Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

Panda: A Portable Platform to Support Parallel
Programming Languages*

Raoul Bhoedjang Tim Riihl Rutger Hofman
Koen Langendoen Henri Bal
Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science
{raoul, tim, rutger, koen, bal}@cs.vu.nl

Frans Kaashoek
MIT Laboratory for Computer Science, Cambridge MA
kaashoek@amsterdam.lcs.mit.edu

Abstract

Current parallel programming languages require advanced run-time support to im-
plement communication and data consistency. As such run-time systems are usually
layered on top of a specific operating system, they are nonportable. This paper reports
on our early experiences with Panda, a portable virtual machine that provides gen-
eral and flexible support for implementing run-time systems for parallel programming
languages.

Panda has two interfaces: a Panda interface providing threads, RPC, and totally-
ordered group communication, and a system interface which encapsulates machine de-
pendencies by providing machine-independent thread and communication abstractions.
We describe the interfaces, our experience with an initial Unix! implementation, and
the development of a new, portable, and scalable run-time system for the Orca parallel
programming language on top of Panda.

1 Introduction

Modern parallel programming languages require advanced run-time support for commu-
nication and data consistency. In order to fully exploit a machine’s particular features,
run-time systems for parallel languages tend to be built directly on top of the host op-
erating system. Our experience with the parallel programming language Orca [4] on the
Amoeba [19, 24] distributed operating system is that this strategy results in a language
implementation that is difficult to port to other operating systems.

Orca is based on shared objects. As shared objects may be replicated to speed up
read accesses, their implementation on distributed memory machines requires advanced
run-time support. To investigate the scalability and portability of shared data objects, we
aim to port Orca to a variety of parallel architectures. Although operating systems like
Amoeba offer a virtual machine abstraction on which shared objects can be implemented,

*This research is supported in part by a PIONIER grant from the Netherlands Organisation for Scientific
Research (N.W.0.).
! Unix is a trademark of Unix Systems Laboratories, Inc.

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

they are generally tied to a particular machine architecture and thus nonportable. Also,
current operating systems generally provide more functionality than is needed or wanted for
parallel processing (e.g., virtual memory management). Some modern operating systems,
like Clouds [12], support their own object model. Unless such a model is very simple,
flexible, and lightweight, layering another object model on top of it can be troublesome and
inefficient.

Higher-level approaches to supporting parallel programming include page-based Dis-
tributed Shared Memory (DSM) systems (e.g., Munin [9]). Page-based DSM systems, how-
ever, often rely on manipulation of the virtual memory management unit, and therefore
also suffer from portability problems.

Highly portable message passing systems exist, but they provide limited functionality.
PVM [22] and p4 [8], for instance, provide low-level message passing, but they support
neither threads nor totally-ordered group communication.

Instead of relying on page-based DSM, operating systems, or low-level message passing,
we have developed a portable virtual machine, called Panda. Panda was designed with the
portability requirements of parallel languages in mind and is currently used to implement
a new Orca run-time system. Panda, however, does not restrict its users to Orca’s object
model. It provides the following, general abstractions:

e threads,
e Remote Procedure Call (RPC),
e totally-ordered group communication.

Experience with similar Amoeba abstractions has shown that efficient implementations
of shared objects can be built on top of them [23]. Threads provide a simple, lightweight
unit of activity. RPC [7] is a general mechanism for high-level point-to-point commu-
nication between nodes (and thus for the implementation of remote object invocation).
Totally-ordered group communication [16] has been successfully employed in previous Orca
run-time systems for keeping replicated objects consistent and for the implementation of
a distributed checkpointing algorithm [17]. It assures that all members of a group receive
all group messages in the same order, which makes many parallel applications easier to im-
plement. Hardware broadcast mechanisms usually do not guarantee this strong semantics.
Since Panda’s abstractions are language-independent, we believe that Panda can be used
to implement run-time systems for languages other than Orca as well.

The Panda architecture, illustrated in Figure 1, consists of two layers that reflect our
design goals: portability and support for parallel programming languages. Support for
parallel programming languages is achieved by providing high level abstractions in the
Panda interface. The software that implements the Panda interface is called the Panda
layer. Portability is achieved by implementing the Panda layer on top of the system
interface, which encapsulates machine-dependencies. This makes the Panda layer fully
machine-independent. An implementation of the system interface, a system layer, can be
constructed with only some basic operating system support, but can also exploit features of
the underlying operating system (e.g., kernel threads, scatter-gather interfaces, or hardware
broadcasting and multicasting).

