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ABSTRACT
Jackalis a fine-graineddistributedsharedmemoryimplemen-
tationof theJava programminglanguage.Jackalimplements
Java’smemorymodelandallowsmultithreadedJavaprograms
to rununmodifiedon distributed-memorysystems.

This paperfocuseson Jackal’s runtimesystem,which im-
plementsa multiple-writer, home-basedconsistency protocol.
Protocolactionsaretriggeredby softwareaccesschecksthat
Jackal’s compiler insertsbeforeobject and array references.
We describeoptimizationsfor Jackal’s runtimesystem,which
mainly consistof discovering opportunitiesto dispensewith
flushingof cacheddata.We give performanceresultsfor dif-
ferent runtimeoptimizations,andcomparetheir impactwith
theimpactof onecompileroptimization.Wefind thatourrun-
timeoptimizationsarenecessaryfor goodJackalperformance,
but only in conjunctionwith theJackalcompileroptimizations
describedin [24]. As ayardstick,wecomparetheperformance
of Java applicationsrun on Jackalwith the performanceof
equivalentapplicationsthatuseafastimplementationof Java’s
RemoteMethodInvocation(RMI) insteadof sharedmemory.

1. INTRODUCTION
Jackalisacompiler-supported,fine-graineddistributedshared

memory(DSM) systemfor Java. Thesystemcanrununmodi-
fied,multithreadedJavaprogramsonaclusterof workstations.
Together, Jackal’scompilerandruntimesystem(RTS)hidethe
distributednatureof thecluster: Jackalprogramsusethreads
andsharedvariablesinsteadof message-passingabstractions
like RemoteMethodInvocation[19]. This paperfocuseson
the implementationof the RTS and its optimizations,which
mainly consistof discovering opportunitiesto dispensewith
flushingof cacheddatato mainmemory.

Jackalresemblesfine-grainedDSMsystemslikeShasta[22]
andSirocco[13] in thatit usesasmallunit of coherencethatis
managedentirelyby software.In Jackal,theunit of coherence
is calleda region. EachregioncontainseitheracompleteJava
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objector asectionof aJavaarray. In contrastwith page-based
DSMs, Jackalusessoftwareaccesschecksto determineif a
region is presentin local memoryandup-to-date.If anaccess
checkdetectsthata region is absentor out-of-date,it invokes
Jackal’s runtimesystemwhich implementsa multiple-writer
cachecoherenceprotocolthat resolvesreadandwrite misses.
A region is managedby its homenode, which is the proces-
sor that createdthe associatedobject. Jackaldoesnot usea
single-writerprotocol, becausethat would require the com-
piler to inform theruntimesystemwhenaread/writeoperation
hasfinished;thatwould increasecodesizeandprotocolover-
head,andposecomplicationsfor the compilerin (re)moving
accesschecks.

Jackalconformsto the Java memorymodel,which allows
cachingof objectsin (thread)local memoryandlogically re-
quirescompleteflushingof localmemoryuponeachentryand
exit of a synchronizedblock. In our system,main memory
equatesto an object’s homenode,and local memoryto the
requestingmachine’s memory. Flushingregions and subse-
quentlyrequestingthemagainmaycausea largeoverheadun-
deranaive implementation(especiallyusingtheclasslibraries
which perform many unnecessarysynchronizations[1]). To
reducethis overhead,we investigatepossibilitiesoffered by
theJavamemorymodelto cacheregionsacrossasynchroniza-
tion operation.Thisis possiblefor regionsthatareread-shared
andregionsthatareaccessedby a singlemachine.

JackalusesanoptimizingJava compilerto generateaccess
checks. In the optimizationpassesof the compiler, access
checksmay be removed, lifted or combined. For example,
arrayaccessesmay be combinedand lifted from a loop that
(partially) traversesthe array, or accessesmay be aggregated
whenthe compilerdeterminesthatan objectis usedtogether
with its referencedsubobjects.Thecompileropimizationsare
describedin detail in [24].

Thecontributionsof thispaperareasfollows:
� WedescribevariousRTSoptimizationsto reducethenum-

berof regionflushes.� We measuretheimpactof theRTS optimizationsfor sev-
eral Java applicationsandcomparethemto the impactof
compileroptimizations.

The paperis structuredasfollows. Section2 treatsJava’s
memorymodel.Section3 describesJackalandits implemen-
tation. Section4 summarizesJackal’s compileroptimizations
anddescribesournew RTSoptimizations.Section3 andanex-
tendedversionof Subsection4.1 appearedearlierin [24], but
we repeattheseintroductorysectionshereto make this paper



self-contained.Section5 studiesthe impactof theRTS opti-
mizationsonJackal’s performanceonaMyrinet-basedcluster
computer. Section6 discussesrelatedwork. Finally, Section7
concludes.

