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Abstract

RPC has established itself as one of the more powerful communication paradigms for distributed
computing. In recent years, object-oriented languages have impacted RPC semantics, with a
number of variants providing remote method invocation and various forms of distributed object
systems. At the same time, performance has changed little with the bottleneck being the network
transport, in particular the in-kernel protocol implementations.

This paper describes JRPC, an RPC architecture that leverages user-level network interfaces (UNI)

to circumvent the kernel on the critical path. It describes how the wire format and the RPC system

can be engineered to alow zero-copy reception of Java objects and zero-copy transmission of

arrays. All objects received are fully type-checked and can be directly used by the receiving
program. The design is connection-oriented for performance and leverages the JVM's garbage
collector when managing receive buffers. An implementation built from an off-the-shelf JVM and a
commercial UNI is used to evaluate the architecture and the tradeoffs of type-safe, zero-copy data
marshaling.

1 Introduction

Since the conception of Remote Procedure Calls (RPC) [BN84], OS researchers have focused on both the
RPC performance and programming paradigms that make RPC flexible, easy to use, and transparent. In the
early years, the emphasis was on performance: first, between machines across the network, and then
between processes on the same machine [JZ91, SB90, BAL+90, TRS+91, OCD+88]. At the time, the major
bottlenecks were the slow network fabrics and the presence of the OS in the critical path (e.g. the system
call overheads, in-kernel protocol implementations, and interrupt handling). The number of data copies was
successfully reduced in the local RPC case. However, to do the same across the network required further
research in network technology and in providing protected, direct user-level access to network interfaces.
Meanwhile, with the increasing popularity of object-oriented and type-safe languages, focus shifted from
performance to the semantics, flexibility, and ease of use of various distributed computing and object
paradigms [BNO+93, OCD+88, Jav-a, EE98a, SGH+89, LCJ+87].

The advances in network fabric and interface technology in recent years have again made the performance
of RPC an interesting issue. The introduction of low-cost networks with over 100Mbps of bandwidth and
user-level network interfaces (UNI) that remove the kernel from the critical path have eliminated the
perennial bottleneck in communication for commodity machines [VEBB+95, DBC+98, PLC95, CMC98].
Because Nlis can directly access user-level buffers, highly-tuned implementations of RPC can customize
the presentation layer to avoid any copying and achieve good performance. However, to our knowledge,
such fast implementations [ SPS98, BF96] currently only support untyped languages such as C and shallow
data structures.

Type-safe languages such as Java add another dimension to the performance of RPC. RPC between Java
programs must satisfy the type safety properties assumed by the language run-time (this is a general issue
with safe languages). Enforcing this type-safety requires additional operations (checks) in the RPC critica
path. In addition, passing arbitrary Java objects as RPC arguments requires full support for linked data
structures. Finally, automatic memory management in safe languages calls for a careful integration between
RPC buffers and Java’'s garbage-collected heap.

Section 3 presents an interface-based RPC model with simple calling semantics for Java that serves as a
framework for experimenting with zero-copy data transfer. It offers the traditional RPC abstraction for Java



without the features (transactions, object migration, shared objects) that introduce substantial complexity

into the system. Section 4 presents a novel wire protocol for typed objects that enables zero-copy data

transfer and shows how arbitrarily complex and linked objects can be marshaled and unmarshaled

efficiently in atype-safe manner. The key insight to achieving zero-copy is to preserve the representation of

the object “on the wire” as much as possible, and to integrate the RPC buffers into Java’'s garbage-collected
heap. Type-safety is achieved by incorporating typing information in the wire format in a way that enables
efficient checking, that preserves the in-memory object layout, and that minimizes memory fragmentation
at the receiving end. Linked objects are marshaled using portable pointers that are converted to real pointers
in-place at the receiving end.

Section 5 describes a software architecture for RPC in Java on top of a UNI that provides efficient system
support for the zero-copy protocol. It also relies heavily on the remote DMA support provided by state-of-
the-art UNIs. The key design decision is to adopt a connection-oriented approach, which results in fast
control transfer, efficient sender-managed flow control, and lock-free implementations of the protocol’s
marshaling and unmarshaling algorithms. These implementations can be done mostly in native code for
high performance while providing the necessary API in Java for the stub generator.

It might seem paradoxical to try to push the RPC performance in a slow, safe-language system such as
Java. Indeed, the safety of Java comes with a cost: slower overall execution mainly because of immature
JIT compilers and garbage collection. However, safe languages need not be slow and their performance is
likely to improve. While the slowness of Java might still be the real bottleneck in RPC-based distributed
computing, the research presented attempts to map the fundamental limitations and performance tradeoffs
in a zero-copy RPC system for safe languages.

