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Chapter 2: Fair Queueing

2.1. Introduction
Datagram networks have long suffered from performance degradation in the presence of

congestion [44]. The rapid growth, in both use and size, of computer networks has sparked a
renewed interest in methods of congestion control. These methods have two points of imple-
mentation. The first is at the source, where flow control algorithms vary the rate at which the
source sends packets. Flow control algorithms are designed primarily to ensure the presence of
free buffers at the destination host, but we are more concerned with their role in limiting the
overall network traffic, and in providing users with maximal utility from the network.

The second point of implementation is at the switches. Congestion can be controlled at the
switches through routing and queueing algorithms. Adaptive routing, if properly implemented,
lessens congestion by routing packets away from network bottlenecks. Queueing algorithms,
which control the order in which packets are sent and the usage of the switch’s buffer space,
determine the way in which packets from different sources interact with each other. This, in turn,
affects the collective behavior of flow control algorithms. We argue that this effect, which is
often ignored, makes queueing algorithms a crucial component in effective congestion control.

Queueing algorithms can be thought of as allocating three nearly independent quantities:
bandwidth (which packets get transmitted), promptness (when do those packets get transmit-
ted), and buffer space (which and when packets get discarded by the switch). Currently, the
most common queueing algorithm is first-come-first-serve (FCFS). In this scheme, the order of
arrival completely determines the bandwidth, promptness, and buffer space allocations, inextri-
cably intertwining these three allocation issues. Since each user may have a different prefer-
ence for each allocated quantity, FCFS queueing cannot provide adequate congestion
management.

There may be flow control algorithms that can, when universally implemented in a network
with FCFS switches, overcome these limitations and provide reasonably fair and efficient conges-
tion control. However, with today’s diverse and decentralized computing environments, it is
unrealistic to expect universal implementation of any given flow control algorithm. This is not
merely a question of standards, but also one of compliance. First, even if a universal standard
such as ISO [12] were adopted, malfunctioning hardware and software could violate the stan-
dard. Second, there is always the possibility that individuals would alter the algorithms on their
own machine to improve their performance at the expense of others. Consequently, congestion
control algorithms should function well even in the presence of ill-behaved sources.

Unfortunately, irrespective of the flow control algorithm used by the well-behaved sources,
networks with FCFS switches do not have this property. A single source, sending packets to a
switch at a sufficiently high speed, can capture an arbitrarily high fraction of the bandwidth of
the outgoing line. Thus, FCFS queueing is not adequate; more discriminating queueing algo-
rithms must be used in conjunction with source flow control algorithms to control congestion
effectively in noncooperative environments.

Following a similar line of reasoning, Nagle [101] proposed a fair queueing (FQ) algorithm in
which switches maintain separate queues for packets from each individual source. The queues
are serviced in a round-robin manner. This prevents a source from arbitrarily increasing its share
of the bandwidth or the queueing delay received by the other sources. In fact, when a source
sends packets too quickly, it merely increases the length of its own queue. Nagle’s algorithm, by
changing the way packets from different sources interact, does not reward, nor leave sources
vulnerable to, anti-social behavior. This proposal appears to have considerable merit, and this
chapter describes a modification of Nagle’s scheme and explores its implications in some depth.

The three different components of congestion control algorithms introduced above, source
flow control, switch routing, and switch queueing algorithms, interact in interesting and compli-
cated ways. It is impossible to assess the effectiveness of any algorithm without reference to the
other components of congestion control in operation. We will evaluate our proposed queueing
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algorithm in the context of static routing and several widely used flow control algorithms. The aim
is to find a queueing algorithm that functions well in current computing environments. The algo-
rithm might, indeed it should, enable new and improved routing and flow control algorithms (as
shown in Chapters 4 and 5), but it must not require them.

