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Traffic in Congested 
Networks 

Given:   
• A directed graph G = (V,E)
• A source s and a sink t
• A rate r of traffic from s to t
• For each edge e, a latency 

function l e(•)
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Example: (r=1)
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Flows and their Cost

Traffic and Flows:
• fP = amount of traffic routed on s-t 

path P
• flow vector f traffic pattern at 

steady-state

The Cost of a Flow:
• l P(f) = sum of latencies of edges on 

P (w.r.t. the flow f)
• C(f) = cost or total latency of flow f: 

ΣP fP • l P(f)

s t
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Flows and Game Theory

• flow = routes of many
noncooperative agents

• Examples:
– cars in a highway system
– packets in a network

• [at steady-state]

• cost (total latency) of a flow  
as a measure of social welfare

• agents are selfish
– do not care about social welfare
– want to minimize personal latency
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Flows at Nash 
Equilibrium

Assumption: edge latency functions 
are continuous, nondecreasing

Lemma: f is a Nash flow if and only 
if all flow travels along minimum-
latency paths (w.r.t. f)
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Def: A flow is at Nash equilibrium (is  
a Nash flow) if no agent can improve 
its latency by changing its path
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Nash Flows and Social 
Welfare

Central Question: To what 
extent does a Nash flow 
optimize social welfare?  What 
is the cost of the lack of 
coordination in a Nash flow?
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Cost of Nash flow = 1•1 + 0•1 = 1

Cost of optimal (min-cost) flow    
= ½•½ +½•1 = ¾
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Previous Work

• [Beckmann et al. 56], …
– Existence, uniqueness of flows at 

Nash equilibrium

• [Dafermos/Sparrow 69], …
– Efficiently computing Nash and 

optimal flows

• [Braess 68], …
– Network design

• [Koutsoupias/Papadimitriou 99]
– Quantifying the cost of a lack of 

coordination
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Braess’s Paradox

s t

x 1

x1

Rate: r = 1

Cost of Nash flow = 1.5

Cost of Nash flow = 2

All flow experiences more latency!
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Our Results for
Linear Latency

Def: a linear latency function is 
of the form l e(x)=aex+be

Theorem 1: In a network with 
linear latency functions, the 
cost of a Nash flow is at most 
4/3 times that of the minimum-
latency flow.
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General Latency 
Functions?

Bad Example: (r = 1, k large)

Nash flow has cost 1, min cost ≈ 0 

⇒ Nash flow can cost arbitrarily      
more than the optimal (min-
cost) flow
– even if latency functions are 

polynomials
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Our Results for
General Latency

All is not lost: the previous 
example does not preclude 
interesting bicriteria results.

Theorem 2: In any network with 
continuous, nondecreasing
latency functions:

The cost of a Nash flow with 
rate r is at most the cost of an 
optimal flow with rate 2r.
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Characterizing the 
Optimal Flow

Cost fe• l e(fe) ⇒ marginal cost of 
increasing flow on edge e is

l e(fe) + fe • l e
’(fe) 

latency of 
new flow

Added latency 
of flow already 
on edge

Key Lemma: a flow f is optimal if   
and only if all flow travels along 
paths with minimum marginal 
cost (w.r.t. f).
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The Optimal Flow as a 
Socially Aware Nash

A flow f is optimal if and only if 
all flow travels along paths with 
minimum marginal cost

Marginal cost: l e(fe) + fe•l e
’(fe) 

A flow f is at Nash equilibrium if 
and only if all flow travels along 
minimum latency paths

Latency:    l e(fe) 
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Consequences for 
Linear Latency Fns

Observation: if l e(fe) = ae fe + be

(latency functions are linear) ⇒
marginal cost of P w.r.t. f is:

Σ 2ae fe + be

Corollary: f a Nash flow with rate 
r in a network with linear 
latency fns  ⇒ f/2 is optimal 
with rate r/2

e∈P
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Conclusions

• Multicommodity analogues of both 
results (can specify rate of traffic 
between each pair of nodes)

• Approximate versions assuming 
imprecise evaluation of path latency

• Open: extension to a model in which 
agents may control the amount of 
traffic (in addition to the routes)
– Problem: how to avoid the 

“tragedy of the commons”?


