Performance of a High-Level Parallel Language
on a High-Speed Network*

Henri Ba Raoul Bhoedjang Rutger Hofman Ceriel Jacobs
Koen Langendoen Tim Ruhl Kees Verstoep

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

Abstract

Clustersof workstations are often claimed to beagood platformfor parallel processing, especially if afast network
is used to interconnect the workstations. Indeed, high performance can be obtained for low-level message passing
primitives on modern networks like ATM and Myrinet. Most application programmers, however, want to use higher-
level communication primitives. Unfortunately, implementing such primitives efficiently on a modern network is a
difficult task, because their software overhead is relatively much higher than on atraditional, slow network (such as
Ethernet).

In this paper we investigate the issues involved in implementing a high-level programming environment on afast
network. We have implemented a portabl e runtime system for an object-based language (Orca) on a collection of pro-
cessors connected by a Myrinet network. Many performance optimizations were required in order to let application
programmers benefit sufficiently from the faster network. In particular, we have optimized message handling, multi-
casting, buffer management, fragmentation, marshalling, and various other issues. The paper analyzes the impact of
these optimizations on the performance of the basic language primitives as well as parallel applications.

Keywords: clusters, threads, communication protocols, multicast, Myrinet, I1linois Fast Messages.

1 Introduction

Due to their wide availability, networks of workstations are an attractive platform for parallel processing. A major
problem, however, is their high communication cost. Workstations are typically connected by a Local Area Network
(LAN) such as Ethernet, which is orders of a magnitude slower than the interconnection networks used for modern
multicomputers. Potentially, this problem can be solved by using afaster, more modern LAN, such as ATM, Fast Eth-
ernet, Myrinet [4], or SCI [11]. Unfortunately, even with fast, Gigabit/sec networks, several important performance
problems remain.

First, some of the modern networks (and their software) are not designed to support parallel processing. They offer
impressive bandwidths, but the communication latencies are often only marginally better than on traditional Ethernet.
For parallel processing, latency is at |east as important as bandwidth.

Second, to make network-based parallel computing successful, it is essential that easy-to-use programming envi-

ronments are developed. Giving the programmer the ability to unreliably send a 48-byte packet from one machine to

*Thisresearch is supported in part by a PIONIER grant from the Netherlands Organization for Scientific Research (N.W.O.).

another simply won't do. A high-level programming environment, however, will most likely further increase commu-
nication latency. On a high-speed network, the software overhead introduced by a programming system may easily

become the dominating factor that limits performance.

In this paper we investigate the performance issues involved in implementing a high-level parallel programming
system on a high-speed network. For this purpose, we study the implementation and performance of a specific pro-
gramming system (Orca) on afast network (Myrinet). Orca provides a high-level programming model, which can be
characterized as an object-based distributed shared memory. The Orcaruntime system transparently migratesand repli-
cates shared objects, and keepsreplicated objects consistent. Low-level issueslike buffer management and marshalling
aretaken care of automatically. So, Orcahasahigh abstraction level, making an efficient implementation achallenging

task.

We have drawn two main conclusions from this case study. First, substantial performance improvements at the
languagelevel can be achieved using afast network. Thelatency and throughput of our basic communication primitives
is much better on Myrinet than on Ethernet. The performance lags behind that of the “raw” hardware or low-level
software, because of the higher abstraction level we use. The second conclusion is that many performance problems
had to be solved to obtain thisimprovement. We initially used an existing, highly efficient, message passing library for
the low-level communication. Still, many existing as well as new optimization techniques were required at all levels

of the system to efficiently implement our high-level model.

The main contributions of the paper are a discussion of which optimizations are required for high-level languages
and a quantitative analysis of the impact of these optimizations on performance. We describe the performance of our
system at various levels, including the low-level communication primitives, the language level primitives, and appli-
cations. Several more recent programming languages and libraries also support shared objects of some form [10, 12,

16, 19, 21, 26, 29], so we think our work is relevant to many other systems.

The outline of the paper isasfollows. In Section 2 we provide more background information about the hardware
and software used in the case study. In Section 3 we describe an initial implementation of the Orca system on Myrinet.
We also look at the performance problems of thisinitial design. Next, in Section 4 we look at the various optimiza-
tions made in message handling, multicast communication, and various other issues. In Section 5 we give performance
measurements of the resulting system, using benchmarks aswell as parallel applications. In Section 6 we compare our
work with that of others. Finally, in Section 7 we discuss the most important lessons we have |earned about the imple-

mentation of high-level languages on high-performance networks.

2 Background

This section provides background information about the programming environment and network that we use. We only
give information required to understand our case study; more detailed information can be found elsewhere[2, 3, 4, 31,

39].

2.1 TheOrca System

Orcaisaportable, high-level languagefor writing parallel applicationsthat run on distributed-memory machines|(2, 3].
It has been implemented on multicomputers (CM-5, Parsytec PowerXplorer) as well as on network-based distributed
systems (Solaris, Amoeba). The language has been used for dozens of realistic applications.

Orcasupportsexplicit task-parallelism in the form of sequential processes, which can be created dynamically. Pro-
cesses communi cate through shared objects, which are instances of Abstract Data Types (ADTS). The language guar-
anteesthat each operation on ashared object is executed indivisibly (asin amonitor). Each operationis always applied
to only asingle object. Programming with shared objectsis similar to programming with shared variables, except that
all operations are user-defined, indivisible ADT operations. The programming model is based on shared data, but it
isimplemented on a distributed-memory system. It thus can be regarded as a form of object-based distributed shared
memory [31].

The implementation of the language (the compiler and the runtime system) uses two different methods to imple-
ment shared objects[2]. The compiler determineswhich operations are read-only and which operations may writetheir
object. If an object is modified infrequently (i.e., most operations on it are read-only), the object will be replicated in
thelocal memoriesof all processorsthat can accessit. Read-only operations on the object are executed locally, without
communication. An operation that writesthe object is multicast to all machines, which update their local copy by exe-
cuting the operation. Coherency isobtained by using totally-ordered multicast [17], which guaranteesthat all messages
arereceived by al destinationsin the same order. Alternatively, an object can be stored on a single machine. In this
case, other machines can access it using remote object invocations, which are implemented using remote procedure
cals (RPCs).

For portability reasons, the Orca system is structured using multiple layers. The runtime system (RTS) only deals
with processes and object management, but not with implementing communication. Communication primitives are
provided by alower layer, called Panda [25]. Pandais a virtual machine supporting the functionality needed by the
RTS (threads, totally-ordered multicast, and remote procedure calls). The OrcaRT S only invokes Pandaprimitives, and

is unaware of the underlying operating system. The Orca compiler generates ANSI C as output. Thus, to implement

the entire Orca system on a new platform, only Panda has to be ported.
On most platforms, Pandais implemented using user-space communication protocols [25]. The structure of Panda
isvery flexible. For example, if the hardware or operating system already provides reliability or total ordering, the

Panda protocols benefit from this, thus simplifying them and making them more efficient.

2.2 Myrinet

Myrinet is a high-speed Local Area Network designed to support parallel processing on clusters of workstations [4].
Myrinet can be added to a workstation cluster to increase communication performance. It uses two types of hardware
components: an interface board (host adapter) that is inserted in each workstation, and a switching network that inter-
connects the interface boards (see Figure 1).

Conventional network (Ethernet)

Host —|

Ethernet interface ——— :|

Myrinet interface ——]
Onboard processor (LANai) O O D O D O D
Onboard memory

Myrinet
crosshar switch

Figure 1: Myrinet on a Network of Workstations.

Theswitching network uses crossbar switcheswith asmall number of ports(typically 4 to 16). The switchesusecut-
through routing and have alow latency (lessthan amicrosecond). The switches and the interface boards are connected
by fast (640 Mbit/sec) reliable links. Arbitrary interconnection topologies can be created in this way.

From a programming point of view, the interface boards are the more interesting and visible part of Myrinet. The
board communicates with the network and with the host machine to which it is added. The board contains a fully
programmabl e processor, called the LANai. The program running on this processor is called the LCP (LANai Control
Program). The LCP can copy datato and from the host using DMA.. Also, it can send data over the network and receive
datafrom the network. The board contains asmall amount of SRAM memory to store the LCP and to buffer incoming

and outgoing data. The host can access this memory using either programmed 1/0 or DMA.