In circuit switched networks, where there are explicit buffer reservation and uniform packet
sizes, it has been established that round robin service disciplines allocate bandwidth fairly
[55, 72]. Recently Morgan [98] has examined the role such queueing algorithms play in control-
ling congestion in circuit switched networks; while his application context is quite different from
ours, his conclusions are qualitatively similar. In other related work, the Datakit queueing algo-
rithm combines round robin service and FIFO priority service, and has been analyzed extensively
[42, 86]. Similar work has been presented by Zhang [154]; her Virtual Clock switch queueing algo-
rithm is essentially identical to the fair queueing algorithm presented here [157]. Zhang analyzes
this algorithm in the context of a proposed resource reservation scheme, the Flow Network,
whereas we do not consider resource reservation.

2.2. Fair Queueing

2.2.1. Motivation
What are the requirements for a queueing algorithm that will allow source flow control

algorithms to provide users with adequate utility even in the presence of ill-behaved sources?
We start with Nagle’s observation that a queueing algorithm must provide protection, so that ill-
behaved sources can only have a limited negative impact on well-behaved sources. Allocating
bandwidth and buffer space in a fair manner, to be defined later, automatically ensures that ill-
behaved sources can get no more than their fair share. This led us to adopt, as our central
design consideration, the requirement that the queueing algorithm allocate bandwidth and
buffer space fairly. Ability to control the promptness, or delay, allocation somewhat indepen-
dently of the bandwidth and buffer allocation is also desirable. Finally, we require that the switch
should provide service that, in some sense, does not depend discontinuously on a packet’s time
of arrival (this continuity condition will be made precise when we define our algorithm). This con-
tinuity requirement attempts to prevent the efficiency of source flow control implementations
from being overly sensitive to timing details (timers are the Bermuda Triangle of flow control algo-
rithms).

Nagle’s proposal does not satisfy these requirements. The most obvious flaw is its lack of
consideration of packet lengths. A source using long packets gets more bandwidth than one
using short packets, so bandwidth is not allocated fairly. Also, the proposal has no explicit
promptness allocation other than that provided by the round-robin service discipline. In addition,
the static round robin ordering violates the continuity requirement. These defects are corrected
in our version of fair queueing, which we define after first discussing our definition of fairness.

In stating our requirements for queueing algorithms, we have left the term fair undefined.
The term fair has a clear colloquial meaning, but it also has a technical definition (actually
several, as discussed in Chapter 1, but only one is considered here). Consider, for example, the
allocation of a single resource among N users. Assume there is an amount µtotal of this resource,
and that each of the users requests an amount ρi and, under a particular allocation, receives an
amount µi. What is a fair allocation? The max-min fairness criterion [43, 55, 115] states that an allo-
cation is fair if (1) no user receives more than its request, (2) no other allocation scheme satisfying
condition 1 has a higher minimum allocation, and (3) condition 2 remains recursively true as we
remove the minimal user and reduce the total resource accordingly, i.e. µtotal←µtotal−µmin. This con-
dition reduces to µi = MIN (µfair ,ρi) in the simple example, with µfair, the fair share, being set so that

µtotal =
i = 1
Σ
N

µi. This concept of fairness easily generalizes to the multiple resource case [115]. Note

that implicit in the max-min definition of fairness is the assumption that the users have equal rights
to the resource.
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In this application, the bandwidth and buffer demands are clearly represented by the
packets that arrive at the switch. (Demands for promptness are not explicitly communicated,
and we return to this issue later.) However, it is not clear what constitutes a user. The user associ-
ated with a packet could refer to the source of the packet, the destination, the source-
destination pair, or even refer to an individual process running on a source host. Each of these
definitions has limitations. Allocation per source unnaturally restricts sources such as file servers,
which typically consume considerable bandwidth. Ideally, the switches could know that some
sources deserve more bandwidth than others, but there is no adequate mechanism for estab-
lishing that knowledge in today’s networks. Allocation per receiver allows a receiver’s useful
incoming bandwidth to be reduced by a broken or malicious source sending unwanted packets
to it. Allocation per process on a host encourages human users to start several processes com-
municating simultaneously, thereby evading the original intent of fair allocation. Allocation per
source-destination pair allows a malicious source to consume an unlimited amount of
bandwidth by sending many packets all to different destinations. While this does not allow the
malicious source to do useful work, it can prevent other sources from obtaining sufficient
bandwidth.