The RPC implementation for Java discussed in this paper uses Microsoft's off-the-shelf Java Virtual
Machine and is layered on top of a commercial UNI (GigaNet's GNN1000 VIA interface) [GNN]. We
evaluate its performance with respect to the raw UNI and other off-the-shelf RPC systems. The results
presented in Section 6 show that the system achieves a null RPC round-trip latency of 18.4us which is 2us
above the raw UNI performance. The effective bandwidth for 8KByte arrays is 61 MB/s, about 75% of the
raw bandwidth. We analyze the tradeoffs of zero-copy data marshaling and evaluate the behavior of the
receive-buffers using traces of an extensible web server based on RPC. The paper concludes with a
discussion of the lessons learned in designing an RPC system on top of a state-of-the-art UNI and using
off-the-shelf JVMs.
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The UNI used here is an implementation of the Virtual Interface Architecture (VIA) [VIA97], a standard
proposed by Intel, Microsoft, and Compaqg that combines basic send and receive operations in a UNI with
remote memory transfers. Processes open virtual interfaces (VIs) which represent handles onto the network
(see Figure 1). Each VI has two associated queues: a send queue and a receive queue which are
implemented as linked lists of message descriptors, each of which points to one or multiple buffer
descriptors. To send a message an application adds a new message descriptor to the end of the send queue.
After transmitting the message, VIA sets a completion bit in the descriptor and the application eventually
dequeues the descriptor when it reaches the head of the queue. For reception, the application adds



descriptors for free buffers to the end of the receive queue which VIA fills as messages arrive. VIA aso
supports remote direct memory access (RDMA) operations. A RDMA send descriptor specifies a virtual
address at the remote end to which data will be written (RDMA-write) or from which data will be read
(RDMA-read). Completion of RDMA-read operations may not respect the FIFO order imposed by the send
gueue. In addition, RDMA-reads do not consume receive descriptors at the remote end while RDMA-
writes can if explicitly asked to. RDMA requires that the sender and receive exchange information about
the virtual address prior to communication. VIA guarantees in-order delivery for send and RDMA-write
operations.

In this paper, we assume that the underlying UNI architecture provides reliable communication, in-order
delivery, and support for RDM A-writes.

2.2 Java

Javais atype-safe, object-oriented language that supports multi-threading and relies on a garbage collector.

It offers two language features that are leveraged by the JRPC model: multiple interface extensions (also

known as sub-typing) and abstraction. Java distinguishes between regular classes that can be instantiated

into objects and interface classes that only define a set of method signatures. Multiple interface extension

means that a Java interface class can combine several other interface classes by extending them. This

feature is useful in RPC systems because it can be used to support interface versioning — typically, an
interface is upgraded by extending an older interface with new methods. Abstraction allows a Java class to
be detached from the interface class it implements, leading to separate interface and implementation
hierarchies. This means that a Java interface need not expose the implementation details to be inherited by
interfaces that inherit from it. In addition, a Java class can extend other classes and implement multiple
interfaces.

Besides these two features, we use the notion of afohgesprint in order to allow type-checking across
JVMs. A fingerprint is a 64-bit checksum with the property that with very high probability two classes have
the same fingerprint only if they are structurally equivalent. Class fingerprints are obtained by calling
Get Seri al Ver si onUl D provided by the Java Object Serialization AHlhe rest of the paper uses the
termsfingerprint andtype-descriptor interchangeably.

3 TheJ-RPC Modd

RPC models designed for object-oriented languages vary in how services or objects are exported from one
program to another. This section describes the binding model used in the RPC system for Java presented in
this paper, called J-RPC. J-RPC leverages the interface construct of Java and isietetifatg-based.

This means that a program that wishes to export a service defines a Java remote interface (a Java interface
that extends a special interface callRdnot e) which describes the methods being exported. The
implementation of the service is provided by objects that implement the remote interface. The key point is
that a program exports a specific interface implemented by an object and not all interfaces or all public
methods of that object.

3.1 Binding

The example illustrated in Figure 2 shows two remote interfadksandi A;, each implementing one

method,f andg respectively, and a clags that implements both interfaces. The server code fragment
creates an instance &f and exports its Ay interface with “IAQ” as the service name. Exporting the
instance ofA creates a stub object that implements. The client imports “IA0” from the server’s

machine, which creates a proxy instance that implemefXt®nly (noti A;) and establishes a binding with

the stub, as seen in Figure 2b. Proxy and stub classes loaded by the Java class loader are registered under
the interfaces they implement. In other words, the RPC system maintains a mapping between the type-
descriptor ofi Aq and the proxy in the client side, and a mapping between the type-descripty ahd

the stub in the server side.

1 Unfortunately, off-the-shelf VMs compute the checksum with different hashing algorithms. For example, for an
identical class, the fingerprints produced by Microsoft's and Sun’s VM are different.



interface i A0 extends Renote {
void f(A a);
interface i Al extends Renpte { Pl iAo
void g(i A0 a);
A
public class A inplenments i A0, iAl { \A.
public void f(Aa) { . . .} 1A
public void g(iAO a) { . . . } (@ A
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)
Figure 2. (a) Javaclass hierarchy for pseudo-code (b) JJRPC binding
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Figure 3. (a) A typical Java class hierarchy due to versiorfligHow versioning affects J-RPC bindings

3.2 Call Semantics

The argument passing semantics are dictated by the signature of the remote method. An argument is passed
by copy if its signature type is a primitive type or a Java class and is passed by reference if its signature
type is a remote interface. In the class-copy case, all transitively reachable objects are passed across the
network (using the same by-copy/by-reference rule) except for objects referenced by transient fields. When
passing a remote interface, the wire representation of the interface is transferred across the network and
transformed into a proxy on the receiving end. For example, a remote invocation of g in Figure 2 would
pass the wire representation of the remote interface i Ay to the callee, whereas remotely calling f would
pass a copy of an object of class A to the callee. In the former, the calee of the g gets a proxy that



implementsi Ay. In the latter, the callee of f simply gets an instance of A. Because objects are not “shared”
nor “distributed,” there is no need for any consistency protocols nor distributed garbage collection.
Reference counting is required, though, in order to keep track of active bindings.