4

Various message passing libraries for Myrinet exist. For our research, we use the Fast Messages (FM) software
from the University of Illinois[27]. FM includesa LANai Control Program and alibrary that islinked with the appli-
cation running on the host. Thislibrary isused by the application programmer or alanguage RTS. It provides efficient
and reliable point-to-point communication. Message reception in FM isbased on polling: the application program pe-
riodically hasto check if incoming messages are available. Callsto the FM send primitive also poll the network. FM
mapsthe Myrinet interface board into user space and currently does not support sharing of this device between multiple

applications.

3 Implementing the Orca System on Myrinet

In this section we discuss how the Orca system can be implemented on a Myrinet network. We first describe an ini-
tial design, which adheres to Panda’'s layered approach. Next, we use this design to illustrate the kind of performance
problems that occur in a naive implementation of a high-level language on a high-speed network. Section 4 discusses

how to address these problems.

3.1 Initial Design

Our initial design follows the layered approach outlined in Section 2.1. We have used this approach successfully for
several other platforms, including networks of workstations and multicomputers. The overall structure is shown in
Figure2. Thedifferent software layerswill be described below, starting at the lowest layer. The hardwarewe useisthe
Amoeba processor pool, which is a cluster of SPARC-based single-board computers connected by Ethernet. We have

equipped eight pool processors with Myrinet interface boards, connected by an 8-port Myrinet crossbar switch.

Orca application

Orcaruntime system

Panda
Amoeba+ FM
Hardware

Figure 2: The structure of the Orca system.

Operating System Layer The lowest software layer is the interface to the hardware, as provided by the operating
system or low-level communication library. In this case study, we use the Amoeba distributed operating system [32]
extended with the lllinois Fast Messages (FM) software for Myrinet [27]. Amoeba provides kernel-level threads and

communication facilities for the Ethernet. FM provides reliable point-to-point communication over Myrinet. As de-

scribed in Section 2.2, the Myrinet interface board is mapped into user space. The FM software runs partly on the host
(in user space) and partly on the LANai processor on the interface board. The FM software that runs on the host takes
care of writing message fragments to the interface board, reassembling received fragments out of the DMA area, and
implementing credit-based flow control. The FM LCPisresponsiblefor sending and receiving message fragments, and

for depositing received fragmentsin the host'sDMA area.

The Panda Layer The Panda layer implements RPC and totally-ordered multicast on top of FM. This layer was
assembled from existing Panda implementations wherever possible, and custom modules were written for the parts
that depend explicitly on FM. The standard Panda message module supports message fragmentation, because many

operating systems have an upper bound on message size.

Message receptionin Pandais based on an upcall model. FM, on the other hand, requiresthe application to poll the
network for incoming messages. To implement the Panda upcall model on FM, we use a low-priority polling thread
that continually polls the network whenever no other threads are runnable. Whenever a poll succeeds, FM makes an
upcall to execute the message handler function. Aswith Active Messages [37], the handler function is passed as part
of the message. In addition, the Orcacompiler generates statements at the beginning of every procedure and loop entry
to poll the network. The compiler already provided this functionality, since it is needed on other platforms (e.g., the

CM-5) aswell.

Sincethe FM library does not support multithreading (i.e., it isnot thread safe), callsto the FM library are protected
by alock variable called the FM lock. To avoid deadlock during message handling, a thread that performs an upcall
from apolling call to deliver amessage may not hold any locks. The reason for thisrestriction isthat the upcall handler
function canalsotry tograbthelock. Inparticular, it couldtry to obtain the FM lock, becausethe upcall handler function
isfreeto send messages (for which it needsthe FM lock). Therefore, messagesreceived from apolling call are queued
(see Figure 3). They are handled either by a separate communication thread (if the poll is done from user code) or by
the polling thread (after it has released the lock around the FM calls).

For the RPC implementation, a standard Panda modul e built on top of reliable point-to-point communication was

available. This module handles arbitrarily sized messages by sending and receiving fixed-size fragments.

Multicast is supported neither by the Myrinet hardware nor by the FM software. A simple solutionisto implement
aspanning-tree protocol on top of FM point-to-point communication, which forwards a multicast message to each des-
tination. This scheme provides reliable multicast since the FM point-to-point messages are reliable. With this scheme,
however, messagesfrom different sourcesmay arrivein different ordersat their destinations. Totally-ordered multicast

requiresthat all messages (from all sources) be delivered in the same order everywhere.

Application thread Communication thread

Panda upcall
Panda
A Copy & enqueue

End poll - + Start poll Await & degueue

Free FM lock - | Get FM lock

Receive message queue

FM upcall - Return

r Poll network interface

[

I

I

I
‘ 1
! =
I |
T [l
I I
I I
I |
|

|
\

FM

Figure 3: Upcall handling in the initial Myrinet implementation.

Inour earlier research, we devel oped variousreliable, totally-ordered, multicast protocols[13, 17]. Thegeneral idea
isto use acentral sequencer node that assigns a unique sequence number to each message. On switch-based networks,
an efficient schemeisto have the sender fetch the next sequence number from the sequencer and then add this number to
the message [13]. (Alternative schemes for unreliable, bus-based networks are described in [17]). Using the sequence
numbers, Panda is able to delay out-of-order messages until their predecessors have also arrived. Higher layers (the
Orca RTS) thus aways receive messages in the right order.

Runtime System Layer The next layer in our system is the Orca RTS. The RTS is fully portable and only deals
with the Panda communication primitives, so it does not depend on the underlying hardware or operating system. The
RTS used in our initial Myrinet implementation therefore is the same as on all other platforms on which Orcaruns.

The RTS implements nonreplicated objects using Panda RPC and replicated objects using Panda's totally-ordered
multicasting. Also, the RTStakes care of marshalling and unmarshalling of data structures. In Orca, any data structure
may be sent over the network (by passing it as a value parameter in an operation invocation). The routines to con-
vert between Orca data structures and transmittabl e (flat) messages are provided by the RTS, using type-information

generated by the compiler.
3.2 PerformanceProblemswith the Initial Design

The Panda design strategy has been applied to many other platforms and has resulted in an efficient parallel program-
ming environment for these platforms. On an Ethernet-based distributed system, for example, we obtain good perfor-
mance at the Panda level (RPC and multicast), the Orca language level (object invocation), and the application level
(speedups) [25].

Below, we study the performance of the Panda/Orca system on top of Myrinet, using the initial design outlined

RPC | multicast | ROl | GOI
Myrinet || 585 867 865 | 1170
Ethernet || 1530 1580 1860 | 1960

Table 1: Communication latencies (in psec) at the Pandaand Orcalevel for the initial design.

above. The measurementswere done on a system with eight SPARC processors running at 50 MHz. Each processor is
on asingle board (a Tatung board, equivalent to the Sun Classic) and contains 32 MB of loca memory. The Myrinet
boards we use contain the LANai 2.3 processor and 128 Kbyte of SRAM memory. The system runs the Amoeba 5.3
operating system extended with the FM 1.1 software. We give performance numbers both at the Pandalevel (RPC and
multicast) and the Orca level (object invocations). The timings were obtained with a memory-mapped timer with a
0.5 pusec granularity.

Thefirst two columnsin Table 1 show the latency for empty messages using Panda RPC and totally-ordered multi-
cast communication. The roundtrip latency for empty RPC messages (i.e., the null-latency) was measured by sending
empty request and reply messages between two nodes. Multicast latency was measured using a group of eight mem-
bers. Two of the members perform aping-pong test (i.e., they multicast messagesin turn), while the other six members
only receive the messages. We report the average latency over all possible pairs of two different senders.

Likewise, we have measured the latency for Orca operations. ROl (RPC Object Invocation) uses a nonreplicated
obj ect containing asingleinteger, stored on one processor. Another processor repeatedly performsa(remote) increment
operation on the object, using PandaRPC. GOI (Group Object Invocation) isabenchmark for operationson areplicated
integer object. The object is replicated on eight machines. The latency is measured by having two machinesin turn
perform an increment operation on the replicated object. As for the multicast benchmark, we compute the average
latency over all possible pairs of two senders. The latency for ROl and GOI isalso shown in Table 1.