Overall, allocation on the basis of source-destination pairs, or conversations, seems the best
tradeoff between security and efficiency and will be used here. However, our treatment will
apply to any of these interpretations of the notion of user. Given the requirements for an ade-
quate queueing algorithm, coupled with the definitions of fairness and user, we now turn to the
description of our fair queueing algorithm.

2.2.2. Definition
It is simple to allocate buffer space fairly by dropping packets, when necessary, from the

conversation with the largest queue. Allocating bandwidth fairly is less straightforward. Pure
round-robin service provides a fair allocation of packets sent, but fails to guarantee a fair alloca-
tion of bandwidth because of variations in packet sizes. To see how this unfairness can be
avoided, we first consider a hypothetical service discipline where transmission occurs in a bit-by-
bit round robin (BR) fashion (as in a head-of-queue processor sharing discipline). This service dis-
cipline allocates bandwidth fairly since at every instant in time each conversation is receiving its
fair share. Let R (t) denote the number of rounds made in the round-robin service discipline up to
time t (R (t) is a continuous function, with the fractional part indicating partially completed
rounds). Let Nac(t) denote the number of active conversations, i.e. those that have bits in their

queue at time t. Then,
∂t
∂Rhhh =

Nac(t)
µhhhhhhh , where µ is the speed of the switch’s outgoing line (we will, for

convenience, work in units such that µ = 1). A packet of size P whose first bit gets serviced at time
t0 will have its last bit serviced P rounds later, at time t such that R (t) = R (t0)+P. Let ti

α be the time
that packet i belonging to conversation α arrives at the switch, and define the numbers Si

α and
Fi

α as the values of R (t) when the packet started and finished service. With Pi
α denoting the size

of the packet, the following relations hold: Fi
α = Si

α+Pi
α and Si

α = MAX (Fi −1
α, R (ti

α)). Since R (t) is a
strictly monotonically increasing function whenever there are bits waiting to be sent at the
switch, the ordering of the Fi

α values is the same as the ordering of the finishing times of the vari-
ous packets in the BR discipline.

Sending packets in a bit-by-bit round robin fashion, while satisfying our requirements for an
adequate queueing algorithm, is obviously unrealistic. We hope to emulate this impractical
algorithm by a practical packet-by-packet transmission scheme. Note that the functions R (t)
and Nac(t) and the quantities Si

α and Fi
α depend only on the packet arrival times ti

α and not on
the actual packet transmission times, as long as we define a conversation to be active when-
ever R (t) ≤ Fi

α for i = MAX ( j | tj
α ≤ t). We are thus free to use these quantities in defining our packet-

by-packet transmission algorithm. A natural way to emulate the bit-by-bit round-robin algorithm
is to let the quantities Fi

α define the sending order of the packets. Our packet-by-packet
transmission algorithm is simply defined by the rule that, whenever a packet finishes transmission,
the next packet sent is the one with the smallest value of Fi

α. The continuity requirement men-
tioned earlier can be restated precisely as demanding that the relative transmission priorities
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depend continuously on the packet arrival times. The fact that the Fi
α’s depend continuously on

the ti
α’s means that our algorithm satisfies this continuity requirement.