2. JAVA’S MEMOR Y MODEL
We briefly summarizeJava’s memorymodel;for a detailed

descriptionwe refer to the languagespecification[10] and
Pugh’s critiqueof thememorymodel[21].

Java’smemorymodelspecifiesthateachthreadhasawork-
ing memory, which canbeconsidereda thread-privatecache.
Theentireprogramhasamainmemorywhichis usedfor com-
municationbetweenthreads.Thedatamodifiedby a threadis
flushedto mainmemoryuponencounteringasynchronization
point. (In this respect,the model resemblesreleaseconsis-
tency [8, 16].) Synchronizationpoints in Java correspondto
the entry andexit of synchronizedblocks. Theseareimple-
mentedascalls that lock andunlockanobject.A lock opera-
tion conceptuallycopiesall of a thread’s working memoryto
mainmemoryandinvalidatestheworking memory. For each
storagelocation,thefirst accessto thatlocationafteralock op-
erationwill copy thestoragelocation’svaluefrom mainmem-
ory into working memory.

Bothlock andunlockoperationsmustflushathread’swork-
ing memory, but animplementationis allowedto flushearlier,
even after every write operation. If a threadupdatesan ob-
ject from outsidea synchronizedblock, Java doesnot specify
whenotherthreadswill seetheupdate.

In contrastwith entryconsistency [3], Java’smemorymodel
doesnot couplelocks to specificobjectsor fields. In particu-
lar, differentfieldsof oneobjectmaybeprotectedby different
locks,sothatthosefieldscanbeupdatedconcurrentlywithout
introducingraceconditions.

3. IMPLEMENT ATION
Jackalconsistsof an optimizing Java compileranda run-

time system. The compiler translatesJava sourcesdirectly
into executablecoderatherthanJava bytecode. (The Jackal
runtimesystem,however, containsa dynamicbytecodecom-
piler [19] to supportdynamicclassloading.) The compiler
also generatessoftware accesschecksand performsseveral
optimizationsto reducethenumberandcostof thesechecks.
TheruntimesystemimplementsJackal’smultiple-writercache-
coherenceprotocol.Thefollowing sectionsdescribethemain
componentsof theimplementation.Optimizationsaredescribed
separatelyin Section4.

3.1 Regions
A region is Jackal’s unit of coherence.A region is a con-

tiguouschunkof virtual memorythatcontainsoneJavaobject
or a contiguoussectionof a Java array. Jackalpartitionsar-
raysinto fixed-size,256-byteregions(to reducefalsesharing
insidelargearrays).

Every region hasa region headerthatcontainsa pointerto
thestartof theJava datastoredin theregion, a pointerto the
region’s twin (seeSection3.3), andDSM statusinformation.
Eachobject or array hasa Java object headerthat contains
a pointer to a virtual-function table and object statusflags.
To keeparraydatacontiguous,regionsandtheir headersare
storedseparately(seeFig. 1).
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Figure1: Array layout.
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The processorthat allocatesa region is calledthe region’s
homenode. The homenodealwaysprovidesstoragefor the
region andplaysan importantrole in Jackal’s coherencepro-
tocol (seeSection3.3). Non-homenodescancachetheregion
andmaydiscardtheir copy andits memorywhenthey seefit
(e.g.,duringgarbagecollection).

3.2 Address-SpaceManagement
Jackalstoresall regionsin a single,sharedvirtual address

space. Eachregion occupiesthe samevirtual-addressrange
on all processorsthatstorea copy of theregion. Regionsare
namedandaccessedthroughtheirvirtual address;thisscheme
avoidstranslationof objectpointers.

Fig. 2 showsaprocessor’saddress-spacelayout.Theshared
virtual addressspaceis split into P equalparts,whereP is the
numberof processors.Eachprocessorownsoneof theseparts
andcreatesobjectsandarraysin its own part. This way, each
processorcanallocateobjectswithoutsynchronizingwith other
processors.

Whena processorwishesto accessa region createdby an-
othermachine,it must(1) potentiallyallocatephysicalmem-
ory for thevirtual memorypagesin which theobjectis stored,
and(2) retrieveanup-to-datecopy of theregionfrom its home
node. Region retrieval is describedin Section3.3. Physi-
cal memoryis allocatedusing the mmap()systemcall. Un-
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mappedpagesaredetectedthroughMMU trapswhich result
in anoperating-systemsignalthatis processedby Jackal’srun-
time system.If a processorrunsout of freephysicalmemory,
it initiatesa globalgarbagecollectionthat freesbothJava ob-
jectsandphysicalmemorypages.

