Goal: Computationally Efficient Knowledge

Representation Systems

Knowledge representation system:

Knowledge base contains facts about the world.
“Commonsense knowledge”

Inference mechanism infers new facts from stored ones.
Make implicit knowledge explicit.

Modular design for intelligent systems.
Modules for perception, action, etc. query
query the knowledge representation system
as needed.

Representing Knowledge

lLLogic: propositional, first-order, terminological, ...
Declarative.
Well understood semantics.
Used for commonsense theories:
Ontology of liquids (Hayes 1985)
Qualitative process theory (Forbus 1984)

Central problem:
Inference is intractable.

Expressiveness versus Complexity

Direct tradeoff between expressiveness and
tractability of a representation language.
(Levesque and Brachman 1985)

Compare
First-order logic: expressive but intractable.
Relational databases: restricted but efficient.
Problem:
Standard databases expressively inadequate for
disjunctive and/or incomplete information.
Wetness(h') A Episode(h,h') =
Merewet(h) V Drying(h) vV Spreading(h)
(Hayes 1985)

Dealing with Complexity

1. Restricting the language
(Levesque and Brachman 1985; Nebel et al. 1990)
Example: restricted terminological logics.
Disadvantage: sublanguage often not sufficiently
expressive.

2. Incomplete reasoning: non-standard semantics
(Levesque 1984; Frisch 1986)
Example: four-valued semantics (no modus ponens).
Disadvantage: inference mechanism often too weak.

3. Incomplete reasoning: resource bounded
(Doyle and Patil 1991)
Example: run theorem prover for limited amount
of time.
Disadvantage: unclear what can / cannot be inferred.

4. Vivid reasoning
(Levesque 1986)
Example: use defaults to remove disjunctive
information. (Etherington et al 1989; Selman 1990)
Disadvantage: unsound.

Alternative approach:
5. Knowledge Compilation

Knowledge Compilation

Translate knowledge given in some general representation
language into a tractable, restricted language.

source language — target language

Exact translation often not possible.

Can approximate original theory
yet retain soundness & completeness
In answering queries.

Outline

Propositional case
Defining Horn approximations
Properties
Algorithms and complexity
Extensions
Other tractable target languages
Terminological logics

Propositional Theories

Source: clausal propositional theories.
Inference: NP-Complete.
Target: Horn theories.
Inference: linear time.

Notation

Clause: disjunction of literals.
Clausal theory: conjunction of clauses (CNF).
Horn clause: at most one positive literal.
Example: (maV =bV c)
Equivalently: (aAb) Dc
Negative clause: (—a V —b)
Model (of a theory): a truth assignment (under which
the theory evaluates to ‘“true”).

Horn Approximations: Model Theory

4 models of 2,)

a models of X T\

models of 2,

2 = original CNF theory.
2 |p = Lower-bound Horn approximation.
> b = Upper-bound Horn approximation.

Definition: Horn Bounds

Where 2 is a set of clauses
and M(X) is the set of models of X
(satisfying truth assignments)
Define
> |p IS @ Horn Lower-bound of X
2 ,p IS @ Horn Upper-bound of X
iff >, and >, are sets of Horn clauses and
M(Zp) € M(X) € M(Zyp)
equivalently
2hFEXFE X

Lower bound
Upper bound

fewer models = logically stronger
more models = logically weaker

11

> gib is @ Greatest Horn lower-bound (GLB)
2 4ib IS @ Horn lower-bound, and
No set >’ of Horn clauses such that
M(Zgip) C M(X') C M(X).
Equivalently: a weakest Horn theory that implies 3.
Not unique for 2.

> ub IS a Least Horn upper-bound (LUB)
> ub IS @ Horn upper-bound, and
No set >’ of Horn clauses such that
M(X) C M(Z') C M(Z).
Equivalently: strongest Horn theory implied by 2.
Is unique for 2.

2 4ip @nd 2y, are Horn approximations of 2.

12

Example

> =(-aVe)AN(=bVe)A(aVDd)

Horn lower-bound: a AbAc

GLBs: aNc and bAc
Horn upper-bound: (maVe¢) A(=bV c)
LUB: c
aANbAc = aNc E X E ¢ E (—ave)A(=bVe)

GLB LUB

13

Using Approximations for Query Answering
> Ea”

o If >,,p = athen X = a.
(Linear time.)
o If >4 = a then X = a.
(Linear time.)
e Otherwise, use > directly.
(Or return “don’t know.”)

Queries answered in linear time lead to
improvement in overall response time
to a series of queries.

14

Query Languages

Query language can be more expressive than
target language.

Horn Approximations:
Query can be arbitrary CNF formula.
Answer in linear time.

15

Properties of Horn Approximations

LUB can be viewed as an abstraction.