In a preemptive version of this algorithm, newly arriving packets whose finishing number Fi
α

is smaller than that of the packet currently in transmission preempt the transmitting packet. For
practical reasons, we have implemented the nonpreemptive version, but the preemptive algo-
rithm (with resumptive service) is more tractable analytically. Clearly the preemptive and
nonpreemptive packetized algorithms do not give the same instantaneous bandwidth alloca-
tion as the BR version. However, for each conversation the total bits sent at a given time by these
three algorithms are always within Pmax of each other, where Pmax is the maximum packet size
(this emulation discrepancy bound is proved in reference [50]). Thus, over sufficiently long
conversations, the packetized algorithms asymptotically approach the fair bandwidth allocation
of the BR scheme.

Recall that a user’s request for promptness is not made explicit. The IP protocol [108] does
have a field for type-of-service, but not enough applications make intelligent use of this option to
render it a useful hint. Consequently, promptness allocation must be based solely on data
already available at the switch. One such allocation strategy is to give more promptness (less
delay) to users who utilize less than their fair share of bandwidth. Separating the promptness allo-
cation from the bandwidth allocation can be accomplished by introducing a nonnegative
parameter δ, and defining a new quantity, the bid Bi

α, as Bi
α = Pi

α+MAX (Fi −1
α, R (ti

α)−δ). The quanti-
ties R (t), Nac(t), Fi

α, and Si
α remain as before, but now the sending order is determined by the B’s,

not the F’s. The asymptotic bandwidth allocation is independent of δ, since the F’s control the
bandwidth allocation, but the algorithm gives slightly faster service to packets belonging to an
inactive conversation. The parameter δ controls the extent of this additional promptness. Note
that the bid Bi

α is continuous in ti
α, so that the aforementioned continuity requirement is met.

The role of this term δ can be seen more clearly by considering the two extreme cases δ = 0
and δ = ∞. If an arriving packet has R (ti

α) ≤ Fi −1
α, then the conversation α is active (i.e. the

corresponding conversation in the BR algorithm would have bits in the queue). In this case, the
value of δ is irrelevant and the bid number depends only on the finishing number of the previous
packet. However, if R (ti

α)>Fi −1
α, so that the α conversation is inactive, the two cases are quite dif-

ferent. With δ = 0, the bid number is given by Bi
α = Pi

α+R (ti
α), and is completely independent of the

previous history of user α. With δ = ∞, the bid number is Bi
α = Pi

α+Fi −1
α and depends only the previous

packet’s finishing number, no matter how many rounds ago. For intermediate values of δ,
scheduling decisions for packets of inactive conversations depends on the previous packet’s
finishing round as long as it was not too long ago, and δ controls how far back this dependence
goes.

Recall that when the queue is full and a new packet arrives, the last packet from the
conversation currently using the most buffer space is dropped. We have chosen to leave the
quantities Fi

α and Si
α unchanged when we drop a packet. This provides a small penalty for ill-

behaved hosts, in that they will be charged for throughput that, because of their own poor flow
control, they could not use. Recent work [57] raises questions about the desirability of this aspect
of our algorithm.

2.2.3. Performance
The desired bandwidth and buffer allocations are completely specified by the definition of

fairness, and we have demonstrated that our algorithm achieves those goals. However, we
have not been able to characterize the promptness allocation for an arbitrary arrival stream of
packets. To obtain some quantitative results about the promptness, or delay, performance of a
single FQ switch, we consider a very restricted class of arrival streams in which there are only two
types of sources. There are FTP-like file transfer sources, which always have ready packets and
transmit them whenever permitted by the source flow control (which, for simplicity, is taken to be
sliding window flow control), and there are Telnet-like interactive sources, which produce pack-
ets intermittently according to some unspecified generation process. What are the quantities of
interest? An FTP source is typically transferring a large file, so the quantity of interest is the transfer
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time of the file, which for asymptotically large files depends only on the bandwidth allocation.
Given the configuration of sources this bandwidth allocation can be computed a priori by using
the fairness property of FQ switches. The interesting quantity for Telnet sources is the average
delay of each packet, and it is for this quantity that we now provide a rather limited result.