For comparison, we a so show the null-latencies for the same benchmarks using an implementation of our system
on top of Ethernet, using the same processors as the Myrinet implementation. 1t makes calls to Amoeba's low-level
datagram protocol, FLIP [18], and uses the Panda communication protocols in user space [25]. As can be seen, the
performance gain at the Orca level is approximately a factor of two, which does not even come close to the increase
in network speed. Part of the performance gain is not even due to increased network speed, but is simply caused by
the fact that Myrinet is mapped into user space, whereas the Ethernet device is accessed through calls to the Amoeba
kernel.

The initial design has several performance problems. The latency for point-to-point messages (illustrated by the
RPC and ROI measurements) is high. To illustrate, the roundtrip latency for 16-byte FM point-to-point messages over

Myrinet is about 60 psec on our hardware. Thelarge overhead is mainly due to the handling of incoming messages. In

particular, since messages are received by a communication thread, a context switch at the client side is necessary to
hand the reply messageto thewaiting thread. The latency for multicast communication also is high, because amulticast
message is forwarded in software between different nodes. Also, our layered approach has some overhead. Finally,
application programswill have an additional form of overhead: FM reguires them to periodically poll the network for

incoming messages. The overhead of polling is not reflected in the latency tests of Table 1.

4 Performance Optimizations

The initial design for implementing Orca on Myrinet presented above does not obtain good performance. The laten-
cies achieved for the communication primitives are only slightly better than on atraditional Ethernet network. In this
section, we discuss how to improve the performance. We describe several optimizations, some of which are already
well-known. The goal of this section is to show which kinds of optimizations are necessary to obtain good perfor-
mance on a high-speed network for a high-level language like Orca. The impact of the optimizations on benchmark
and application performance will be discussed in Section 5.

The optimizationsare based on three general ideas. First, we haveimplemented auser-level threads packagethat in-
tegrates message handling to reduce the overhead of polling and context switching. Second, we exploit the programma-
bility of the network interface boards. By moving some critical parts of the Panda protocols from the host processor
to the LANai processor, substantial performance gains can be obtained. Third, we use layer collapsing to reduce the

overhead of Panda's layered approach.
4.1 Integrating Message Handling and Thread M anagement

Thefirst problem we address is the software overhead of receiving incoming messages. On a SPARC (and many other
RISC machines), the costs of receiving an interrupt and dispatching it to auser-level signal handler are already higher
than the basic communication latency. So, generating an interrupt for an incoming message will drastically increase
communication time. FM therefore does not use interrupts, but requires user programsto periodically check if ames-
sage has arrived (i.e., it uses polling).

Programmers using a high-level language should not be bothered with placing polling statements inside their pro-
grams. Consequently, the Orca compiler and RTS take care of polling automatically. This approach, however, leads
to a performance problem since the compiler has to be conservative and inserts many polls to guarantee an acceptable
polling rate. Aswe will seein Section 5.2.1, the overhead of automatic polling by the Orca system can be as high as
25%. In conclusion, the overhead introduced by polling may more than offset the savings of not getting an interrupt.

We have addressed this problem by integrating message reception and thread management. We use a user-level

threads packageinstead of Amoeba skernel-level threads, so we can combine polling and interrupts. We have extended
the FM LANai Control Program with the ability to generate an interrupt on message arrival. The program on the host
can set aflag indicating whether or not it wantsto get an interrupt from the LCP when a message arrives. Our threads
package normally enablestheseinterrupts, except when it enterstheidleloop. If the application hasno runnablethreads,

the thread scheduler disables message interrupts and starts polling until a messageis available.

If a message arrives when the processor is doing useful work, we thus pay the price of an interrupt. Although
interrupts are expensive, in our experience and that of others[16] the overhead of polling may be at least ashigh. Inthe
worst case an interrupt isgenerated per incoming message, but it isalso possible that multiple messages can be received
with asingleinterrupt, given that acall to FM extractsall queued message fragments from the network interface. If the
processor isidle when amessage arrivesit will be polling the network, so it immediately gets the message, without the
overhead of aninterrupt. Thisisimportant if a (single-threaded) application iswaiting for a message, such asaserver

waiting for an RPC request, a client waiting for an RPC reply, or aprocesswaiting in a barrier synchronization.

A second problem related to message receipt is the context switching overhead for handling messages. Incoming
messages are handed to a separate communication thread in Panda (see Figure 3). In theory, the message could have
been handled by the currently executing application thread. The problem, however, is that the handler function may
block, which may result in deadlock (e.g., when the handler tries to lock an object that already islocked by the current
thread). Doing a context switch to a separate thread is expensive compared to FM message latency. On our hardware,
the cost of a context switch depends on the number of register windows used by the thread. For Amoebakernel threads
used with the initial Myrinet system, a context switch takes between 175 and 250 usec; for the user-level threads, the

costs are 45 psec or higher.

By using user-level threads instead of kernel threads, we can thus save 130 psec per context switch. These costs,
however, can be reduced further with an optimization in the user-level threads package. Theideais asfollows. When
a message arrives, the Amoeba kernel interrupts the current thread and invokes a signal handler on the current stack
as usual. Control transfersto the threads package, which creates a lightweight thread to execute the handler function.
Instead of doing a context switch to the new thread, however, the threads package merely installsthe new stack pointer
and directly callsthe handler function, just like anormal procedure call. Thisoptimization is possible sincethe handler
thread has no context that needs to be restored. Figure 4 shows the situation after the creation and invocation of the

handler thread.

If the handler thread runs to completion without blocking, control automatically returns to the threads package in

the signal frame, which clears the lightweight thread, restores the stack pointer, and resumes execution of the original

10

handler thread

SSSS

signal frame . return link

T interrupted thread

Figure 4: Fast thread all ocation for message handling.

thread. If, on the other hand, the handler thread blocks, the lightweight handler thread is promoted to a full-blown
thread by modifying the call stack of the handler. By changing the last return link in the call stack to point to a special
exit function, the handler thread will not return to the code that resumes the blocked thread, but clean up itself instead.
This allows the original thread to continue execution independently. In addition to upgrading the handler thread, the
blocked thread is made runnable again so it will eventually resume execution.

Thissolution effectively solvesthe problem of context switching overhead. Theoverhead of alocating alightweight
thread is low, while the overhead of upgrading the handler thread has to be paid only in exceptional cases when the
handler blocks. Inthe Orcasystem, thismainly occursif the handler contains an operation invocation on an object and
some local Orca process is currently also executing an operation on the same object. Since operations typically are
short-lived in Orca, thisis not likely to happen often.

Both problems discussed above (polling or interrupt overhead and context switching overhead) are certainly not
unique to Myrinet. They are equally important on other platforms that have fast communication, such as the CM-5
[15]. On slower networks, the problems are less serious, because the rel ative overhead of an interrupt or context switch

is much lower.
4.2 Exploiting the Programmability of the I nterface Boar ds

Another performance problemin our initial design is the high cost of the Panda multicast protocol. Myrinet does not
support multicasting in hardware, so Pandaimplementsit in software. Even if an efficient spanning-tree algorithm is
used, the cost of receiving and forwarding amessage on each nodeishigh. Another problem with the multicast protocol
isthat it requiresasequencer to order the messages. I nteracting with the sequencer further increasesthe communication

overhead.

11

We address these problems by exploiting the programmability of the Myrinet interface boards. Recall that each
interface contains a processor (the LANai) on which a control program (the LCP) runs. The optimizations described
below make use of the fact that this control program can be modified.

Most importantly, this flexibility allows us to implement the entire spanning-tree forwarding protocol on the in-
terface processors, instead of on the hosts. Since the host processors are no longer involved in forwarding messages,
the latency for amulticast is decreased substantially. With the new scheme, when the interface processor receives a
multicast message fromits host, it forwards the message to other interface processors, using abinary tree. When anin-
terface processor receives aforwarded message, it likewise forwardsit to other interface processors, and it also passes
the message to its host (using interrupts or polling).

The protocol isillustrated in Figure 5. In this example, the main CPU on the first processor wants to multicast a
message, o it passes this message to its LANai processor. The LANai sends the message to the LANai processors
on the second and third host. The second LANai forwards the message to the fourth node. Each LANai receiving the

message also DMAsit to areserved memory area on its own host, from which it is retrieved by the application.