Panda takes a layering approach towards portability. Although layering is an effective
way to abstract from machine-dependencies, it bears with it the danger of poor perfor-
mance. Thoughtless layering may well result in a loss of information that is essential to

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

Application Orca run-time system

Panda interface
Panda layer threads messages RPC group

...................................... comin . face
System layer threads messages fragr.nen- comrfluni— st ter
(pthreads) tation cation
Host interface
Unix signals sockets

Figure 1: The Panda Architecture on Unix.

achieving good performance [20]. Therefore, we have identified Panda’s performance-critical
parts: threads, message manipulation, and the nature of the underlying network. These
performance-critical parts are all implemented in the system layer, where they have access
to low-level, operating-specific features.

The main elements of the system layer are threads, message manipulation primitives,
and communication primitives. By implementing threads and messages in the system layer,
we can benefit from operating system-specific features and thus achieve better performance.
Communication takes place between virtual processors, called platforms, which are identi-
fied by platform identifiers. The communication primitives provide unreliable point-to-point
communication and multicasting between these platforms.

Porting Panda to a new architecture requires porting the system layer only. The minimal
support required from the operating system for implementing the system layer consists of
a facility for unreliable message passing, and a facility for handling signals generated by
incoming messages and expired timers. If the host operating system offers no more, all of
the system interface has to be implemented from scratch on top of this operating system.
However, most current operating systems offer threads and usable communication facilities.
Implementing the system layer on such systems is easier.

We have constructed an initial implementation of Panda for a collection of SPARC-
based workstations, running Unix, and connected by a 10 Mbit/s Ethernet. We intend to
port Panda in the near future to a T9000-based parallel machine, the Alewife [1], and the
CM-5 [25].

Section 2 describes the Panda and system interface in more detail. The machine-
independent implementation of the Panda interface is outlined in Section 3. In Section 4,
we describe our experience with an initial implementation of the system interface on Unix.
Section 5 discusses the implementation of a new, portable Orca run-time system on top of
Panda. In Section 6, Panda is compared with related systems. Finally, in Section 7, we
present our conclusions.

2 The Panda and System Interface

In this section, we describe the relevant parts of the current! Panda and system interfaces.
For reasons of efficiency threads and messages are implemented in the system layer (and
part of the system interface), but most of the primitives associated with them are also visible

!Based on further experience with Panda and Orca these interfaces may evolve.

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

void thread_create(thread_p thread, void * (*func)(void *arg), void *arg,
long stacksize, int priority);

void thread_exit(void *result);

void thread_yield(void);

int thread_getprio(thread_p thread);

void thread_setprio(thread_p thread, int priority);

Table 1: The thread interface

in the Panda interface.To distinguish between Panda layer and system layer functions, each
Panda layer function name is prefixed by “pan_”, and each system layer function by “sys_”.
Functions that are part of both interfaces are not prefixed.

2.1 The Panda Interface

The Panda interface provides the RPC, totally-ordered group communication, and thread
abstractions with which Panda applications can be built.

Threads

The thread interface (see Table 1) is based on the Pthreads [15, 18] and C Threads [11] in-
terfaces. Since threads are implemented in the system layer (see Figure 1), thread primitives
do not have a pan_ prefix.

From experience with Amoeba threads we have learned that a thread package for parallel
programming languages should support priority scheduling to handle incoming messages
immediately when they arrive. This automatically implies preemption of running threads
when a new message arrives. Priorities are supported by the operations thread_getprio and
thread_setprio, which return and set priorities. Since we do not specify a scheduling policy
among threads with the same priority, we also provide the function thread_yield that tries
to run another runnable thread with the same priority.

Synchronization between threads is based on mutexes and condition variables. Together
these provide strong enough semantics to construct monitors [14].

RPC

The RPC interface (see Table 2) is based on the notion of a service that provides a number
of operations. A service is implemented by one or more servers. A server can register its
services with Panda’s name server using pan_export_service, giving as arguments the number
of operations it supports and an array of pointers to these operations. Before an operation
can be called, the client must get a handle to a server (pan_import_service). This handle
can be used to identify the server that must handle the RPC request (pan_do_rpc).