Ensuring the type-safety of incoming data is important in order to preserve the integrity of the JVM at the
receiving end. In object serialization protocols such as [Jav-b], method arguments are type-checked to
verify that the Java classes of the serialized data are “compatifgiateen the caller and callee JVMs.
However, in order to attain safe zero-copy transfers, primitive-valued fields (especially boolean and
transient fields) and array bounds need to be checked to reinforce safety.

3.3 Versioning

One advantage of the interface-based model is that it handles implementation and interface versioning
cleanly. Figure 3 illustrates a versioning example. First, the service provider decides to upgrade the
implementation (because of a bug fix, for instance). As a result, the implementation of intdface
evolves fromB, to B;. Then, the provider decides to add new method calls to the senBgeis
“upgraded” toi B, and new implementatioB, is needed. Figure 3a shows the resulting Java class
hierarchy and Figure 3b shows impact of the versioning process in the RPC binding. As long as the two
parties use the same interface, the implementation can change without any change or recompilation having
to occur at the client side. In fact, an implementation can be detached from a service and a new one
(implementing the same interface) attached without clients having to rebind to the service (transition I). It is
the fact that proxies are produced from the interface and not from the implementation that permits this
flexibility. In addition, interfaces can be upgraded just as transparently as long as they are “upwards
compatible”, i.e., new interfaces extend old ones. WHenis upgraded toé B, (transition Il), the client

need not upgrade because the proxy By is still compatible with the new stub foB,. New proxies for

i B, are produced in subsequent bindings to the service, or when the client decides to “refresh” the existing
binding (transition I11).

3.4 Comparison with Other Models

In contrast, when a remote object changes in Java RMI [Jav-a], the clients must rebind in order to obtain an
updated proxy. Java RMI has mechanisms for sending that proxy from the server’'s code base to the client’s
class loader on demand. Passing remote objects as arguments or return values of RPCs requires the proxy
object itself to be marshaled and sent over the network. The advantage of the Java RMI model is that
remote objects are more transparent which can be convenient when a single program is split-up into
multiple parts. Unlike Java RMI, J-RPC's interface-based model is targeted more at client-server type
communication than at distributed programming.

The model used in Modula-3's Network Objects [BNO+93] is similar to that of J-RPC in the sense that
stubs are generated from the interface type, not from the implementation of the interface. Versioning is
obtained through interface subtyping as well. The main difference is that a stub in Network Objects has
dual personality: in the client side it performs RPCs to the server dispatcher, while in the server side it
forwards the call to the implementation. As a result, an RPC binding is formed by a pair of stubs of the
same type, whereas in J-RPC a binding can be formed by proxies and stubs of different types provided that
versioning is attained through interface inheritance.

Microsoft's component object model (COM) and its distributed extension (DCOM) are similarly interface-
based. COM is in essence a binary standard and components are not permitted to change their interface
once they have been made public. New versions of an interface must be exported under new names and
clients have to bind to the new interface in order to upgrade. One COM component can implement multiple
interfaces; in particular, different versions of the same interface, such that both old and new clients can
access the same component simultaneously.

2 In JRPC, class compatibility means structural equivalency, which is not necessarily the case in Java Object
Serialization.



4 TheWire Protocol

The primary goal of the wire protocol is to allow zero-copy operation. That is, in most cases the object data

is transmitted by the network interface DMA engine directly from the object’s location and in all cases the
receiving program accesses the data directly where the network interface DMA engine deposited it. For this
to be feasible, the representation of an object “on the wire” must maintain the in-memory representation to
the extend possible. This section describes the wire protocol used by J-RPC.

In traditional RPC systems such as SunRPC [Sun88], the presentation layer (e.g. XDR) requires data to be
converted (and hence copied) at least once on both the sending and the receiving side. Highly-tuned RPC
systems [JZ91, BF96] eliminate the presentation layer by generating stubs that marshal data into a format
that is readily usable by the receiver but does not contain typing information. Self-describing presentation
layers such as ASN.1 marshal data types into the stream but are rarely used by RPC systems due to the high
decoding cost. To our knowledge, none of these protocols supports linked objects and data structures.

The wire format in J-RPC is designed with the following properties in mind:

e complete object typing information is passed to support type-checking and “portable” pointers are
passed in order to support linked objects,

» fragmentation of the receive buffer is minimized by placing usable data contiguously as much as
possible,

* marshaling code must be straight-forward so that it can be generated efficiently by a stub compiler,

« algorithms to type-check the objects in the receive buffer, to convert portable pointers into real
pointers, and to integrate the objects into the JVM must be efficient.

4.1 Object Layout and Portable Pointers

The first design issue is to choose an object layout that is compatible with off-the-shelf JVM
implementations. Given an object reference, a JVM can access the object’s fields, its method table, its
synchronization object, and its class descriptor. We looked at three off-the-shelf JVM implementations:
Microsoft's JVM 4.79.2339 (MSVM), several versions of Sun’s JDK, and Kaffe 0.10.0 beta. In MSVM
and Kaffe, an object reference points to a structure containing the object fields and pointers to the method
table (from which the class descriptor is accessible) and to a synchronization structure. In Sun’s JDK 1.0.2,
there is an additional level of indirection: an object reference points to a structure with pointers to the
method table and to another structure containing the fields. For software-engineering reasons, the object
layout is hidden by the native interface specification (JNI) in the latest versions of Sun JDK (1.1+). For our
implementation of J-RPC we chose the layout adopted by MSVM and Kaffe for efficiency reasons — in
principle, the protocol can be adjusted to Sun’s JDK object layout as well.