Reassembled message in regular host memory

Received message fragment in host’s DMA area

SR
Multicast message [

C 1)
1 1 , I .
- DMA area
Myrinet C
interface % % I—_Lw
N
Send queue] O
E [TA] O L
! I
%4;—/ N —) =]
! I
'l Receive queue Forwarding|!
! multicast |!
| fragment |1 Myrinet
: l crossbar switch
; B
I
\ Multicast fragment replica#2 /i

Multicast fragment replica #1 Multicast fragment replica#3

Figure 5: Multicast on the interface boards.

The basic problem with such a spanning-tree multicast protocol, however, isthat it is unreliable. Even though the
communication links arereliabl e, the protocol may drop messages. The key problemisthat buffer space at the destina-
tionswill always be limited. If a message is multicast while one or more hosts are out of buffer space, these hosts will

have to drop the message. This problem did not arise with theinitial spanning-tree protocol on top of FM, because FM

12

uses aflow control mechanism for point-to-point messages[27]. The mechanism uses a credit-based scheme, where a
sender is blocked if no buffer spaceis availablefor it at the receiver. In thisway, FM never hasto drop point-to-point

messages and thusisreliable.

Our new protocol runson theinterface boards, rather than on top of FM, soiit still may drop messages. The problem
can be solved using a flow control mechanism that prevents buffer overflow, just as for FM point-to-point messages.
However, flow control for multicast is a much harder problem than for point-to-point communi cation, because it must

guarantee that buffer spaceis available at all nodes, instead of just one.

We have designed and implemented a flow control scheme for Myrinet [34]. Like the FM scheme, it is based on
credits. Onecredit representsbuffer spacefor one (fixed-size) messagefragment at all nodes. A node can only multicast
afragment if it hasacredit. Each nodeisgiven anumber of creditsin advance, so usually a node can start multicasting
immediately. If a node runs out of credits, it must obtain new credits from a central credit manager. If a node has
finished processing an incoming message, it should somehow inform the credit manager that its free buffer space has

increased. To efficiently implement this recycling of credits we use a simple and efficient rotating token protocol.

The entire flow control scheme is implemented on the interface processors. The credit manager runs on one of
the interface boards. Also, requesting new credits and recycling credits are completely implemented on the interface
processors, without involving the host processors. As aresult, we have succeeded in making the low-level multicast
primitive reliable. The credit scheme guarantees that messages never have to be dropped due to lack of buffer space.

The communication links are reliable, so messages are never dropped by the hardware either.

A final important optimization concernsthetotal ordering of multicast messages. The Pandaprotocol usesacentral
sequencer to order all multicast messages. Before anode multicastsamessage, it first obtainsthe next sequence number
from the sequencer. On Myrinet, we can optimize this scheme by managing the sequence numbers on the interface
processors. Thesequencer isrun on one of theinterface processors (rather than on ahost), which again reducesmessage
latency. Also, we use the same interface processor for both the sequencer and credit manager. The advantageisthat a
request for credits can now be piggybacked on the request for the next sequence number, thus reducing the overhead

of credit requests.

We thus exploit the interface processors to speed up the forwarding of multicast messages and the requests for se-
guence numbers, and to run a credit scheme that makes multicasting reliable. We have implemented this functionality
by modifying the LANai control program used by Fast Messages. The optimizations described in this section thus de-
pend on the programmability of the interface processors. To summarize, the extensions we made to the original FM

LCP are: to (optionally) generate an interrupt on message arrival; the implementation of a spanning tree forwarding

13

protocol; the implementation of areliable credit-based multicast protocol; and the addition of an efficient primitive to
obtain a sequence number. Several other networks also have programmable interface processors [7], so some of the

optimizations may be applicable on such networks as well.
4.3 Layer Collapsing

The layered structure of our system al so adds some overhead. Since FM and Panda are two independent systems, they
each maintain their own pool of buffers, so they both have the overhead of buffer management. Also, both of them
contain code for message fragmentation and reassembly. Finally, the initial design suffers from various runtime over-
heads. We discuss these issues in turn below. Many of these optimizations are not specific for high-speed networks.
Still, the optimizations were necessary to obtain a good performance on Myrinet. We did not have to implement them
for the original Ethernet-based system, because the performance gain would be relatively small compared to the com-
munication time over the network.

We will first consider buffer management in FM and Panda. Intheinitial design, the FM layer communicateswith
Panda by means of an upcall with two arguments: a pointer to the buffer containing the received message and the size
of the message. This message must be processed completely by Pandabefore returning from the upcall, since FM frees
(or reuses) the buffer when the upcall returns. However, the Orca RTS does not guarantee that it handles incoming
messages immediately. Therefore, Panda copies the message supplied by FM and queues this copy for processing by
the RTS later on. This extracopy step clearly increases the latency.

To solve this problem, we changed the upcall interface of FM. In the new version, FM supplies the message in the
form of a structure that may be retained by the higher layersaslong asrequired. It isfreed by an explicit call to anew
FM primitive after it has been processed completely. Also, the FM message structure was extended with enough space
(besides the data itself) to alow the higher layers to deal with the message (e.g., putting it in a queue) without having
to alocate and use additional data structures. Clearly, this optimization gives up the clean separation between FM and
Panda, so it isaform of layer collapsing.

Another problem with our initial designisthe overhead of fragmentation. Theinitial design uses an existing mes-
sage passing modul e that supports message fragmentation (because many operating systems have a maximum message
size). Large messages are fragmented by Pandainto chunks of 8Kbyte, and these chunks are fragmented again by the
FM layer. FM, however, supports messages of arbitrary size. In the optimized system, we therefore use acustom Panda
message module that dispenses with fragmentation.

Another form of overhead in the initial design concerns marshalling. In Orca, any data structure can be sent in a

message over the network. Marshalling and unmarshalling of data structures is done automatically by the language

14

implementation. In the initial design, the compiler generated a descriptor for each operation, describing the types of
the arguments of the operation. The RTS contained generic marshalling (and unmarshalling) routines that used these
descriptors. These generic routines were quite expensive, since they had to determine the types of the arguments at
runtime (using the descriptors). On an Ethernet, the relative overhead of marshalling islow but on Myrinet marshalling
turned out to be relatively expensive.

We optimized marshalling by having the compiler generate a specific marshalling routine for each operation. For
example, if an operation takes two arrays of integers as arguments, the compiler generates a routine that marshalls ex-
actly thesetwo arraysinto amessage (plustheinverseroutinefor unmarshalling). This optimization avoidsthe runtime
interpretation of descriptors at the cost of increasing code size (for the marshalling/unmarshalling routines). However,
it required significant extensions to the compiler for generating these routines. In theinitial design, the compiler was
not involved in marshalling at all (except for generating the descriptors), so thisisagain aform of layer collapsing.

We a so made several performance improvementsto the Orca RTS. We decreased the overhead of synchronization
(by using fewer, more coarse-grained locks), message headers (by coalescing headers from different modules), and
runtime statistics (which are used for decisions about object placement). Finally, we made variouslocal changesto the
code of each layer. In particular, theinitial system suffered from procedure calling overhead. The SPARC processors
have afixed number of register windows. If the window overflows or underflows, an expensivetrap into the operating
system is made. For software engineering reasons, the initial system used many small procedures and thus suffered
from window overflows and underflows. We solved this problem by inlining small procedures, mainly by using com-
piler directives. Furthermore, the GCC compiler supports an option (—mflat) to compile functions to explicitly save
and restore registers on the stack instead of using register windows. By selectively compiling functions on the critical
communication paths (i.e., the Panda RPC, multicast, and threads packages) with this option, the number of traps was

reduced considerably without the need to restructure our software layering.

5 Performance

Wewill now study theimpact of the optimizations on the performance of our system. Wefirst look at low-level perfor-
mance and describe the latency and throughput of some basic primitivesin FM, Panda, and Orca. Next, welook at the
performance of Orca applications, to see which improvements on speedups can be obtained using faster networks in

combination with more efficient software. To measure the effect of the optimizations we have built two Orca systems:
¢ Theinitial design described in Section 3.1.

e Thefinal system with the optimizations described in Section 4.

15

Optimization Layer
Thread management
Interrupts and polling LCP/FM/Panda
Context switching Panda
Programming the interface boards
Totally-ordered multicast LCP/FM
Layer collapsing
Buffer management FM/Panda
Fragmentation FM/Panda
Marshalling Compiler
Various overheads Panda/RTS

Table 2: Overview of the performance optimizations.