When a request message comes in, a thread is started. This thread calls the registered
function for the specified service and operation. This function has three parameters: an
operation index number, an input message, and a reply message.

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

int pan_export_service(char *name, int nr_operations,
void (*func)(int operation,
message_p request, message_p reply)[|);
int pan_import_service(char *name);
int pan_do_rpc(int handle, int operation_no,
message_p request, message_p *reply);

Table 2: RPC interface

Totally-Ordered Group Communication

The group abstraction of Panda (see Table 3) supports totally-ordered, closed groups [16].
The total ordering assures that every group member receives all group messages in the same
order. A group is closed if only its members can send messages to the group. This makes
an efficient implementation possible.

Each group is identified by a character string, which is registered with Panda’s name
server. A platform that wants to join the group calls pan_group_join, which initializes
a group structure. If the group does not exist, it will be created. Group messages are
handled asynchronously by an upcall to a specified receive routine, which handles incoming
messages one by one to ensure total ordering.

2.2 The System Interface

The system interface hides machine dependencies by providing three abstractions: threads,
messages, and communication primitives. As explained before, threads are implemented in
the system layer; the system and Panda interface are identical with respect to threads.

Communication

The communication facilities are divided into two parts: send primitives (see Table 4) and
addressing. At startup time each platform gets a unique platform identifier (pid), which
is an integer number ranging from 1 to the number of platforms. This pid is used as a
point-to-point address. Pids can be grouped together in a platform set (pset) that serves
as a logical multicast address.

The send primitives provided by the system layer are sys_unicast, for (unreliable) point-
to-point communication, and sys_multicast, for (unreliable) one-to-many communication.
When the Panda layer initializes itself, it registers a message receive handler with the

int pan_group_join(group_p group, char *name,

message_p mesg_join, void (*receive)(message_p mesg._in));
void pan_group_leave(group_p group, message_p message);
void pan_group_send(group_p group, message_p message);

Table 3: Totally-ordered group communication interface

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

void sys_unicast(int pid, message_p message);
void sys_multicast(sys_pset_p pset, message_p message);

Table 4: System communication primitives

system layer. All platforms run a system layer receive daemon. Each time a (unicast or
multicast) message arrives, this daemon makes an upcall to the message receive handler in
the Panda layer.

Messages

At the interface level, messages look like stacks. To construct a message, senders push data
fields of a specified size and alignment onto a message’s stack; these fields are popped in
reverse order by the receivers (see Table 5). message_look is similar to message_pop, but it
does not pop the data field off the message.

Although the communication primitives hide machine dependencies, they do not handle
messages with a length larger than the underlying system supports. Instead, the system
interface provides primitives to fragment messages so that they can be handled by the
communication primitives. This fragmentation is based on a common header, a header that
is placed in front of every fragment.

With sys_message_mark the Panda layer can specify the end of the data part and the
start of the common header. Every data field pushed after the mark belongs to the common
header. sys_message_fragment initializes a new fragment message containing the common
header and part of the data of the original message. This function takes as a parameter an
offset indicating the start of a fragment’s data in the original message, and it returns the
offset of the next fragment’s data. After getting a fragment from a message, some fields in
the common header part can be filled in with information that identifies this fragment.

At the receiving side, sys_message_assemble is used to reassemble the original message.
These primitives resemble the x-kernel primitives for fragmenting messages [20].

A fragment message need not contain copies of the common header and data fields of
the original message; pointers may be used instead. To support sharing of the common

void *message_push(message p message, int length, int align);
void *message_pop(message_p message, int length, int align);
void *message_look(message_p message, int length, int align);
void message_copy(message_p message, message_p copy);

int sys_message_data_len(message_p message);

void sys_message_mark(message_p message);

int sys_message_fragment(message_p message, message_p fragment, int offset);
void sys_message_assemble(message_p message, message_p fragment);

Table 5: The message interface

6

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

Message: common header | part 1 | part 2 part n

Fragment 1: | common header | part 1

Fragment 2: | common header | part 2

Fragment n: | common header | part n

Figure 2: Fragmentation with a Common Header

header among fragments, only one fragment may exist at a time (i.e., before creating the
next fragment, the predecessor fragment must be released). Now it is always clear to what
fragment the identification information in the common header refers. Using pointers to the
original message in the fragment message avoids unnecessary copying.