Java objects cannot be simply sent “as-is” over the network. The fields do not contain any type information
(i.e. ani nt contains just the 32-bit value) with the effect that the receiver cannot type-check them. In
addition, pointers to other objects are meaningless at the receiving end. Given that all object references are
also marshaled in the RPC call, these references must be converted to point to those marshaled versions.

In order to support zero-copy and group object data together in the receive buffer, J-RPC &ilopts a
directional layout illustrated in Figure 4a:

« The marshaled object representation starts aDtjigef offset and grows to higher memory addresses
while the type-descriptors of its primitive-typed fields are stored in a table (PTDT) that starts at
PTDTOff and grows in the reverse direction. Object references are represented by positive offsets from
the base address.

» The layout of a Java array (Figure 4b) contains the array type-descriptor, a flag that indicates whether
it is an array of objectsand the length of the array followed by the elements. In case of an array of
objects, the elements are just pointers to the objects. Instead of an offset to a PTDT, fthgre is
indicating whether it is an array of primitive-typed elements or an array of objects.

% In the case of an array of primitive-typed elements, the type of the elements in encoded in the array’s type-descriptor.
The flag field is used for type-checking purposes.
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Figure 4. (a) Layout of a Java object. (b) array, (c) string, and (d) J-RPC remote interface.

» The layout of a Java string (Figure 4c) contains the string’s type-descriptor, the length, and a pointer to
an array of characters (strings are in unicode format).

« Aremote interface is represented by a magic cookie (Figure 4d), a stub identifier, the network address
where the stub is located, a network discriminator, and an ordered list of type-descriptors where the
first element is the type-descriptor of the interface itself followed by the type-descriptor of its parent,
and so of

The process of marshaling a Java object consists of copying the object itself and all transitively-reachable
ones into the network buffer in the format-described above. In order to preserve the layout of the object,
marshaling of object references is delayed until the marshaling of the current object is completed. As an
example, consider a Java class definition for an element of a linked list of byte aBa&ysa¢ seen in

Figure 5a. It contains an integer fidlén, a reference to a byte arrdgt a, and a reference to tmext

element in the list. Also, consider a remote interfa¢é that defines a methodet hX with two
arguments: a boolean value, a list of byte arrays. The client imports the intexaceates a list of two
elements, and calls methX. Figure 5b shows the in-memory, runtime representation of the list in Java in
Microsoft's JVM, and Figure 5¢ shows how the list is represented in the wire using the zero-copy protocol.
The base address (located at oft¥ef) is the location of the head of the list.

4.2 Complete Protocol

The example above shows how a Java object is represented using the bi-directional layout and portable
pointers. In order to marshal all the arguments of a call, these are treated as if they were a Java class where
each field corresponds to one argument. The complete protocol is depicted in Figure 5d. The base address
is the location of the method identifier. The marshaling code prepends the following five additional header
words: a magic cookie, the total length of the data buffer, the number of objects marshaled into the buffer,
and the size of the aggregate PTDT (of all objects combined). The final buffer is referred to as an RPC
message.

4.3 Unmarshaling

The unmarshaling procedure type-checks the incoming data, converts the portable pointers to real pointers,
and integrates the object into the JVM. For efficiency, the implementation performs all three operations in
one pass through the data.

4 For complex inheritance hierarchies (i.e. interfaces with more than one parent), the list is ordered in a “breadth-first”
fashion.
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Figure 5. (a) Java source exampléy) in-memory representation of a 2-element LBA in MSVM,
(c) correpondim J-RPC obect layout for the same list, ar(d) the conplete RPC messe.

An object is type-checked by first comparing its type-descriptor to the expected type-descriptor obtained at
binding time. Then, the fields of the objects are type-checked using the offset to PTDT. After validating a
received object, its type-descriptor is replaced by a pointer to the correct local method table, and its PTDT
offset is replaced by a pointer to a synchronization structure (this is evidently VM dependent). The
complete algorithm checks and updates all non-transient objects contained in the call recursively. All
offsets are bounds-checked to prevent illegal values from corrupting the receiving VM. Type-checking an
array object in addition requires validating the array-bounds.

An interface is unmarshaled by traversing the list of interface type-descriptors and finding a matching

proxy from the table of registered proxies. The proxy is put into a table of active proxies indexed by the

stub’s JVM address. If the client terminates, active proxies are gracefully disconnected from their stubs.
Interface unmarshaling may require a round-trip message to the server to increment a reference count, but
technigues can be used to alleviate this overhead [EE98b, BEN+94].



4.4 Zero-Copy Transfer of Arrays

Transmitting arrays of primitive values takes advantage of the remote DMA capability in the underlying
UNI to avoid copying the elements into the send buffer. The entire array is directly transferred to the
receive buffer at the remote end using an RDMA.. All such arrays are transferred before the send buffer,
such that the arrival of the latter can initiate unmarshaling (the UNI is assumed to guarantee in-order
delivery).