Consider a single FQ switch with N FTP sources sending packets of size PF, and allow a single
packet of size PT from a Telnet source to arrive at the switch at time t. It will be assigned a bid
number B = R (t)+PT−δ; thus, the dependence of the queueing delay on the quantities PT and δ is
only through the combination PT−δ. We will denote the queueing delay of this packet by φ(t),
which is a periodic function with period NPF. We are interested in the average queueing delay ∆

∆≡
NPF

1hhhhh
0
∫

NPF

φ(t)dt

The finishing numbers Fi
α for the N FTP’s can be expressed, after perhaps renumbering the

packets, by Fi
α = (i+l α)PF where the l’s obey 0 ≤ l α<1. The queueing delay of the Telnet packet

depends on the configuration of l’s whenever PT<PF . One can show that the delay is bounded
by the extremal cases l α = 0 for all α and l α = α/N for α = 0,1,...,N −1. The delay values for these
extremal cases are straightforward to calculate; for the sake of brevity we omit the derivation
and merely display the result below. The average queueing delay is given by ∆ = A (PT−δ),
where the function A (P), the delay with δ = 0, is defined below (with integer k and small con-
stant ε, 0 ≤ ε<1, defined via PT = PF(k+ε)/N).

Preemptive

A (P) = N (P −
2

PFhhh) for P ≥ PF

N (P −
2

PFhhh) ≤ A (P) ≤
2PF

NP2
hhhhh for PF ≥ P ≥

2

PFhhh(1 +
N
1hh)

2PF

1hhhh(
2

PFhhh + N (P −
2

PFhhh))2 ≤ A (P) ≤
2PF

NP2
hhhhh for

2

PFhhh(1 +
N
1hh) ≥ P ≥

2

PFhhh(1−
N
1hh)

0 ≤ A (P) ≤
2PF

NP2
hhhhh for

2

PFhhh(1 −
N
1hh) ≥ P

Nonpreemptive

A (P) = N (P −
2

PFhhh) for P ≥ PF

N (P −
2

PFhhh) ≤ A (P) ≤ (
2

PFhhh)
I
K
L
1+

N
1hh[k2 + k (2ε−1)]

M
N
O

for PF ≥ P ≥
2

PFhhh(1 +
N
1hh)

2

PFhhh ≤ A (P) ≤ (
2

PFhhh)
I
K
L
1+

N
1hh[k2 + k (2ε−1)]

M
N
O

for
2

PFhhh(1 +
N
1hh) ≥ P

A more detailed analysis of the single server case can be found in reference [23]. What
happens in a network of FQ switches? There are few analytical results here, but Hahne [55] has
shown that for strict round robin service switches and only FTP sources there is fair allocation of
bandwidth (in the multiple resource sense) when the window sizes are sufficiently large. She also
provides examples where insufficient window sizes, but much larger than the pipeline depth of
the communication path, can result in unfair allocations. It can be shown that both of these pro-
perties hold for our fair queueing scheme.

Chapters 4 and 5 analyze networks of FQ switches from the point of view of a single conver-
sation. While this analysis cannot explain overall network dynamics, it is sufficient to model and
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control a single conversation. Simulation results for networks of FQ switches are presented in
Chapter 6.

2.3. Discussion
In an FCFS switch, the queueing delay of packets is, on average, uniform across all sources

and directly proportional to the total queue size. Thus, achieving ambitious performance goals,
such as low delay for Telnet-like sources, or even mundane ones, such as avoiding dropped
packets, requires coordination among all sources to control the queue size. Having to rely on
source flow control algorithms to solve this control problem, which is extremely difficult even in a
maximally cooperative environment and impossible in a noncooperative one, merely reflects
the inability of FCFS switches to distinguish between users and to allocate bandwidth, prompt-
ness, and buffer space independently.