2.3 Portability and Efficiency

Both the Panda and the system interface have been designed to allow efficient implemen-
tations. Some of the abstractions present in the system layer may seem high-level, but
providing these abstractions rather than low-level primitives gives us the opportunity to
exploit advanced features offered by many modern operating systems. Among these features
are efficient, user-level thread packages or kernel threads, scatter-gather message transmis-
sion, access to hardware broadcasting and multicasting, etc.

We have decided to make message passing in the system interface unreliable. Reliable
message passing would have prohibited an efficient RPC implementation on architectures
that only provide unreliable message passing, since sending a message reliably requires at
least two network packets.

3 Implementation of the Panda Interface

The Panda interface is implemented using the primitives provided by the system interface.
Therefore, this code is entirely machine-independent.

3.1 Group Communication Structure and Protocol

The group communication implementation is based on [16], which describes an efficient,
totally-ordered, and atomic group communication protocol. Since we are not concerned with
fault tolerance, we have implemented this protocol in a non-resilient way, thereby loosing
atomicity (all-or-none delivery, even in the presence of processor crashes). It is possible,
however, to do synchronous checkpointing on top of totally-ordered group communication
without atomicity [17].

Totally-ordered group communication is achieved by having a special member in each
group, the sequencer, which assigns a sequence number to each group message. This gives
two possibilities for a group send [16]. The first method is to send a point-to-point message
to the sequencer, and the sequencer then broadcasts the message after filling in the se-
quence number (the so-called PB method). The second method is to let the sender itself do

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

the broadcast. When the sequencer receives this broadcast message, it assigns a sequence
number to it, and broadcasts a short acknowledgement message containing this sequence
number (BB method). This method saves network bandwidth (because the data is trans-
mitted only once), but it generates more interrupts. A choice between the two methods is
made dynamically, based on the message size and on information from the system layer.
Either way, when a message arrives its sequence number is checked against the last sequence
number received. If the sequence number indicates this is the next message, the message
can be delivered to the application level, otherwise the receiver asks the sequencer for the
missing messages.

Incoming group messages are handled by a single daemon thread, which upcalls to the
receive handler specified by pan_group_join. To prevent loosing the ordering of the group
messages by unpredictable thread scheduling, we use only one daemon thread per group.

Since the underlying architecture may have stronger semantics than we actually need,
the system layer can define the following two compilation flags: RELIABLE MULTICAST
to specify that multicast messages are never lost, and ORDERED_MULTICAST, which
specifies that all multicast messages arrive in total order. The code of the group implemen-
tation is adapted by these parameters.

3.2 RPC Structure and Protocol

The RPC protocol is based on Birrell and Nelson[7]. An RPC requires three messages during
normal execution: a request, a reply, and an acknowledgement. On some architectures
(e.g. a network of T9000 Transputers) reliable message passing is provided already, so the
acknowledgement is not necessary. Therefore, the system layer can define a compilation
flag RELTABLE _UNICAST, which implies that messages are reliable. When compiled with
this flag set, no acknowledgements are sent.

4 Experience with Panda on Unix

We have implemented Panda on Unix (SunOS 4.1.2). The following subsections describe
the implementation of the system layer and the performance of Panda. Not all parts of the
implementation have been tuned yet.

4.1 Implementation of the System Interface

In contrast to modern operating systems for parallel computers, Unix provides neither
threads nor multicasting. Nevertheless, we have selected Unix as our initial target oper-
ating system, because it provides a complete programming environment and because it is
widely available. To avoid writing a large amount of software that we expect to be provided
by future target platforms, we have used public-domain software for our threads and (unreli-
able) multicast implementation. We have implemented our threads interface with Pthreads
[18], a POSIX-conformant, user-space threads implementation. We have extended the ker-
nels of our SPARC workstations with IP multicast, a kernel extension for multicasting [13].
Point-to-point message passing has been implemented on top of UDP [21].

Pthreads provides all the functionality we need, including priority scheduling, and runs
entirely in user-space. User space threads are more efficient than (pure) kernel-based imple-
mentations, because thread context switches do not involve trapping to the kernel. However,
they suffer from poor integration with virtual memory management and blocking I/O [2].