To ease the discussion, Table 2 gives an overview of the optimizations described in the previous section. It also
indicates at which layers the optimizations are implemented. (Here, FM denotes the part of FM running on the host,

whereas the LCP runs on the interface board.)

5.1 Low-level Performance

We first look at the performance of several low-level benchmark programs that measure the efficiency of FM, Panda,

and Orca.

5.1.1 Performance of Fast M essages

We have made several changesto the FM software on the host and the interface board. Most importantly, we have ex-
tended the LCP (LANai Control Program) with support for multicasting. With the current Myrinet hardware, such ex-
tensions easily decrease the performance of thelow-level FM communication primitives. The reasonisthat the LANai
processor on the interface board is very slow compared to the SPARC host CPU. The version of the LANai weuseisa
5 MIPS 16-bit CISC processor. Even if the LCP only hasto execute afew extrainstructions, thisimmediately reduces
performance [27].

With our modificationsto FM, the LANai now has to examine every messageto seeif it isamulticast message that
needsto beforwarded. Allocation of messages (on the host) and support for thread saf ety also add to thelatency. There-
fore, the point-to-point latency in our extended FM system will be higher than with the original FM. With the original
FM code we achieved a minimal round-trip latency of 60 psec for 16-byte messages on our hardware. The maximum
throughput we achieve for messages of 16Kbyte is 8.6 Mbyte/sec (including reassembly of message fragments at the
receiving host).

Our extensions have led to the following increasesin round-trip latency. Callsto amutex library to make the prim-

itives thread safe add 7 psec to the latency. Multicast-related changes to the LCP result in an additional 5 usec over-

16

head. To increase the maximum achievable throughput we doubled the FM fragment size to 256 bytes, resulting in a
sustained throughput of 10.1 Mbyte/sec for 16 Kbyte messages. This increased the roundtrip point-to-point time for
16-byte messages with another 10 usec. Finally, the more flexible fragmentation code (including allocating and copy-
ing the message) adds another 10 psec, resulting in a minimal roundtrip point-to-point latency of 60+7+5+10+10=92
psec in total.

The latency for 16-byte messages thus hasincreased from 60 psec to 92 psec. For 64-byte messagesthe round-trip
latencies have increased from 66 psec to 103 psec. For 248-byte messages (i.e., the maximum size for a message with
one fragment), the latencies have decreased from 167 psec to 143 psec, because the original FM system sends two
fragmentsin this case.

Asdiscussed in Section 4, our optimized system uses one of the interface boards as a sequencer and credit manager
for the totally-ordered multicast protocol. The time needed to fetch a sequence number and credits from the manager
is70 psec.

In conclusion, our extensions add some overhead to FM. As we will see below, however, these extensions allow
optimizations at the higher levels (Panda and Orca) that result in a large overall performance gain. In addition, the
overhead of our extensionswill decrease as faster interface processors become available, such asthe new LANai 3.2,
which is afaster 32-bit pipelined RISC processor. We have experimented with prototypes of this hardware, using our
modified version of FM with a 128-byte message fragment size. The round-trip latency for a 64-byte point-to-point
message decreased from 103 to 65 psec. The latency for retrieving a sequence number and credits dropped from 70 to

42 psec.
5.1.2 Performance of the Panda Communication Primitives

The optimizations described in Section 4 improve the performance of the Panda communication primitives. In partic-
ular, the improved message handling, buffer management, and fragmentation optimize both RPC and multicast perfor-
mance. The optimizationsimplemented on the interface boards only make multicasting more efficient, but not RPC.

Table 3 containsthe latency for empty messagesand the throughput for 1 M byte messages of the RPC and multicast
primitives, using the two different Panda systems described above. The latencies were measured as described in Sec-
tion 3.2. The RPC throughput was measured by sending request and reply messages of equal size (1 Mbyte) between
apair of nodes. The multicast throughput is measured by having one member in agroup of eight sending messages as
fast as possible to the other members.

Based on these measurements, we can determine the impact of the optimizations discussed in Section 4. We will

discuss the results for the latency of RPC and multicast messages. The total gain in this case is 414 usec for RPC

17

Initial | Fina

RPC latency (usec) 585 171
Multicast latency (jsec) 867 273
RPC throughput (Mbyte/sec) 4.7 10.1

Multicast throughput (M byte/sec) 2.6 55

Table 3: Communication latencies and throughput for the Panda primitives using the two different systems.

messages and 594 usec for multicast messages.

Wewill analyze the RPC performancein somedetail. Since our extended version of FM hasan overhead of 32 psec
for roundtrip point-to-point messages (see Section 5.1.1), the higher-layer optimizationstogether gain 414 + 32 = 446
usec for RPC. The new threads package reduces the polling overhead by dispensing with polling from user code, using
interrupts instead. Polling is done from the idle loop only. This optimization only affects the performance of applica
tions and not of the benchmarks: the benchmarks poll for incoming messages anyway, since they are synchronousin
nature. The implementation of the new threads package saves a thread switch for each incoming RPC reply message.
Instead of giving the message to a separate communication thread, it uses an efficient mechanism for allocating a new
thread. This optimization saves the costs of an Amoeba thread switch, whichis 175 to 250 usec. The layer collapsing
optimizations together thus save approximately 200 to 250 usec for RPCs. We have determined that about 120 usec
of this can be attributed to the removal of fragmentation code from Panda; the remainder is gained by simplified buffer

management and by selectively having GCC generate code that does not use register windows.

The RPC latency for the final systemis 79 usec higher than the roundtrip latency for our extended version of FM
(171 against 92 usec). Unlike FM, however, the RPC protocol supports multithreading. In particular, when the client
machinereceivesthereply message, the protocol wakes up the client thread that sent the request message, using asignal
on acondition variable. FM, other the hand, does not support multithreading, so it does not have this overhead. Also,
the Panda communication protocol needs to do demultiplexing between multicast and RPC messages, which also has
some overhead. The throughput of the RPC protocol is the same as for FM, although the RPC protocol needs much

larger messages to obtain a high throughput.

The performance of multicasting is improved by the same optimizations as described above for RPC, and by im-
plementing the multicast protocol on the interface boards. To study theimpact of the latter optimization, we have also
built a Panda system that performs all optimizations discussed in Section 4, except for the multicast optimization. On
this system, the multicast latency is 388 psec, so the multicast optimization saves 115 usec for empty messages. The
multicast throughput on this system is 2.8 Mbyte/sec, so the multicast optimization also improves the throughput sub-

santially.

18

Initial | Fina
ROI latency (usec) 865 328
GOl latency (usec) 1170 | 379
ROI throughput (M byte/sec) 32 55
GOl throughput (M byte/sec) 2.3 5.0

Table 4: Communication latencies and throughput for the Orca primitives using the two different systems.

5.1.3 Performance of the Orca Primitives

We now discuss the performance improvements of the Orca object invocation primitives. We measured the latency of
the ROI (RPC Object Invocation) and GOI (Group Object I nvocation) benchmarksdescribedin Section 3.2. Inaddition,
we measured the throughput of Orca operations using similar programs with a 1 Mbyte array as parameter. For ROI,
an array of the same sizeis returned as the result of the operation. The ROI and GOI benchmarks thus have the same
communication behavior as the RPC and multicast benchmarks discussed above, except that they also suffer from any
overhead introduced by the Orca RTS (such as marshalling and locking). The results are shown in Table 4.

The performance gainsfor ROI and GOI can largely be attributed to the improvements of the Panda RPC and mul-
ticast primitives, discussed above. In addition, performance has been improved by having the compiler generate spe-
cialized marshalling routines. We have measured that this saves about 60 psec for the ROl benchmark. Finaly, we
have made several local improvementsto the RTS, which a so reduce the latency. We can determine the overhead of
the Orca RTS for the final system by comparing Tables 3 and 4. For ROI, the overhead is 157 usec and for GOl it is
106 psec.