45 Summary

Careful design of the wire format is key to enabling zero-copy RPC data transfer. JJRPC incorporates
typing information while maintaining the layout of the objects, supports linked objects through portable
pointers, allows straight-forward marshaling and unmarshaling, and enables type-checking at the receiving
end. The RPC receiver need not blindly trust the contents of the message: if a message is validated after
unmarshaling, it cannot compromise the integrity of the JVM. In addition, after unmarshaling, the received
objects are contiguous in memory, so fragmentation in the receive buffer occurs on a per-message instead
of a per-object basis.

5 RPC System Architecture

The zero-copy protocol reduces the overheads of data transfer during an RPC to a minimum. The RPC
system architecture discussed in this section (i) uses pre-alocated threads to minimize the overheads of
RPC control transfer, (ii) avoids synchronization (i.e. locking) during the execution of the zero-copy
protocol, and (iii) manages the receive buffer efficiently and integrates the incoming data into the VM
heap, taking garbage collection into account.

51 A Connection-Oriented Design: Proxy Stub
Endpoints

The RPC model based on proxies and stubs is easily Endpt .

supported by a connection-oriented design (Figure 6). A ““CQ[‘D.EQ'E'PP\_ Endpt

connection consists of a pair of endpoints, each _

endpoint is associated with a thread and contains ~ ~  TTTUe-—____
thread-safe  data  structures  for  marshaling,
unmarshaling, and message transmission. Connections
are established between the proxy and the stub at Proxy

binding time and remain open until the binding is Pas

terminated. Since each binding may have multiple

connections, proxies and stubs maintain the connections

in alist. The proxy synchronizes accessesto thelist but  Figure 6. Connection-oriented design.
no synchronization is necessary in the stub.

The semantics of RPC require that a new thread be available for the processing of each incoming RPC.
This is due to the fact that no restrictions are placed on the operations performed in remotely invoked
procedures. By associating a thread with each endpoint, the incoming RPC simply runs on that thread,
eliminating the need for spawning a new thread to handle the call®. Also, because endpoints are thread-safe,
access to most helper data structures, in particular the table mapping type descriptors to the corresponding
local method table and synchronization objects, need not be synchronized®. The connections are specialized
to handle RPC for a particular interface, so incoming RPCs can be dispatched immediately based on the
method identifier. This saves the need for looking up the stub to which the call is addressed.

5 This implementation choice obviously raises scalability issues. A more satisfactory solution would integrate the RPC
needs with the thread system, but unfortunately that is difficult with current off-the-shelf JVMs.

5 Acquiring/releasing locks are still required to look up registered proxies and stubs during interface marshaling and
unmarshaling.



5.2 Mapping Endpointsonto the UNI

The JRPC design fitsinto most UNI architectures because they also adopt a connection-oriented approach
and provide protection on a per-connection basis. Each JRPC endpoint is mapped to the corresponding
UNI abstraction that represents a connection: avirtual interfacein VIA.

Each endpoint has one send-area and two sets of receive-areas that are pinned in physical memory, one for
regular RPC messages and another for arrays sent via RDMA. Each receive-area holds a number of
messages and is gradually filled by the sender (i.e. multiple RPCs can use the same receive-ared). The size
of each area corresponds to the size of the largest message, which is the maximum transfer size (MTU) of
the underlying NI (61Kbytes, that is, 15 pages, in the current implementation). Each endpoint also keeps
one RDMA send descriptor, one receive descriptor for regular RPC messages, and a number of RDMA
send descriptors for array transfers. These descriptors are located in one page of pinned memory. Each
endpoint also holds tables and queues for marshaling and unmarshaling which use about 4 unpinned pages.
Altogether, an endpoint currently consumes about 76 pages of pinned memory and 4 pages of unpinned
memory.

The scalability of the connection-oriented design is an issue given that it consumes a significant amount of
memory. This calls for a careful connection management so that idle connections are terminated in order to
free resources for new connections. This issue has not been addressed by our current implementation.
Commercial UNI products currently focus on clusters with small number of servers, so scalability has not
been a prime concern to us.

Flow-control as well as receive-area management are performed at the sending side. During the
initialization of a connection, the receiver allocates the receive-areas (in effect the receiver dictates the
window size), registers them with the UNI, and transmits their addresses to the sender. From that point on,
the sender decides when to transmit and where to transmit. An RPC message is sent to a new receive area if
the current oneis full. A natification is piggybacked with the message so the receiver can alocate a new
receive-area and piggybacks its address with the reply message. This scheme incurs little overhead because
the receive-area information update is fast and can often be overlapped with communication. There is no
need for extra round-trip messages. Pinning and unpinning a receive-area can be expensive, but the cost is
amortized over a number of messages.

The main overheads in the critical path of the sender are preparing RDMA descriptors for arrays (if any)
and for the RPC message, performing flow-control checks, and posting the descriptors in the UNI send
gueue. When sending arrays, the RPC system ensures that the page(s) on which the arrays are located are
pinned and later unpinned, which can be expensive. Updating the flow control information is fast and can
be overlapped with communication. When receiving a message, the main costs are extracting the header
information from the message, initializing the endpoint for method dispatch and unmarshaling, and
performing flow-control duties such as preparing a new receive buffer. The latter is done infrequently and
only when notified by the sender.