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

‘ Test case ‘ Performance
Thread switching 300 ps
Unicast message passing latency 2.1 ms
Multicast message passing latency | 2.3 ms
Null RPC latency 5.9 ms
RPC throughput 435 Kbyte/s

‘ Group communication latency ‘ 6.7 ms ‘

Table 6: Performance figures

Virtual memory makes performance less predictable: a page fault will block all threads
while the missing page is brought in from the disk. Blocking network I/O is a more se-
rious problem. The thread that waits for incoming messages should not block all other
threads contained in the same process. Therefore, each platform’s receive daemon thread
uses Unix’s asynchronous and nonblocking I/O options to prevent blocking the entire pro-
cess when reading from the network. If it finds no pending messages, it waits for a signal.
Since Pthreads supports signals on a per-thread basis, only the receive daemon is blocked,
not the entire process. Incoming messages generate SIGIO signals that cause the receive
daemon to be rescheduled immediately (since it has the highest priority).

Since UDP has no support for Panda’s stack-based message manipulation and frag-
mentation routines, most of our system layer code is devoted to the implementation of
these routines. This code is machine-independent and need not be changed when Panda is
ported. However, it may be beneficial to adapt the code to platform-specific features (e.g.,
scatter-gather facilities). The system interface was designed to allow such modifications in
its implementation. No changes need to be made to the interface itself.

4.2 Performance

To compare the overhead of our protocols, Table 6 gives an overview of the performance
of the communication primitives in the system and the Panda layer. These performance
figures were obtained on a collection of diskless SPARCstations SLC, running at 20 Mhz,
and connected by a 10 Mbit/s Ethernet. Also included is the overhead of thread context
switching. The message passing latencies were measured with two platforms (running on two
different machines), one sending 10,000 messages and the other sending acknowledgements.

The null RPC latency is measured with 10,000 empty request and reply messages to an
empty server routine, and the throughput with 1000 RPC messages with a request message
size of 8000 bytes and an empty reply message.

The latency of an empty group message is 6.7 ms. Since the protocol uses negative
acknowledgements, this latency is almost independent of the number of platforms [16].

RPC and group communication performance of our initial Panda implementation is
within a factor 4 of Amoeba, which has RPC and group communication built into its
microkernel. (On comparable hardware, Amoeba does a null RPC in 1.7 ms; a null group
message on a collection of 20 MHz MC68030s takes 2.7 ms.)

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

5 Implementing the Orca RTS using Panda

Orca is a type-secure parallel and distributed programming language. Orca programs con-
sist of processes that communicate solely through shared objects, which are instances of
abstract data types. To speed up read accesses to shared objects, such objects may be
replicated. The replication strategy is based on a combination of compile-time and run-
time techniques [3]. The Orca run-time system (RTS) is responsible for keeping replicas in
a consistent state.

Orca is being re-implemented to obtain a programming system that is portable, efficient,
and scalable. A new Orca compiler generating fast and portable ANSI-C code has already
been implemented, and we are now reimplementing the run-time system on top of Panda.
The new RTS makes heavy use of all Panda facilities:

Threads The Orca RTS uses Panda’s threads for the implementation of Orca processes.
Threads are also created implicitly as a result of incoming RPC requests and group
messages.

RPC RPC is used by the RTS for performing operations on remote, nonreplicated objects
and for transmitting objects when they are migrated or replicated.

Group Communication When a shared, replicated object is simultaneously updated by
two Orca processes, then all replica holders of this object must apply the updates in
the same order. To achieve this, the RTS uses totally-ordered group communication.
All RTSs belong to a single group and simply send their update messages to this
group. Since communication in this group is totally-ordered, all RTSs receive and
process the update messages in the same order, thus keeping the replicas consistent.

In contrast with previous Orca implementations based on Amoeba, machine dependen-
cies are now hidden from the RTS by Panda, thus making the RTS portable. Moreover,
as can be seen from the interface descriptions, the primitives in the Panda interface are
language independent and can be used for the implementation of other language run-time
systems.

6 Related Work

Panda differs from many existing parallel programming platforms in that it has been de-
signed with the requirements for run-time systems for parallel programming languages
in mind. As previous Orca implementations have demonstrated, such run-time systems
can benefit from high-level support in the form of RPC and totally-ordered group com-
munication. In this section we compare Panda with other systems that can be used for
implementing parallel programming languages; some of these systems are language-based
themselves, whereas others come in library form. We consider portable message passing
systems (p4, PVM), Distributed Shared Memory systems (Munin and Midway), ARCADE,
and ISIS/HORUS.