Consider background knowledge:
doctor(X) D professional(X)
lawyer(X) D professional(X)

Fact:
doctor(Jill) V laywer(Jill)

LUB is
professional(Jill)
doctor(X) D professional(X)
lawyer(X) D professional(X)
— abstraction of facts 4+ original background knowledge.
Generalizes (Borgida and Etherington 1989)

16

GLB can be viewed as a specialization.

doctor(Jill) V laywer(Jill) becomes doctor(Jill)
(in one of the GLBS).

As a counterexample.
2 glb = lawyer(Jill) implies
> = lawyer(Jill)
2 glb = doctor(Jill) provides no information.

Compare geometry theorem proving (Gelernter 1969)

As a positive example.
Jump to conclusion that Doctor(Jill).
Not sound when used in this way.
GLB is a set of models, so generalizes vivid reasoning
(Levesque 1986), mental models (Johnson-Laird 1980).

17

Computing Horn Approximations

Theorem: Let > be a set of clauses. The GLB of > is
consistent iff X is consistent. (Similarly for LUB.)

Computing GLB or LUB is intractable.
(Provided P # NP)
Approximations can be used to check consistency.

View as compilation process:
Cost amortized over total set of queries.

18

Computing the GLB

Horn-strengthening:
pV qV —r has Horn-strengthenings
pV —r and
qV —r

Horn-strengthening of a theory:
(pVqV-r)A(sVt) has strengthening
(pV-r)As
(among others).

Theorem: Each GLB of > is equivalent to some
Horn-strengthening of 2_.

Algorithm: search space of Horn-strengthenings.

19

Lemma

Where > is a Horn theory, and C' is any clause:
If > entails C,
then >4 entails some Horn-strengthening of C'.

Proof
By completeness of resolution, there is some clause C’ that
follows from X by resolution, such that ¢’ C C.

Because the resolvent of Horn clauses is Horn, C’ is Horn.
T herefore there is some Cy that is a Horn-strengthening of

C such that ¢/ C Cy C C, and so = Cq.

20

GLB = Weakest Horn-strengthening

2 4ip IS HOrn, so by lemma
Y 4ip entails some Horn-strengthening X' of X.

Sgp E X EL
But >4, is a greatest (weakest) Horn lower-bound.

Therefore, g, =X,

21

procedure GLB(X)
/* Computes some Horn greatest lower-bound of X */
begin
L = the lexicographically first
Horn-strengthening of >
begin loop
L' := lexicographically next
Horn-strengthening of >
If none exists then exit.
if L=L'"then L .= L'
end loop
remove subsumed clauses from L
return L
end

22

Example of GLB Algorithm

> =(-aVe)AN(maVDbVeVd)

Horn-strengthenings:
Li=(-aVve)A(—aVb)
L= (-aVe)A(—-aVe)
Lz = (-aVec)A(—aVd)

Because
Ly = Lo

Ly = L3
algorithm returns Lo

23

Properties of the GLB algorithm

e Anytime.
Algorithm may be stopped at any time to

find a lower-bound (not necessary a GLB).

Lower-bound improves over time.

e Length of GLB < length of original theory.

24

Computing the LUB

Basic Strategy:
Compute all resolvents of original theory,
and collect all Horn resolvents.

Problem:
Even a Horn theory can have exponentially
many Horn resolvents.

Solution:
Resolve only pairs of clauses containing
at least one non-Horn clause.
Method is complete. (Selman and Kautz 1991)

25

Example of Computing LUB

> =(-aVbA(=bVe)A(aVb)

Resolvents:
(1)+@)= b
(2)4+(3)= aVe
Answer is
(maVDO)A(=bVec)AD

=bAc

Algorithm does not resolve (1) 4+ (2)

26

Properties of the LUB algorithm

e Anytime.
e NO space blow-up for Horn.

e Can construct non-Horn theories with
exponentially larger LUB.

New letters can sometimes reduce size.

27

Explosion: an example

2 IS
(CompSci A Phil A Psych) D CogSci
ReadsMcCarthy D (CompSci V CogSci)
ReadsDennett D (Phil V CogSci)
ReadsKosslyn D (Psych V CogSci)
LUB is

(CompSci A Phil A Psych) D CogSci
(CompSci A Phil A ReadsKosslyn) D CogSci
(CompSci A ReadsDennett APsych) D CogSci

(ReadsMcCarthy A ReadsDennett A ReadsKosslyn) D CogSci
Size LUB O(2")
No smaller equivalent set of clauses exists!

28

Shrinking LUB: introduce new concepts

> + CompSciBuff = (CompSci V ReadsMcCarthy)
PhilBuff = (Phil V ReadsDennett)
PsychBuff = (Psych V ReadsKosslyn)

LUB becomes
(CompSciBuff A PhilBuff A PsychBuff) D CogSci
CompSci O CompSciBuff
ReadsMcCarthy O CompSciBuff
Phil O PhilBuff
ReadsDennett DO PhilBuff
Psych O PsychBuff
ReadsKosslyn O PsychBuff

Size LUB O(n).