5.3 Memory Management

In order to support the zero-copy protocol, the receive-areas are really part of the Java heap, except that,
when they are allocated, they don't contain any objects. Data is transferred into the areas by the NI and
become valid objects after the unmarshaling procedure.

One concern is that the receive-areas suffer from fragmentation because the header, the PTDT, and some
but not necessarily all of the Java objects in the RPC message become garbage after the RPC is completed.
Currently, J-RPC delegates this problem to the Java garbage collector. If the garbage-collector is non-
copying, the buffer is unpinned and returned to the Java heap. This design requires that the Java heap and
the RPC system share the same free memory pool. If the GC is copying, the area can return to the
endpoint’s free area pool once it contains no live objects. In addition, an implementation can use Java
objectfinalizers or weak pointers (provided by the Java native interface) to keep track of the number of live
objects in the buffer.
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6 Evaluation

We have built a prototype implementation of the RPC system using Microsoft's JVM (MSVM) and
GigaNet's GNN1000 network interface. We chose MSVM over Sun’s JDK because of its performance and
because it provides a faster and easier to use native interface (JDirect). We rejected using freely-available
implementations of JVMs for being inadequate as experimental platforms where good performance is vital
— they are still immature and slow due to sub-optimal JITs.

The implementation is fully functional. It is layered directly on top of the VIA interface provided by the NI,
although TCP/IP sockets can also be used to test and debug the functionality of the system. RPC proxies
and stubs are written in Java manually due to the lack of an automatic stub generator and are compiled with
Sun’s JDK 1.1.4 compiler. The Java classes that implement the native interface used by proxies and stubs
are compiled with Microsoft's Java compiler because of the JDirect support. The experiments were carried
out using two 200 MHz PentiumPro running NT4.0 (SP3) with GNN1000 NI's connected point-to-point.
The PCs have 128 KB of RAM, a L1 data cache of 16KB, and a L2 cache of 512KB.

One problem in the current implementation is that an off-the-shelf JVM does not allow an object allocated
in native memory to be integrated into the Java heap. The garbage-collector of MSVM (a generational,
copying collector) consults a list of internally allocated objects in order to implement Java object
finalization correctly. A Java object that is not in that list becomes invalid after the first occurrence of
garbage collection. We are currently working on this problem and as a temporary work around we actually
copy the final object after it has been unmarshaled. The cost of this extra allocation and copy has been
subtracted from our round-trip and bandwidth measurements.

Table 1a shows the relevant performance information of the GNN1000 NI. Table 1b shows the base
performance of the MS VM in terms of method invocations, interface invocations, and Java-native
crossings. All the measurements are averaged over 100,000 times.

6.1 Baselineperformance

Table 2 shows the base performance of the J-RPC Giganet GNN1000_|time (us)
implementation. The round-trip latency of a null RPC is Pin Page 15.51
18.4ps, 2us higher than the raw UNI round-trip of Unpin Page 16.44
16.4pus. Three 1-word Java to native calls and two Java R/T latency (C) 16.40
interface invocations account for about 1.2us, and - :
another 0.2ps due to the fact that one of the native calls Java operation time (us)
is synchronized. The round-trip latency of an RPC with null method call 0.04
four word-sized arguments rises to 20.3us dug null interface call 0.20
additional native calls for marshaling and 1-word Java --> native call 0.25
unmarshaling. The round-trip latency of an RPC with 3-word Java --> native call 0.28
one interface argument (without reference counting) is  acquire/release lock 0.21

19.7us. An additional lock acquisition/release is needed )

to perform one lookup to the proxy table. This number @ble 1. (a) Relevant numbers of Giganet's
increases as the versioning list increas@serall, these VIA implementation. (b) Base Java
results show that the control transfer overheads amerformance in MSVM

minimal for unloaded machines. The CPU utilization on

both machines during the experiment was near 100%. n~ | R/T Breakdown (us)
Figure 7 shows the latency and bandwidth numbers I %S)l Javg : CJa\gaAfntf L%CIZ(S
when transmitting arrays with RPC. We compare the d : v .
performance of the one-copy and zero-copy artayvWord | 20.3| 2.0 0.4 0.2
transfers ZC andZCT) in J-RPC with those of the raw interface [ 19.7 | 1.0 0.4 0.4
VIA performance, DCOM over VIA using custom Table 2. J-RPC base performance

marshaling, COM over NT’s LRPC, and DCOM over

" Due to space constraints, we've omitted a more detailed analysis of interface passing performance.
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Figure 7. Latency and bandwidth for byte arrays compared to raw VIA, DCOM/VIA and COM LRPC

NT’s DCE/RPC. In theZCT version, the NI reads the data from the client's Java heap and performs and
RDMA to the server’s heap. In tix& version, the Java byte array is copied into the RPC message.

The results show that the bandwidthzefis comparable to that of DCOM/VIA for array sizes smaller than
2KBytes. The bandwidth CT is actually worse compared Z& and DCOM/VIA for array sizes smaller

than 2KBytes. This is attributed to the cost of pinning and unpinning memory for RDMA, which is about
15us each. Nevertheless, the performancgQdf reaches that aZC at about 3.5 KBytes, and is able to
achieve about 74% of the raw VIA bandwidth, compared to the 57% and 43% obtai&T and
DCOM/VIA, respectively, for sizes of around 8KBytes. It is encouraging to see that one can stream 8KB-
blocks of data using Java over a fully type-safe RPC at a cost of no more than 25% of the maximum
achievable bandwidth.