Like Panda, PVM [22] and p4 [8] provide portable communication primitives. PVM and
p4, however, provide message passing primitives only, and neither provides high-level com-
munication in the form of RPC or totally-ordered group communication. In our experience,
RPC and group communication simplify the implementation of complex run-time systems.
Neither PVM nor p4 supports lightweight threads. Because of their high context-switching
overhead, processes are not suitable for hiding communication latencies.

10

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

Both PVM and p4 provide visualization tools and support for heterogeneity. Work on
extending Orca and Panda with performance debugging tools is in progress. Unlike PVM
and p4, Panda does not support heterogeneity.

DSM systems like Munin [9] and Midway [5] support parallel programming by pro-
viding a shared memory abstraction that hides all message passing from the programmer.
Although Panda does not provide such an abstraction by itself, it gives sufficient support
to layer a shared memory model on top of it.

Munin programmers annotate shared variables with their expected access pattern.
These shared variables are kept consistent through a release consistency protocol. The
Munin implementation of this protocol relies on the Memory Management Unit (MMU) to
detect writes to pages containing shared data, thus rendering the implementation machine-
dependent.

In the Midway system, shared variables are associated with their synchronization ob-
jects and kept consistent through a memory consistency protocol called entry consistency.
Although Midway does not rely on MMU manipulation to enforce entry consistency, it does
need the MMU to implement stronger memory consistency models (release consistency and
processor consistency) [5].

Munin and Midway support parallel programming by providing a shared memory ab-
straction and weak consistency models. We consider this support too low-level for ap-
plication programming: programmers should not have to annotate their variables or use
low-level locking. Munin (and sometimes Midway) needs to manipulate the MMU, while
Orca implementations guarantee sequential consistency, which is stronger than all previ-
ously mentioned forms of consistency, without MMU manipulation. Thus, layering an Orca
run-time system on top of Panda results in a portable implementation of sequential consis-
tency.

Like Panda, ARCADE [10] supports the implementation of parallel programming lan-
guages through high-level abstractions. The ARCADE abstractions, however, are based on
language-independent data units rather than communication mechanisms. A data unit is
an abstraction of a typed region of memory that can be named, moved, and shared across
multiple nodes in a distributed environment. Language-specific objects can be mapped
onto ARCADE’s data units.

Like Orca, ISIS [6] is currently being reimplemented for reasons of portability and scal-
ability. The new ISIS system, HORUS [26], has a core interface that provides reliable,
causal multicasting (CBCAST). Other services are implemented on top of this interface.
This interface is somewhat like the Panda interface, although the ordering semantics of
CBCAST is weaker than that of Panda’s group communication — totally-ordered group
communication and RPC are implemented on top of CBCAST. The CBCAST layer is im-
plemented on top of a portable operating system abstraction, MUTS (Multicast Transport
Service), that is similar to Panda’s system layer.

7 Conclusion

This paper described the motivation, design, and implementation of Panda, an implementa-
tion platform for parallel programming languages, that combines portability with flexibility
and efficiency.

11

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

Panda achieves portability by defining a machine-independent system interface in addi-
tion to the Panda interface. The Panda interface is implemented on top of this system inter-
face and is thus machine-independent. The implementation of the system interface requires
only basic operating system support for the context switching of threads and unreliable mes-
sage passing. Most of the current system interface implementation is machine-independent
and can be easily reused. Its careful interface design and modular implementation allow
for the incorporation of efficient, native thread packages and communication facilities (e.g.,
scatter-gather message passing and hardware broadcasting and multicasting). Porting the
system layer to other parallel architectures should be straightforward.

Panda provides its users with three flexible abstractions that have been effectively
employed for the implementation of several Orca run-time systems: threads, RPC, and
totally-ordered group communication. We use these abstractions to implement Orca’s ob-
ject model.

Early experience with a SPARC/Unix implementation of Panda has shown the feasibility
of a layering approach towards support for parallel programming languages.

Acknowledgements

We would like to thank Gerard Kok and Anil Sukul for testing Panda’s RPC implementa-
tion. We also greatly appreciate the helpful comments of Ceriel Jacobs and Leendert van
Doorn on earlier drafts of this paper.

References

. Agarwal, D. Chaiken, G. ouza, K. Johnson, D. Kranz, J. Kubiatowics, K. Huri-
1] A. Ag 1, D. Chaiken, G. D’S K. Joh D. K J. Kubi ics, K. Huri
hara, B-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. The MIT

Alewife Machine: A large-scale distributed-memory multiprocessor. Technical Report
MIT/LCS TM-454, MIT, 1991.

