Inspired by recent algorithms for electing a leader in a distributed system, we study the following game in a directed graph: each vertex selects one of its outgoing arcs (if any) and eliminates the other endpoint of this arc; the remaining vertices play on until no arcs remain. We call a directed graph {\em lethal} if the game must end with all vertices eliminated and {\em mortal} if it is possible that the game ends with all vertices eliminated. We show that lethal graphs are precisely collections of vertex-disjoint cycles, and that the problem of deciding whether or not a given directed graph is mortal is NP-complete (and hence it is likely that no ``nice'' characterization of mortal graphs exists).