6.2 Zero-Copy Tradeoffs

The goal of these experiments is to evaluate the tradeoffs of zero-copy by comparing the type-safe
marshaling and unmarshaling costs with direct memory-to-memory transfer as well as the costs of
allocating and initializing Java objects at the receiving end. The experiment is conducted “off-wire” in
order to avoid the cache misses due to DMA wfites

The marshaling cosM) is the cost of producing a fully-typed RPC message based the J-RPC wire format.
The unmarshaling costj is the cost of type-checking, converting portable pointers, and “activating” the
objects in an RPC message. Table 3 showMthadU for several sizes of Java byte arrays. There are two
kinds ofM’s for byte arrays: one that copies the byte array into the meddayearfd another for zero-copy
transmission10). It also shows the costs of allocating and initializing a Java byte array from native code
(AC) and from Java, by invoking the one method {C). Table 3 also contains similar data for a Java
linked list of 10, 100, 500 elements, where each element containstaand anext pointer.Ms andUs

are listed on a per-eleme/E) basis.

The overall marshaling/unmarshaling cagk+QU) is compared to the cost of memory-copyitige same

size of dataNI2MXfer). U is compared to the costs of object allocation and initialization. We compare the

size overheads of J-RPC wire format with those of Java's Object Serialization (JOS). We make the

following observations from Table 4:

* For byte arraysMO and U are constant at about 4 and 1.4 us each,Mwnt) is no worse than
M2MXfer (ignoring cache effects) for sizes greater than 5KBytes. This shows that the bottleneck for
large zero-copy data transfers is no longer the marshaling/unmarshaling code, but the memory bus.

8 The penalty of these cache misses will be incurred whether or not zero-copy is used.

9 M2MXfer of linked list is obtained by allocating a block of size N*ElementSize and issuing N mem-copies of an
element’s size each from the corresponding offsets of the block, where N is the number of elements in the list.
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Array Marshal Unmarshal
(bytes) OneCopy | ZeroCopy | ZeroCopy | Alloc&Copy | JavaClone
(M1) (MO) ) (AQ) 9
10 4.19 3.95 1.40 1.46 2.07
100 4.77 3.94 1.47 2.32 2.80
500 8.71 3.95 1.44 5.25 5.43
1000 12.25 3.94 1.48 8.14 8.00
5000 33.58 3.94 1.42 35.58 34.55
L Marshal y . Unrlrl‘larshal /
P/E P/E | Alloc&Copy | JavaClone
(elem) | Total M) Total L) P/E (AC) P/E (IC)
10 35.13| 3.51f 15.03] 1.50 13.74 1.46
100| 351.51] 3.52| 139.18| 1.39 13.43 1.47
500| 2257.36|/ 4.51| 699.97| 1.40 13.43 1.63

Table 3. Marshaling and unmarshaling costs of byte arrays and linked lists

Comparison 1(us) Comparison Protocol Size Java Obj Serial
Array ©M2M Ovhd | Write | Rea | Ovhd
(bytes) ML +U | Mo +U|1+ACU | 1+3CU | 11-Mem | Ov
Xfer (bytes) | (bytes)| (us) |d(us) |(bytes)
10 0.22 559 5.35 2.04 2.48 22 28 38 15 28

100 0.46 6.24] 5.42 2.57 2.90 112 28 65| 61 28
500 1.33] 10.16] 5.40 4.64 4.76 512 28| 185| 265 28
1000 1.82| 13.73] 5.43 6.49 6.39] 1012 28| 328] 523 28
5000 12.07| 35.00f 5.36] 26.04f 25.31] 5012 28] 1492| 2564 28

L Comp 1(P/E, us) | Comp 2(P/E, us)| Protocol Size Java Obj Serial
(elem) MzM M+ U [1+ACU 1+JC/ | Mem | Ovhd Write(us) | Read(us) Ovhd
Xfer U | (bytes) |(bytes) (bytes)
10 0.45 5.02| 10.14] 1.10 192 32 268 226 -86
100 3.85 491 10.65| 1.01f 1632 32 3505 2234 -626
500 33.02 5.911 10.59| 1.00( 8032 32 20830 12020| -3026

Table 4. Analysis of zero-copy costs.

* Unmarshaling can be as much as 25x (for 5Kbyte arrays) more expensive without zero-copy at the
receiving end for byte arrays. For linked lists, the unmarshaling cost can be reduced by 50% or more
with zero-copy, depending on the cost of object allocation and initialization.

e The protocol adds a small constant size overhead to the raw data size. The same overhead is added by
JOS for byte arrays. But for linked lists, JFJRPC sends 16 bytes per element compared to JOS’s 10
bytes. JOS’s per-elemebitis about 17x more expensive than J-RPC's. A large fraction of this gap is
due to the fact that JOS is entirely implemented in Java.

6.3 Recave-AreaBehavior: RPC-based Web Server

We examine the behavior of the receive-area using traces taken from a remote debugging session of the J-
Server, an extensible web server developed at Cornell [CCVE98]. The J-Server run as an extension of
Microsoft's Web Server (IIS 3.0) and forwards HTTP requests using J-RPC (over sockets) to remote

instances of the J-Server running on the programmer’s machine. The RPC interface is a method that takes

an HTTP request class and returns an HTTP response class. The HTTP request class has 20 Java strings for
headers and one byte array for post data.