29

e New LUB and original LUB are equivalent on queries
in Lang(X).

e New concepts capture what certain pairs of propositions
have in common.
E.g., CompSciBuff = (CompSci V ReadsMcCarthy)

e SO, new concepts are useful generalizations for obtaining
a tractable approximation of the original theory:
Forming concepts for fast inference.

QUESTION: does a small (perhaps non-obvious!) representation
of the LUB always exist?

30

What Do We Mean by “Size" 7

There are many equivalent clausal theories
> =3 yet ¥’ exponentially larger
Perhaps: ‘size” will mean size of
smallest equivalent set of clauses
Not sufficient for proving that something
IS inherently large: there may be
Clever ways to encode a large set of clauses
eStructure sharing,
eSchemas, etc.
Consider then any representation of the Horn LUB
that enables polytime inference

31

The Answer:

There do exist theories whose Horn LUB
IS inherently large:

Any representation of the LUB that enables
polynomial time inference is
exponentially larger than the theory!

32

Proof: Circuit Complexity

Non-uniform P: for every n, there is some polysize
circuit for inputs of length n
(equiv: some polytime algorithm)
— same polynomial for all n.

Proof of inherently intractable LUB'’s:
Can construct a single particular theory
whose LUB can be used to solve 3-SAT
for any formula over m variables

(for each m).

33

p1 Vp2Vp3
—p1 Vpo2Vp3

2m)3 | : specify an
(2m)> inputs: sp ._< y LUB(E) o
3-SAT over m variables 1= unsatisfiable

Pm—2V Pm—1V DPm

Circuit computes “1" iff LUB(X) entails
that not all the inputs set to “1” can hold
simultaneously.

34

Universal 3-SAT Theory

For 3-SAT formulas over a given set of m variables,

define:
> =AN{xVyVzV-oig: | x,yx are literals }

where the ¢’ variables are new

Any 3-CNF formula over m variables can be
specified as a single clause made up

of the i (input) variables

35

Example

(p1 V= p3Vps) A(=psVp3V -—pg) is unsatisfiable

hii

(P1V =03V p5 V 2ippaps) A (TD2 V 3V 24 V Dipsp.pa)
Tlp13ps Y "Vpapsba
iff
LUB(X) = ~ipp3ps V “ipapspa

Note: query is Horn, so LUB is complete!

36

Relation to the Polynomial Hierarchy

Existence of small LUB’s for these universal theories
would imply NPCnon-uniform P

Weaker condition than P=NP:
Polynomial hierarchy collapses to 2.5

Still considered to be pretty unlikely

37

Implications

May choose LUB from a different tractable
class, that does guarantee it is small
e k-Horn — bound length of Horn clauses
O(n*) max size
e 2-SAT — conjunction 2 literal clauses
Not Horn — (p Vv ¢) okay
O(n?) max size
Could try to compile to several different tractable
classes, pick most powerful class that is small
for the particular input theory
GLB and LUB may be different kinds of theories

38

Extensions

Other target languages:
e 2-SAT (O(n?) max size).
e k-Horn (O(n*) max size).
e Clauses not containing given set of
“irrelevant” propositions.
“Compiling away’ parts of original theory.

Similar to (Subramanian and Genesereth 1987).

First-order source and target languages:
Algorithms may not terminate.
GLB algorithm: interleave comparison of Horn-
strengthenings and search.

39

Other Formalisms: Terminological Logics

Terminological logics (Classic, Brachman et al):
FL: intractable.
FL~: tractable (no role restrictions).

Compile FL concepts to FL~ concepts.

person

)
(AND person (ALL (RESTR friend male)

(AND doctor (SOME specialty)))
“person whose every male friend is a doctor with a specialty”

fr
(AND person (ALL friend (AND doctor (SOME specialty))))

40

Query Language: Terminological Logics

Recent work by Lenzerini, et al. (1991) shows that
Can determine subsumption between
JF L concept and
F L~ concept
in polynomial time.

Again, query language can be more expressive
than target language.

41

Does Knowledge Compilation Really Work?

e Can the bounds answer “hard” queries —
or are such queries easy for original theory?

e Is there empirical evidence of savings?
Classes considered:
Hard, randomly generated theories
- relatively unstructured data.
Planning problems
- highly structured data.

e Are costs always shifted to compilation time —
or can the compilation process itself be “paid off” ?

42

Formal Argument for Savings

Trivial case: if KB is inconsistent, compilation
detects this — all queries then are ‘free’”.
A more interesting case: Suppose KB is consistent,
logically equivalent to a Horn theory, but
is not in Horn form.
e T here cannot exist a theorem prover that
efficiently handles this special case
(Valiant and Vazirani 1986).
e However, after compilation all queries
can be answered in linear time.