[2] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. In Proc. of
the 13th Symposium on Operating Systems Principles, pages 95-109. ACM, 1991.

[3] H.E. Bal and M.F. Kaashoek. Object Distribution in Orca using Compile-time and
Run-time Techniques. In Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, Washington D.C., 26 September—1 October 1993. To be
published.

[4] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A Language for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering,
18(3):190-205, March 1992.

[5] B. Bershad, M. Zekauskas, and W.A. Sawdon. The Midway Distributed Shared Mem-
ory System. In Computer Conference, 1993.

[6] K. P. Birman and T.A. Joseph. Exploiting Virtual Synchrony in Distributed Systems.
In Proc. of the 11th ACM Symposium on Operating Systems Principles, pages 123-138,
1987.

12

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Transac-
tions on Computer Systems, 2(1):39-59, February 1984.

R. Butler and E. Lusk. Monitors, Messages, and Clusters: the p4 Parallel Programming
System. Journal of Parallel Computing. (submitted).

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and Performance of
Munin. In Proc. of the 13th Symposium on Operating Systems Principles. ACM, 1991.

D.L. Cohn, A. Banerji, M.R. Casey, P.M. Greenawalt, and D.C. Kulkarni. Basing
Micro-kernel Abstractions on High-Level Language Models. In Proc. of the Autumn
1992 OpenForum Technical Conference, pages 323-336, Utrecht, Holland, November
1992.

E.C. Cooper and R.P. Draves. C Threads. Technical Report CMU-CS-88-154, Depart-
ment of Computer Science, Carnegie Mellon University, Pittsburgh, 1988.

P. Dasgupta, R.C. Chen, S. Menon, M. Pearson, R. Ananthanarayanan, U. Ramachan-
dran, M. Ahamad, R. LeBlanc Jr., W. Applebe, J. M. Bernabeu-Auban, P.W. Hutto,
M.Y.A. Khalidi, and C. J. Wilkenloh. The Design and Implementation of the Clouds
Distributed Operating System. Computing Systems Journal, 3, 1990.

S.E. Deering and D.R. Cheriton. Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Transactions on Computer Systems, 17(1), January 1991.

C.A.R. Hoare. Monitors: An Operating System Structuring Concept. Communications
of the ACM, 12(10):549-557, October 1974.

IEEE. Threads Extensions for Portable Operating Systems P1003.4a, draft 6 edition,
February 1992.

M.F. Kaashoek. Group Communication in Distributed Computer Systems. PhD thesis,
Vrije Universiteit Amsterdam, 1992.

M.F. Kaashoek, R. Michiels, H.E. Bal, and A.S. Tanenbaum. Transparent Fault-
Tolerance in Parallel Orca Programs. Symposium on Ezperiences with Distributed and
Multiprocessor Systems I1I, pages 297-312, March 1992.

F. Mueller. Implementing POSIX Threads under UNIX: Description of Work in
Progress. In Proc. of the 2nd Software Engineering Research Forum, pages 253-261,
November 1992.

S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, and H. van Staveren.
Amoeba—A Distributed Operating System for the 1990s. IEEE Computer, 1990.

L. Peterson, N. Hutchinson, S. O’Malley, and H. Rao. The x-kernel: A Platform for
Accessing Internet Resources. IEEE Computer, pages 23-33, May 1990.

J. Postel. User Datagram Protocol. Internet Request for Comments RFC768, Septem-
ber 1981.

V. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency:
Practice and Ezperience, 2(4), December 1990.

13

Appears in "Proceedings of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV)," September 1993

[23] A.S. Tanenbaum, M. F. Kaashoek, and H. E. Bal. Parallel Programming Using Shared
Objects and Broadcasting. IEEE Computer, 25(8):10-19, August 1992.

[24] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J.
Jansen, and G. van Rossum. Experiences with the Amoeba Distributed Operating
System. Communications of the ACM, 33(2):46-63, December 1990.

25| Thinking Machines Corporation. The Connection Machine CM-5 Technical Summar s
g Y

[26] R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. Reliable Multi-
cast between Microkernels. In Proccedings of the USENIX workshop on Micro-Kernels
and Other Kernel Architectures, pages 269-283, April 27-28 1992.

14