The traces are from a remote debugging session of a telephony application. We narrowed the traces to a
stretch of about 4 minutes during which 30 HTTP requests were issued, and observed how these requests
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would affect the receive-area. The sizes of each request varied from 196 bytes to 1060 bytes. The amount

of live data in the receive-area at the time of each request’s arrival varied from 0 to 2476 bytes, far less than
the receive-area size (61 Khytes). The fragmentation observed was minimal because an average request
object was garbage-collected before the arrival of the third or fourth subsequent HTTP request.

7 LessonsLearned: VIA and off-the-shelf JVMs

Support for RDMA-writes provided by the VIA architecture has proved essential for zero-copy
transmission of arrays. The sender controls whether the RDMA-write being issued consumes a receive
descriptor in the receiving end, removing the need for matching send/receive descriptors. The decoupling
of RDMA-writes from receives allowed us to issue a series of RDMA-writes for Java arrays to designated
locations in the receive-area before sending a final RDMA-write of RPC message that wakes up the
receiver.

One security concern is that a malicious sender can clobber the receive-areas by not following the flow-
control protocol. VIA provides support for explicitly disabling remote reads and write. A receiver can
protect itself from this threat by dedicating one receive-area per RPC invocation and asking the UNI to
disable remote writes into the buffer before it is freed by the garbage collector. The drawback is that
receive-areas are expensive to maintain and the majority of RPC messages are small, which leaves large
areas of pinned memory unused.

The user-managed address translation for zero-copy transmission of arrays turned out to be very expensive.
For small byte arrays (e.g. 500 bytes), the cost of pinning and unpinning memory makes one-way latencies
120% longer. A custom JVM design could exploit the locality of data transmissions by making the garbage
collector copy live, recently transmitted byte arrays to a pinned section of the heap.

The inability to allocate or “produce” Java objects that can be directly integrated into the JVM’s heap has
been a major impediment. In addition, using object finalizers or weak pointers is a cumbersome way to
receive notification from the garbage collector. A custom JVM can tightly integrate the RPC memory
management with the Java heap: type-checked objects in RPC receive areas become valid Java objects, and
the garbage collector notifies the RPC system when a receive-area can be re-used.

8 Reated Work

The interface-based model is influenced by COM/DCOM, Network Objects, and Sun’s Java RMI, as
discussed in Section 3. Other systems such as Emerald [JLH93] and SOS [SGH+89] aim at providing full
mobility of objects, while systems like Argus [LCJ+87] support reliable distributed service through using
course-grained objects (i.e. processes) and atomic transactions. The main motivation behind J-RPC’s model
is simplicity without compromising the basic client/server computing requirements such as service
revocation and versioning.

A great deal of research projects in the parallel computing such as MRPC [CcvE98], Concert [KC95], and
Orca [BKT92] aimed at improving the performance of RPC on multi-computers. The main theme was to
demonstrate that RPC can be efficiently layered over standard message passing libraries while reducing the
overheads of method dispatch, multi-threading and synchronization. Concert depended on special compiler
support for performance, while MRPC and Orca only relied on compilers for stub generation. Because
multi-computers offers parallel programs dedicated access to the network fabric, security in general was not
an issue.

Many high-performance RPC systems have been designed and implemented for commodity workstations.
In the Firefly RPC system[SB90], data representation is negotiated at bind time and copies are avoided by
direct DMA transfers from a marshaled buffer and by receive buffers statically-mapped into all address
spaces. Amoeba’s [TVRS+91] RPC is built on top of message passing primitives and does not enforce any
specific data representation. In the Peregrine system [JZ91], arguments are passed on client stub’s stack.
The stub traps into the kernel so that the DMA can transfer data directly out of the stack into the server’'s
stub stack. Peregrine also supports multi-packet RPC efficiently. The authors reported a round trip RPC
overhead of 309us on diskless Sun-3/60 connected by 10 Mbit/s Ethernet. About 50% of this overhead was
due to kernel traps, context switches, and receive interrupt handling.
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The RPC overheads of the above systems are dominated by kernel’s involvement in the critical path. A
more recent effort by the SHRIMP Fast RPC project [BF96] shows that an UNI can reduce the RPC

overheads to a minimum. It achieves a round-trip latency of about 9.5us, 1us above the hardware minimum
(between two 60 MHz Pentiums running Linux), and uses a custom format for data streams. The main
motivation behind J-RPC is to investigate whether this kind of performance improvements can also be

applied to a safe language system such as Java.

9 Conclusion

This paper presents a novel wire protocol for typed objects that enables zero-copy data transfer and shows
how arbitrarily complex and linked objects can be marshaled and unmarshaled efficiently in a type-safe
manner. This paper describes J-RPC, a software architecture for RPC in Java on top of a UNI that provides
efficient system support for the wire protocol. The results show that marshaling can be done efficiently and
zero-copy transmission is beneficial for large arrays. By eliminating the need for object allocation and
initialization, zero-copy at the receiving end can reduce the cost of unmarshaling by factors of 1 to 25x,
depending on the cost of the allocation and initialization. The result is that overall RPC performance is
better than off-the-shelf RPC implementations and close to the performance of the raw NI. We have learned
the shortcomings of using an off-the-shelf JVM and are currently working on integrating the J-RPC
architecture into a custom JVM.
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