Therefore: KC does not just “skim’” easy queries!

43

Hard Random T heories

Test set: 40 random 3-CNF theories, ranging in
size from 75 to 200 variables.

Ratio of 4.3 clauses per variable yields
computationally hard formulas.
(Mitchell, Selman, and Levesque 1992)

We computed the unit clause LUB and GLB
Weaker than the Horn LUB and GLB, but easier
to compute and analyze.
Note: unit clause bounds are also Horn bounds,
but not the best Horn bounds.

44

Percent of Queries Answered

Based on the size of the bounds obtained, we can

exactly compute the percentage of all

randomly generated queries that are answered
by the bounds alone.

vars | clauses || size unit | size unit || percent queries answered
LUB GLB unit | binary ternary

75 322 53 71 || 100% 85% 88%
100 430 57 93 || 100% | 76% 79%
150 645 62 139 || 100% 66% 66%
200 860 132 188 || 100% | 83% 85%

45

Execution Time

Implemented query algorithm, using the program
Tableau (Crawford and Auton 93),
a version of the Davis-Putnam procedure,
to handle queries on which bounds fail.

Time in seconds to answer 1000 random queries
(SGI Challenge).

vars | clauses || bounds and tableau tableau only
binary ternary || binary | ternary
75 322 51 48 258 248
100 430 54 45 368 341
150 645 61 59 1286 1084
200 860 55 51 || 12962 8632

46

Random Formulas: Summary

Knowledge compilation might not be expected

to work on unstructured, random formulas.

However: even unit clause bounds gave great
computational savings: on average,
over 100X faster on 3-literal queries.

On 200 variable theories, compilation time
(approx. 1 hour) completely paid for
after 420 3-literal queries —
outperformed original goal of simply
shifting execution time off-line.

47

Planning Problems

Domain: Robot moving in a graph-like environment.
(Pollack 1989; Hendler 1990)
Moving to certain nhodes consumes resources,
making other nodes inaccessible (“forbidden pairs’).

Encoded in the planning as satisfiability framework
(Kautz and Selman, 1992).
Plans correspond to models of the theory.

Planning is NP-complete (not just shortest-path).

48

Example: In going from a to g in at most 5
can the robot visit j7

Answer: No (by length of shortest path).
a b C

steps,

49

Example: In going from a to g in at most 5 steps,
can the robot visit b7

Answer: Yes (a model contains path a-b-d-e-f-g).
a b C

50

Example: In going from a to g in at most 10 steps,
must the robot visit e?
Answer: Yes (forbidden pairs eventually block all routes

through area labeled “MAZE").
a b C

51

Compiling SAT Encoding of Planning Domain

Axioms for mapworld shown in previous figures use
576 variables,
29,576 clauses.

Compiling unit bounds takes 1.2 hours.

Query test sets:
RandBin — 500 random binary queries.
RandEver — 400 random binary queries, restricted
to predicates of the form
“is the robot ever at (a specified) point?”
Hand — 5 hand-constructed “non-obvious” queries.

52

Planning Results

RandBin | RandEver | Hand

number of queries 500 400 5

theory > only time 2013 8953 | 1071
KC_Query time 4164 3748 439

>+LUB time 580 840 6.9

KC using ~+LUB time 283 617 6.8
bounds only time 5 6 1

number answered by bounds 376 144 2

Times in seconds, on an SGI Challenge.

Theory > has 576 variables, 29,576 clauses.

“>4+LUB time” — using Tableau on conjunction
of original theory and its LUB.

Observations
e Basic KC_Query algorithm increased speed by 2X to 4X.

e Similar benefit gained by simply conjoining theory
and its LUB, and using a complete theorem prover.

e Best performance: first test against bounds; if
bounds fail, test against theory+LUB — 10X speedup.

o If willing to ignore queries not answered by the
bounds — 1000X speedup, handles 36% — 75% of
the queries.

Substitute sensing for theorem proving?

54

Conclusions

We have begun to evaluate computational savings
possible with knowledge compilation by theory
approximation.

e Bounds answer many queries that would be hard
to answer with any complete theorem prover:
success in shifting computational cost off-line.

e Significant speed-up occurs on both unstructured
(random) and structured (planning) problems.

e Good performance obtained with unit clause
approximations.

e Open question: is additional cost of computing
stronger Horn bounds worthwhile?

55

Summary and Conclusions

Introduced knowledge compilation:
A proposal towards obtaining efficient
knowledge representation systems.

Features:

e NO restrictions on expressiveness of source language.

e Approximations based on two delimiting bounds.
Generalizes other work on abstraction and
“model-based’ reasoning.

e Sound and complete inference.

e Efficiency improves over time.

e Generality (any extensional semantics).

56