Thethroughput for ROI isworse than for RPC (5.5 Mbyte/sec against 10.1 Mbyte/sec). Thereason isthat the Orca
compiler generates code that copies the data several times. The input parameter and the result each are copied twice,
during marshalling and unmarshalling. The number of copies could be reduced through compiler optimizations, but

our current system does not do this yet.
5.2 Performanceof Orca Applications

To evaluate whether or not theinvestment both in hardware and software for faster networksreally improvesthe perfor-
mance of parallel applications, we have used two Orca applications to compare their performance on Ethernet and the
two Myrinet implementations described in the previous sections. One application mainly uses point-to-point (RPC)
communication, whereas the other is dominated by multicast communication. Given the differences in performance
for the basi ¢ Orca operation invocation mechanisms (i.e., ROl and GOI), we expect that fine-grained Orca applications
that invoke many operations on shared objects will benefit considerably from the lower latencies on Myrinet. Also,

applications that require high bandwidths will benefit from the crossbar interconnection switch of Myrinet, which fa-

19

cilitates parallel data exchange between pairs of nodes. On traditional Ethernet, all communication is serialized, which

degrades performance of applications that communicate in parallel.
521 Water

The first application we discuss is the Water application from the Splash benchmark suite [30]. We have rewritten
this program in Orcaand use it to simulate the behavior of a system with 100 water moleculesfor 100 time steps. The
moleculesare statically distributed over the parallel processors. Each processor hasone object that containsinformation
about its molecules. At the beginning of each time step, each process fetches the updated positions of certain molecules
from remote objects, using remote object invocations. The positions are used to compute the inter-molecul ar forcesand
new positionsfor themolecules. Sincethe processesarerunningin lock-step, all the position updates haveto befetched

at the same time, which makes Water a communication intensive application for small numbers of molecules.

_+ Myrinet

-8 Initial

AT Ethernet]|

Speedup

2 4 6 8 10
Number of processors

Figure 6: Parallel performance of Water.

Figure 6 shows the speedups of the Water program on the three different systems, relative to the time on one pro-
cessor for the final Myrinet system. The performance on Ethernet shows that Water does not achieve a good speedup
for this problem size on eight processors. The communication generated by the Water program cannot be handled fast
enough by the Ethernet, hence the efficiency dropsbelow 50%. On Myrinet, thelower latency and increased bandwidth
of the network have a strong impact on performance. Water achieves a speedup of 5.7 on eight processors, using our
final system. Thus for Water, the usage of a high-speed network improves performance considerably.

Figure 6 also shows that the many optimizations of the Orca system software are of great importance, since the

speedup curve of theinitial design is much lower than the one for the final Myrinet system. The weak performance of

20

theinitial design is mainly caused by the need to poll the network explicitly from the Orca code. The Orca compiler
conservatively inserts polling statements at each function entrance and loop body. To save on the number of network
polls, the generated code decrements a global counter and only invokes a network poll when the counter reaches zero.
We have measured that the polling overhead can be very high: the sequential execution time of Water increases 25%
when polling statements are included.

Thishigh overhead is not solely caused by the additional polling instructions. Certain optimizationsin the C com-
piler also become unapplicable. For example, the C compiler for the SPARC optimizes|eaf functions and avoids using
aregister window. Leaf functions that now contain a function call (to poll the network) can no longer be optimized
in this way, which introduces additional traps to the operating system. Also, the C compiler performs less function
inlining, because of the larger code fragments and additional function calls to poll the network.

Thepoor performance of Water on two processorsusing theinitial designismainly caused by polling overhead. The
single processor case was compiled without any polling statements, while the two processor case necessarily contains
polling statements. We tried to tune the polling frequency by only invoking areal network poll once every N compiler
generated polling statements, but this has proven to be difficult. The measurements presented were obtained with N =
1000. Increasing the frequency to N = 100 raises the polling overhead to a factor of two, because of the additional
network polls. Decreasing the rate to N = 10000 also has a negative impact on performance because the network is
not polled fast enough. Setting the polling frequency right is a difficult problem, as recognized by others [15]. The
optimized system handles incoming messages through interrupts, which is much more efficient for Water. We have
determined that the overhead of such interrupts on execution timeisless than 0.5% (using eight processors).

Comparing the speedups of Water on Ethernet and the initial Myrinet implementation shows that for this applica-
tion the usage of a faster network pays for larger numbers of processors, but that a naive port of high-level software
does not always pay off. The Ethernet implementation outperformstheinitial Myrinet implementation on two and four

processors.
5.2.2 Linear Equation Solver

The second application we discussis alinear equation solver using the Jacobi method. The Orca program is set up to
solve a system of 300 equations, and it needs 2070 iterations to compute a solution. At the end of each iteration, the
Orca processes synchronize and exchange data through a single shared object. This object is being replicated by the
Orcaruntime system so that all processes can read the updated state from the local copy without any communication.
Thusat eachiteration, NV Orca processes effectively multicast their local update, which resultin N multicast messages.

Since the Orca processes are running in lock step, all communication occurs roughly at the same time.

21

_+ Myrinet

4 __.Onitial R
Ethernet

Speedup

Number of processors

Figure 7: Parallel performance of the Linear Equation Solver.

The performance of the linear equation solver (see Figure 7) shows that the Ethernet implementation does not
achieve satisfactory speedup on eight processors because the bus based network cannot handle the peak load of multi-
cast communication. The Myrinet implementation, however, does much better and reaches a speedup of 5.9 on eight
processors. The crosshar network topology of Myrinet allows forwarding of the multicast messagesto happen in par-
alel, which (together with the lower latency of multicasting) explains the better performance results.

The speedup curve of the linear equation solver on the initial Myrinet design shows a similar behavior as for the
Water application. Performanceis severely degraded because of the polling overhead, but for alarger number of pro-
cessors the underlying Myrinet network outperforms the Ethernet. Again the ability to communicate in parallel has

proven to be a great advantage of the Myrinet network.

6 Related Work

In this section we compare our work with that of related systems. Several other systemsexist that (like FM) try to obtain
very high performance for low-level primitives on high-speed networks, using either a message passing or shared-
memory programming model [1, 24, 33, 35, 38]. We discuss one such system, U-Net, in more detail. U-Net [36] isa
user-level network interface on top of which higher-level protocols(e.g., TCP/IP, UDP/IP) and languages (e.g., Split-C)
have been built. Animplementation of U-Net over ATM existsthat exploitsthe programmability of the interface board
(Fore Systems SBA-200) to abtain high performance. An important issue addressed by U-Net is protection. U-Net

multiplexesthe network interface among multiple processes and gives each process protected accessto the network. To

22

implement this with user-space protocols, they again exploit the programmability of the interface and useits firmware
to enforce protection. Neither FM nor our work currently supports protection. Instead, we allow only one application

to access the network device at the same time.

In addition to these low-level primitives, several higher-level abstractions have been implemented on high-speed
networks. Many of these implementations are in the form of libraries rather than languages. CRL [16] is a highly
efficient, language-independent, user-level distributed shared memory. CRL supports shared regions, which are similar
to Orca’'s shared objects, except that they are accessed through library calls. CRL has been implemented on the CM-5

and Alewife.

Xu and Fisher [40] describe an implementation of PVM on top of Myrinet. The original PVM system uses TCP/IP
and UDP/IP. This paper describes how to use afast data path that avoids these protocols and by using Myrinet’s API
(Application Programming I nterface) for datatraffic. 1nthisway, they obtain ahigh throughput for large messages. The
latency for small messagesisstill high (about 600 usec). For Orcawe obtain amuch lower latency, partly because of the
optimizations described above and partly because we use FM instead of the much slower API. Scaleset al. [28] describe
areimplementation of the PVM interface on an AN2 ATM network. A high performance is obtained by changing the

AN2 firmware, the operating system, and the PVM library.

Several other papers discuss the implementation of multicast communication on modern networks. Huang and
McKinley [14], for example, describe how to implement multicasting (and other collective communication operations)
on ATM, on top of either PVM or AALS. Gerlaet al. [8] discuss possible hardware and software implementations of
multicast on Myrinet. The hardware solution proposes a modification of the Myrinet switches, to let them take care of
duplicating the multicast worms to multiple destinations, without the possibility of deadlock. For the software imple-
mentation of multicast, they propose an alternative to our buffer reservation scheme. Buffer deadlock (which cannot
occur in our system) is avoided by means of two buffer classes, one for sending to nodes with a higher “node-id”, the
other for the reverse direction. Furthermore, rather than allocating buffer space for a multicast message at all destina-
tions, the paper proposes an optimistic protocol with acknowledgements and possible retransmission in case of buffer
overflow. Comparing the performance of Gerla's software solution with our approach is difficult, since the prototype
discussed in [8] is based on the Myrinet API, which has a much higher latency than FM. Also, our credit scheme con-
tains a caching mechanism so that for small multicast messagesthe credit retrieval isnot in the critical path. In practice
our “conservative” solution doesnot introduce much extradelay when compared to an “optimistic” solution. Moreover,

the “optimistic” scheme also introduces acknowledgement related overhead on the LCP and the network.