In the design of the fair queueing algorithm, we have attempted to address these issues.
The algorithm does allocate the three quantities separately. Moreover, the promptness alloca-
tion is not uniform across users and is somewhat tunable through the parameter δ. Most impor-
tantly, fair queueing creates a firewall that protects well-behaved sources from their uncouth
brethren. Not only does this allow the current generation of flow control algorithms to function
more effectively, but it creates an environment where users are rewarded for devising more
sophisticated and responsive algorithms. The game-theoretic issue first raised by Nagle, that one
must change the rules of the switch’s game so that good source behavior is encouraged, is cru-
cial in the design of switch algorithms [101]. A formal game-theoretic analysis of a simple switch
model (an exponential server with N Poisson sources) suggests that fair queueing algorithms
make self-optimizing source behavior result in fair, protective, nonmanipulable, and stable net-
works; in fact, they may be the only reasonable queueing algorithms to do so [124]. Our calcu-
lations show that the fair queueing algorithm is able to deliver low delay to sources using less
than their fair share of bandwidth, and that this delay is insensitive to the window sizes being
used by the FTP sources.

The protection property of the FQ algorithm enables a new class of flow control algorithm.
Since each user gets a fair share of the network bandwidth, the stream of acknowledgments
received by the source, is, to a first approximation, dependent only on that source’s own
behavior. Hence, by monitoring the acknowledgment stream, the source can optimize its send-
ing rate regardless of the behavior of the other sources. This idea is explained in greater detail in
Chapters 4 and 5.

In this chapter we have compared our fair queueing algorithm with only the standard first-
come-first-serve queueing algorithm. We know of three other widely known queueing algorithm
proposals. The first two were not intended as a general purpose congestion control algorithms.
Prue and Postel [113] have proposed a type-of-service priority queueing algorithm, but alloca-
tion is not made on a user-by-user basis, so fairness issues are not addressed. There is also the
Fuzzball selective preemption algorithm [94, 95] whereby the switches allocate buffers fairly (on a
source basis, over all of the switch’s outgoing buffers). This is very similar to our buffer allocation
policy, and so can be considered a subset of our FQ algorithm. The Fuzzballs also had a form of
type-of-service priority queueing but, as with the Prue and Postel algorithm, allocations were not
made on a user-by-user basis. The third policy is the Random-Dropping (RD) buffer management
policy in which the service order is FCFS, but when the buffer is overloaded, the packet to be
dropped is chosen at random [90]. This algorithm tends to allocate bandwidth to cooperative
sources more or less evenly. However, it has been shown that the RD algorithm does not provide
max-min fair bandwidth allocation, is vulnerable to ill-behaved sources, and is unable to provide
reduced delay to conversations using less than their fair share of bandwidth [39, 56, 125, 154].

There are two objections that have been raised in conjunction with fair queueing. The first is
that some source-destination pairs, such as file server or mail server pairs, need more than their
fair share of bandwidth. This can achieved by weighted fair queueing, described below. Assign
each source-destination pair a number n α which represents how many queue slots that conver-
sation gets in the bit-by-bit round robin. We now redefine Nac as Nac = Σn α with the sum over
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all active conversations, and Pi
α as 1/n α times the true packet length. With these changes, the

earlier algorithm allocates each user a share of the bandwidth proportional to its weight. Of
course, the truly vexing problem is the politics of assigning the n α. Note that, while we have
described an extension that provides for different relative shares of bandwidth, one could also
define these shares as absolute fractions of the bandwidth of the outgoing line. This would
guarantee a minimum level of service for these sources, and is very similar to the Virtual Clock
algorithm of Zhang [154].

The other objection is that fair queueing requires the switches to be smart and fast. There is
the technological question of whether or not one can build FQ switches that can match the
bandwidth of fibers. If so, are these switches economically feasible? Work by Restrick and Kal-
manek at AT&T Bell Laboratories has shown that it is possible to build fair queueing servers that
switch ATM cells at 1.2 Gbps [69]. This indicates that building smarter switches does not neces-
sarily have to make them slower.
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