, Active Messages leaves a large degree of flexibility in the actual definition of an imple-
mentation as represented by a concrete definition of the 7 aspects of a communication architecture.
This means that there is no single standard Active Messages implementation and that the run-time sub-
strate must be adapted for every implementation, just as it must be adapted to the variations in instruc-
tion set architectures from one processor to another.

The benefit of Active Messages lies in the consistent approach to communication. In that respect Active
Messages is similar to the notion of load/store instruction set architectures. The latter form a class of in-
struction set architectures characterized by a common approach towards managing high-speed registers
in the processor and towards transferring data in and out of these registers. By analogy, Active Messages
form a class of communication architectures which employ the same data transfer, synchronization,
send failure, and network virtualization concepts.

The core idea of Active Messages is to name a user-level message handler in every message. This handler
is executed within the user-process’ context upon message arrival and serves to integrate the message
into the on-going computation or to provide a remote service and send a reply back. The fact that the
handlers are part of the user process and are specific to each message enables a great deal of flexibility in
synchronizing computation and communication. The main additional primitive that the communica-
tion architecture must ensure is atomic handler execution and facilities for forming atomic sections (rel-
ative to handler execution) within the computation. Send failure is dealt-with by continuing to service
incoming messages while attempting to send. To prevent uncontrolled handler nesting, communication
patterns are restricted to one-way and request-reply communication such that message priorities or flow
control can be used. The second column of Table 4-10 summarizes the general Active Message ap-
proach.

The two sample implementations on the n"CUBE/2 and the CM-5 serve to illustrate how the general
Active Messages approach maps onto existing communication micro-architectures. The discussion of
the development of the two implementations demonstrates how the very different characteristics of the
two communication micro-architectures lead to quite different implementations within the common
Active Messages framework. The approach towards the four key issues taken in the two implementa-
tions is summarized in Table 4-10 and the specifics of the interface presented by the two implementa-
tions is defined in Table 4-11 in terms of the 7 communication architecture aspects (defined in
Subsection 2.1.3).

A first performance evaluation uses a set of micro-benchmarks to determine the LogP parameters
shown in Table 4-12 for the two implementations. These performance characteristics represent roughly
an order of magnitude reduction in the communication overhead as compared to the implementations
of send&receive provided by the vendors.

A detailed analysis of the code sequences used to implement Active Messages on both machines indi-
cate that the performance achieved is very close to the limits of the hardware. Figure 4-28 divides the
communication overhead graphically into two parts: the minimum cost for sending and receiving a
message and the added cost of Active Messages. On the nCUBE/2 most of the overhead is in the user-
kernel interface and in the DMA device accesses. The overhead of sending Active Messages is negligible
and the cost of implementing user-level interrupts to handle message arrival represents approx. 15% of



SUMMARY 103
Key issue Active Messages nCUBE/2 CM-5

in general Active Messages Active Messages
Data transfer Expose micro-architecture to | Via pre-allocated DMA | Via processor registers.

allow direct data transfer into
and out of application data
structures.

buffers.

Messages limited to
DMA buffer size.

Messages limited to hard-
ware message size of 20
bytes.

Synchronization

Message handler is named in
each message and executes
upon message arrival.

Handler execution is atomic
and cheap interrupt en-
able/disable support critical
sections in the computation.

Handler addressed by
first message word and ex-
ecuted at interrupt time.

Cheap critical sections us-
ing user-kernel hand-
shake flag.

Handlers addressed by
first message word and ex-
ecuted upon polling.t
Polls integrated into all
send operations. Explicit
polls available.

Critical sections are free
by not polling.

Send failure

Communication patterns are
limited to requests and replies.
Deadlock-free request-reply
supported using network pri-
orities.

Reply attempts may fail
and require explicit retry
by handler.

No control over handler
stacking depth.¥

Requests and replies use
two separate data net-
works.

Handler nesting limited
to a reply handler nesting
within a request handler.

Network virtualiza-
tion

A messages’ dest. node, process
id, and handler triplet is a glo-
bal address which must be pro-
tected.

Context switch the network by
saving the state and coordinat-
ing process scheduling.

Protection enforced by
message layer in software.

Processes space-share the
hypercube without time-
sharing.

Protection enforced in
network interface hard-
ware.

Kernel gang-schedules
processes and context-
swaps all network state.

T. The CMMD 3.0 implementation of Active Messages supports handler execution at interrupt time.
1. A variant with flow control to avoid handler nesting is proposed but not implemented.

Table 4-10. Addressing the four key issues in Active Messages.
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Comm. arch. aspect

nCUBE/2

CM-5

message format

Destination node, handler ad-
dress, followed by data, limited
to 1Kbytes +¢.

Destination node, handler ad-
dress, followed by up to 16 bytes
of data.

message placement

In-memory buffer pointed-to by
global variable.

In procedure call argument regis-
ters.

send operations

Send request message and send
reply message.

Send request message and send
reply message.

receive operations

Receive messages, to be used after
reply failure.

Explicit poll, to be used in com-
pute-only sections.

reception events

Message reception interrupt caus-
es execution of Active Message
handler.

No message reception interrupts.
All message send operations poll
and cause execution of Active
Message handler.

send completion events

Request messages are always sent.
Replies may fail (time-out) and
require saving the message and
retrying.

Request messages and reply mes-
sages use distinct networks and
guarantee deadlock-free opera-
tion.

synchronization events

Handler execution is atomic.
Critical sections are formed by
setting a flag in memory.

Handler execution is atomic.
Critical sections are formed trivi-
ally by avoiding polls.

Table 4-11. Definition of two Active Messages implementations.

Parameter nCUBE/2 CM-5
Active Messages | Send/recv | CMAM
message length 8bytes | 1Kbytes| 1Kbytes| 16bytes
L (latency) 25ps|  471ps 471ps B
0 (overhead) 14ps 14ps 80ps 1.6ps
g (gap) 14ps|  236ps 236 4ps
P (processors) 1024 1024 1024 1024

Table 4-12. LogP parameters for Active Messages and Send&receive

the total overhead. In the CM-5 implementation, 59% of the cost lies in the load and store instructions
accessing the network interface. The additional complexity for Active Messages is only a few cycles for
the jump instruction to the handler.
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Figure 4-28: Communication overhead shown graphically

Small application benchmarks show that the overall program performance can be predicted from the
LogP communication parameters derived from the micro-benchmarks. Detailed algorithmic develop-
ment using the model yields well-behaved implementations and the measured performance can be ex-
plained using the parameters. This indicates that Active Messages succeeds at providing simple
primitives which can be composed efficiently without uncovering hidden overheads.

In is interesting to compare the nCUBE/2 and the CM-5 Active Messages implementations. Both use
the same core Active Messages idea and impose many similar restrictions to enable efficient implemen-
tation, yet, both expose most of the micro-architecture and, at first sight, may seem to have little in
common. The examples presented here, however, in particular, the two implementations of fetch&add
which function identicallylg, show that even though the details are different the high-level concepts re-
main the same and provide an important leverage. In all examples, the linguistic and algorithmic design
concentrates on organizing the transmission of information and is freed from the actual mechanics of
message transfer.

Finally, a slightly different way to view Active Messages is that it allows “direct message execution” in-
stead of requiring “message interpretation”. Active Messages interprets only the first word of a message,
namely as a pointer to a handler. This is the practical minimum of interpretation possible. After the dis-
patch the message is executed in the sense that a custom compiled piece of code takes care of it.

13. Ignoring the fact that the CM-5 version supports split-phase fetch&add which the nCUBE/2 implementation
could support just as well.
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