Intheir investigation of the sources of software overheadin messaging layers, Karamcheti and Chien[20] found that

23

messaging layers incur significant software overheads when implementing “high-level” features not provided by the
network hardware (e.g., FIFO message ordering, deadlock safety, reliable delivery, and buffer management). We too
have found that high-level servicesincur large software overheads due to limitations of both the network hardware (no
flow control, no multicast) and the low-level messaging software (not thread safe, no interrupt-based message delivery,
handler restrictions). To reduce these overheads, many optimizations in the low-level software as well as the higher-
level RTS were needed.

The optimizationsin our threads package to use an inexpensive mechanism for creating and terminating message
handler threads resembl e the thread optimizations of Stacklets[9] and Lazy task creation [23]. Their goal, however, is
to reduce the overhead of fine-grained parallel programs using alarge number of threads. The key ideaistoinlinethe
execution of child threads and upgrade the child to afull thread only in the case of blocking, just like with our message
handler threads. Thefine-grained nature of their parallel programs, however, forcesthem to modify the compiler to use
a dightly more expensive calling sequence. In our case, the thread package can swap the stack pointers without com-
piler support. Another differenceis that a child thread needs to synchronize with its parent, while our handler threads
can simply run to completion once upgraded to a full blown thread. This also makes our model easier to implement.

Several researchers have recognized that both polling and interrupts are useful mechanisms to extract messages
from the network [5, 6, 22, 36]. Polling is cheaper than taking an interrupt and makes sense when a message is ex-
pected to arrive soon (e.g., thereply of an RPC). In addition, with explicit polling the programmer controlswhen exactly
message handlersare run. Thiscontrol can be used to achieve mutual exclusion between message handlers and compu-
tational threads. Interrupts, on the other hand, suit communication patterns in which messages arrive asynchronoudly.
Remote Queues[5] stressthe benefits of polling, but do provide selectiveinterrupts; polling isused by default and inter-
rupts are only generated for specific kinds of messages (e.g., system messages). With Orca, it is harder to fully exploit
polling since the RTS hides all communication from the programmer and usually cannot predict when a message will
arrive. Therefore, weuse polling only when all computational threadsareidle (i.e., when polling imposes no overhead)
and useinterruptsin all other cases. Maquelin et al. [22] have proposed hardware that generates an interrupt only when
the network has not been polled for awhile. We could use a similar mechanism by modifying the FM LCP to delay the

generation of interrupts.

7 Discussion

We have implemented a high-level parallel programming system (Orca) on a high-speed network (Myrinet). The pro-

gramming system provides a form of object-based distributed shared memory to the user. It is implemented with a

24

portable system that uses a layered approach. To implement this system efficiently on a high-speed network, many op-
timizations are required that are not necessary (or even possible) on atraditional LAN such as Ethernet. We have made
two optimizations to message handling, to reduce the polling and context switching overhead. We have implemented
an efficient reliable multicast protocol (which is used to implement replicated objects) using the programmability of

the network interface boards. Finally, we have implemented various forms of layer collapsing.

The paper gives a detailed analysis of the performance of our system. The latency of remote object invocations
in Orcaon Myrinet is 328 psec. Thisis asubstantial improvement over atraditional Ethernet-based implementation,
wherethelatency is 1860 usec. Thelatency for updating areplicated object has decreased from 1960 usec for Ethernet
to 379 psec for Myrinet. Without the optimizations mentioned above, the latencies are roughly a factor of two better
on Myrinet than on Ethernet. Also, the performance of applications has been improved substantially by using Myrinet

in combination with the optimized Orca system.

The most important optimizations in our system are: to save a context switch for message handling; to do frag-
mentation only at the lowest level (FM) and not at the Panda level; and to implement multicasting in firmware on the
interface boards. Each of these optimizations saves over 100 psec on thelatency of object operations. Having the com-
piler generate specialized marshalling routinessaves 60 usec. Also, using interruptsinstead of compiler-generated polls

substantially improves the performance of applications.

Compared to lower-level message passing primitives, Orcastill has asubstantial overhead, whichisduetoitsmuch
higher level of abstraction. For example, the latency of remote object invocation is about a factor of five higher than
theroundtrip latency for FM messages on the same hardware. The functionality provided by the Orca primitives, how-
ever, ismuch higher. To study the differences between low-level and high-level programming systems, we discuss the

differences between FM and Orcain some more detail.

FM providesefficient, low-level send/receive primitiveswith very little functionality. Higher-level abstractionscan
be built on top of FM. The FM user can send a message to a certain machine using FM.send_4 (for messages up to
four words) or FM.send. Messages are received by periodically calling FM.ext r act , which checksif messages are

available. The send primitives have to supply their own buffers. Finally, the FM primitives are not thread safe.

The programming model provided by Orcais of a much higher abstraction level. Orcausers are not aware of the
variousissues of physical communication, such as sending messages, polling, buffer management, and so on. Instead,
they only deal with two simplelanguage constructs. processesand shared objects. The shared objects provideaform of
distributed shared memory, which in general is easier to program than message passing. For example, if an application

needs to maintain some global state information, this state can simply be stored in a shared object. The Orcacompiler

25

and RTS will decide how to implement the object. The object may be replicated automatically on several machines,
with the RTS taking care of coherency. With message passing, it is much more difficult to implement such shared
information. Another difference between FM and Orcaisthat marshalling isdone automatically in Orca. The FM send
and receive primitives only accept contiguous buffers. If a more complicated data structure has to be transferred, the
user must provide the marshalling and unmarshalling routines. In Orca, all of thisis done transparently by the compiler

and RTS, without any involvement from the programmer.

The goal of this paper is not to show the ease of use of Orca. (A detailed evaluation of the usability of Orca can
be found elsewhere [39].) However, the level of abstraction of a programming system clearly has implications for the
implementation and performance, especially when using a high-speed network like Myrinet. The FM primitives have
alow latency on Myrinet, so any overhead in the language implementation affects performance.

During the case study described in this paper we have learned many lessons that also will be applicable to other

high-level languages. Below, we summarize the most important |essons.

Many high-level parallel languages support multithreading and hide low-level issues like polling and marshalling
from the programmer. In our experience, the performance overhead of multithreading can be high if implemented
naively, sincedelivering anincoming message at the right thread isexpensive. Weinvested much effort in reducing the
context switching overhead. This optimization is successful, but we had to switch to anew, user-level threads package

and we had to make complicated low-level modificationsto the internals of the package.

Our system also succeedsin freeing the programmer from the burden of polling the network. Our solution is based
on asimple and general idea (poll when the processor isidle, useinterrupts otherwise), but to implement thiswe again
had to resort to low-level systems programming, including modificationsto the firmware and the threads package. Mar-
shalling of data structures can easily be handled by the compiler, although the overhead is significant. We reduced the
overhead by generating specialized marshalling routines, but still the copying overhead of the marshalling routinesis

high and limits throughput. Further optimizations are required to reduce this overhead.

Our work on the multicast optimizations is useful to many other programming systems, since multicasting is sup-
ported in an increasing number of systems. We have shown that the latency of multicast operations can be decreased
substantially by implementing the spanning tree forwarding routine in firmware. A critical issue is the possibility of
buffer overflow, but a proper flow-control scheme can adequately solve this problem. An important lesson is that a

programmabl e interface processor gives many opportunities for important performance optimizations.

Another lesson from our work is that a layered approach to achieve portability is feasible even on a high-speed

network, although someamount of layer collapsingis probably unavoidabl eto obtain good performance. In our system,

26

parts of onelayer (Panda) have been integrated with the lower-level message passing layer (FM). Theresulting system,

however, still uses alayered approach. The runtime system, for example, till is a separate layer that only deals with

objects and processes, and not with communi cation protocols.

In conclusion, the paper has shown that substantial performance gains are possible by implementing a high-level

language on a fast network, but that such gains can only be achieved using extensive optimizations.

Acknowledgments

We thank Debby Wallach and Frans Kaashoek for the initial version of the threads package used in this paper, and

Andrew Chien and Scott Pakin for making the FM software available to us. The Orca Water program was written by

John Romein and Frank Seinstra. We are grateful to Greg Benson, Matt Haines, and Andy Tanenbaum for their useful

comments on adraft of this paper.

References

[1]

(2]

(3]

[4]

(5]

6]

T.E. Anderson, D.E. Culler, and D.A. Patterson. A Case for NOW (Networks of Workstations). |EEE Micro,

15:54-64, February 1995.

H.E. Bal and M.F. Kaashoek. Object Distribution in Orca using Compile-Time and Run-Time Techniques. In
Conference on Object-Oriented Programming Systems, Languages and Applications, pages 162—177, Washing-

ton D.C., September 1993.

H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A Language for Parallel Programming of Distributed

Systems. |EEE Transactions on Software Engineering, 18(3):190-205, March 1992.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W. Su. Myrinet: A Gigabit-

per-second Local AreaNetwork. |[EEE Micro, 15(1):29-36, February 1995.

E.A. Brewer, ET. Chong, L.T. Liu, S.D. Sharma, and J.D. Kubiatowicz. Remote Queues. Exposing Message
Queues for Optimization and Atomicity. In ACM Symp. on Parallel Algorithms and Architectures '95, Santa

Barbara, CA, 1995.

D. Chiou, B.S. Ang, Arvind, M.J. Beckerle, A. Boughton, R. Greiner, J.E. Hicks, and J.C. Hoe. Star'T-NG: De-
livering Seamless Parallel Computing. In Proceedings of the First International EURO-PAR Conference, pages

101-116, Stockholm, Sweden, August 1995.

27

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D.E. Culler, L.T. Liu, R.P Martin, and C.O. Yoshikawa. Assessing Fast Network Interfaces. |EEE Micro,
16(1):35-43, February 1996.

M. Gerla, P. Palnati, and S. Walton. Multicasting Protocols for High-Speed Wormhole-Routing Local Area Net-

works. Technical Report SSN Project Internal Note, UCLA, 1996.

S.C. Goldstein, K.E. Schauser, and D. Culler. Enabling Primitives for Compiling Parallel Languages. In B.K.
Szymanski and B. Sinharoy, editors, Languages, Compilersand Run-Time Systemsfor Scalable Computers, pages
153-168, Boston, MA, 1995. Kluwer Academic Publishers.

A.S. Grimshaw. Easy-to-Use Object-Oriented Parallel Processing with Mentat. |EEE Computer, 26(5):39-51,
May 1993.

D.G. Gustavson. The Scalable Coherent Interface and Related Standards Projects. |EEE Micro, 12(1):10-22,
February 1992.

M. Haines, B. Hess, P. Mehrotra, J. van Rosendale, and H. Zima. Runtime Support for Data Parallel Tasks. In

Proc. Frontiers 1995, pages 432—439, January 1995.

H.P. Heinzle, H.E. Bal, and K. Langendoen. I|mplementing Object-Based Distributed Shared Memory on Trans-

puters. In Transputer Applications and Systems’ 94, pages 390—-405. |OS Press, September 1994.

C. Huang and PK. McKinley. Communication Issuesin Parallel Computing Across ATM Networks. |EEE Par-
allel and Distributed Technology, 2(4):73-86, Winter 1994.

K.L. Johnson. High-Performance All-Software Distributed Shared Memory. Technical Report MIT/LCSTR-674

(Ph.D. thesis), Massachusetts I nstitute of Technology, December 1995.

K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. CRL: High-performance All-Software Distributed Shared
Memory. In 15th ACM Symp. on Operating Systems Principles, pages 213-228, Copper Mountain, CO, De-
cember 1995.

M.F. Kaashoek. Group Communication in Distributed Computer Systems. PhD thesis, Vrije Universiteit,

Amsterdam, December 1992.

M.F. Kaashoek, R. van Renesse, H. van Staveren, and A.S. Tanenbaum. FLIP: an Internet Protocol for Supporting

Distributed Systems. ACM Transactions on Computer Systems, 11(1):73-106, January 1993.

28

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L.V. Kadeand S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System Based On C++. In
Conference on Object-Oriented Programming Systems, Languages and Applications, pages 91-108, Washington
D.C., September 1993.

V. Karamcheti and A.A. Chien. Software Overhead in Messaging Layers: Where Doesthe Time Go? In Proceed-
ings of the 6th International Conference on Architectural Support for Programming Languages and Operating

Systems, San Jose, California, October 1994.

JW. Lee. Concord: Re-Thinkingthe Division of Labor inaDistributed Shared Memory System. Technical Report

TR-93-12-05, Univ. of Washington, Segttle, WA, 1993.

O. Maquelin, G.R. Gao, H.H.J. Hum, K.B. Theobald, and X. Tian. Polling Watchdog: Combining Polling and In-
terruptsfor Efficient Message Handling. In The 23rd Annual Inter national Symposiumon Computer Architecture,

Philadelphia, Pennsylvania, May 1996.

E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy Task Creation: A Technique for Increasing the Granularity of

Parallel Programs. |EEE Transactions on Parallel and Distributed Systems, 2(3):264—280, July 1991.

S. Mukherjee, S.D. Sharma, M.D. Hill, JR. Larus, A. Rogers, and J. Saltz. Efficient Support for Irregular Ap-
plications on Distributed-Memory Machines. In Proc. 5th ACM SSGPLAN Symp. on Principles and Practice of

Parallel Programming, pages 68—79, July 1995.

M. Oey, K. Langendoen, and H.E. Bal. Comparing Kernel-Space and User-Space Communication Protocols on
Amoeba. In Proc. of the 15th International Conference on Distributed Computing Systems, pages 238245, Van-

couver, British Columbia, Canada, May 1995.

W.G. O'Farrell, E.Ch. Eigler, I. Kalas, and G.V. Wilson. ABC++ User Guide. Technical report, IBM Canada,

Toronto, 1995.

S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations: Illinois Fast Messages (FM)
for Myrinet. In Supercomputing ' 95, San Diego, CA, December 1995.

D.J. Scales, M. Burrows, and C.A. Thekkath. Experience with Parallel Computing on the AN2 Network. In 10th

International Parallel Processing Symposium, Honolulu, Hawaii, April 1996.

D.J. Scalesand M.S. Lam. The Design and Evaluation of a Shared Object System for Distributed Memory Ma-

chines. Proc. 1st Symp. on Operating System Design and | mplementation, pages 101-114, November 1994.

29

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J.P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared Memory. ACM
Computer Architecture News, 20(1):5-44, March 1992.

A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal. Parallel Programming using Shared Objects and Broadcasting.

|EEE Computer, 25(8):10-19, August 1992.

A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J. Jansen, and G. van Rossum.
Experiences with the Amoeba Distributed Operating System. Communications of the ACM, 33(2):46-63, De-
cember 1990.

C.A. Thekkath. System Support for Efficient Network Communication. Technical Report 94-07-02 (Ph.D. thesis),

Univ. of Washington, July 1994.

K. Verstoep, K. Langendoen, and H.E. Bal. Efficient Reliable Multicast on Myrinet. Technical Report 1R-399,

Vrije Universiteit, Amsterdam, January 1996.

T.vonEicken, A. Basu, and V. Buch. Low-L atency Communicationover ATM Networks Using Active Messages.
|EEE Micro, February 1995.

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network Interface for Parallel and Dis-
tributed Computing. In ACM Symposium on Operating System Principles, pages 303—-316, Copper Mountain,
CO, December 1995.

T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In The 19th Annual International Symposiumon Computer Architecture, pages

256266, Gold Coast, Australia, May 1992.

D.A.Wallach, W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, and W.E. Weihl. Optimistic Active Messages. A Mech-
anism for Scheduling Communication with Computation. In Proc. 5th ACM SIGPLAN Symposiumon Principles

and Practice of Parallel Programming (PPoPP ' 95), pages 217—226, Santa Barbara, CA, July 1995.

G.V. Wilson and H.E. Bal. An Empirical Assessment of the Usability of Orca Using the Cowichan Problems.

|EEE Parallel and Distributed Technology (to appear), 4, 1996.

H. Xu and T.W. Fisher. Improving PVM Performance using ATOMIC User-Level Protocol. In Proc. First Int.

Workshop on High-Speed Network Computing, pages 108-117, Santa Barbara, CA, April 1995.

30