3.3 CoherenceProtocolandAccessChecks
Jackalemploys an invalidation-based,multiple-writer pro-

tocolthatcombinesfeaturesof HLRC[26] andTreadMarks[15].
As in HLRC, modificationsareflushedto a homenode;asin
TreadMarks,twinning anddiffing is usedto allow concurrent
writes to shareddata. Unlike TreadMarks,Jackalusessoft-
wareaccesschecksinsertedbeforeeachobject/arrayusageto
detectnon-localandstaledata. The run-timedatastructures
relatedto thecoherenceprotocolareshown in Fig. 3.

Thecoherenceprotocolallows processorsto cachea region
createdon anotherprocessor(i.e., the region’s homenode).
All threadson oneprocessorshareonecopy of a cachedre-
gion. Thehomenodeandthecachingprocessorsall storethis
copy at thesamevirtual address.

Although all threadson a processoraccessthe samecopy
of a given region, eachthreadmaintainsits own cache-state
vectorfor that region. This is requiredbecauseJackalallows
multiplethreadsperprocessorandtheJMM is definedwith re-
spectto threads,not processors.For this purpose,eachthread
maintainsapresentandadirty bitmap,eachof whichcontains
onebit per 64 bytesof heap. Objectsare64-bytealignedto
mapa singleobject to a singlebit in the bitmap. To reduce
memoryusage,pagesfor thesebitmapsareallocatedlazily.

Thepresentbit in threadT ’sbitmapindicateswhetherthread
T retrieved an up-to-datecopy of region R from R’s home
node.A dirty bit in threadT ’sbitmapindicateswhetherthread
T wrote to region R sinceit fetchedR from its homenode.
If thepresentbit is not set,theaccess-checkcodeinvokesthe
runtimesystemto retrieveanup-to-datecopy fromtheregion’s
homenode.Whenthecopy arrives,theruntimesystemstores
theregion at its virtual addressandsetstheaccessingthread’s
presentbit for this region. This cachedregion copy is called
a processor’s working copyof a region. The runtimesystem

storesa pointer to the region in the accessingthread’s flush
list. In thecaseof a write miss,the runtimesystemalsosets
the region’s dirty bit andcreatesa twin, a copy of the region
just retrieved,unlesssucha twin alreadyexists.

A cachedregion copy remainsvalid for a particularthread
until thatthreadreachesasynchronizationpoint. At asynchro-
nizationpoint, thethreademptiesits flushlist. All regionson
the thread’s flush list are invalidatedfor that threadby clear-
ing their presentbits for that thread. Regionsthat have their
dirty bits setarewritten backto their homenodesin theform
of diffs, andthedirty bits arecleared.A diff containsthedif-
ferencebetweena region’s working copy and its twin. The
homenodeusestheincomingdiff to updateits own copy. To
speedup flushing,region flushesto the samehomenodeare
combinedinto a singlemessage.

Whentwo threadson a singleprocessormisson the same
region,both threadsmustrequesta freshcopy from thehome
node,becauseregion stateis maintainedper thread,not per
processor. Thedataaccessedby the secondthreadmay have
beenmodifiedon anotherprocessorafter the first threadre-
questedits copy. (As explainedin Section2, this is not a race
conditionif thesepartsareprotectedby different locks.) To
seethe modification,the secondthreadmust fetch an up-to-
datecopy from thehomenode. Thesecondcopy is storedat
thesamevirtual address;thenewly arriveddatais mergedinto
thetwin andinto theworking copy.

4. OPTIMIZA TIONS
To improve performance,Jackalremoves superfluousac-

cesschecks,prefetchesregions,flushesregionslazily, andem-
ploys computationmigration to improve locality. The com-
pileroptimizationsaredescribedin detailin [24] andarebriefly
summarizedhere.TheRTSoptimizationsaredescribedin de-
tail below.

4.1 Compiler Optimizations
Jackal’s front-endinsertsaccesschecksbeforeall heapac-

cesses.Sincetheseaccesschecksadd considerableruntime
overhead,thebackend’s optimizationpassestry to remove as
many checksaspossible.

Thecompilerperformsinterproceduralprogramanalysisto
discover opportunitiesto lift accesschecks.The front-endof
Jackal’s compiler can determinesetsof virtual-function call
targetsandmaintainlabel lists for switchstatements.This in-
formation is passedon to the compilerback-endwhich uses
it to remove accesschecks.An accesscheckfor addressa at
programpoint p canberemovedif a hasalreadybeenchecked
on all pathsthat reachp, but only if no pathcontainsa syn-
chronizationstatement.

Accesschecksto arrayelementsthatareaccessedin a loop
maybelifted into oneaggragatearraycheckbeforetheloop.

The compiler also performsheapanalysis[9] to discover
whensubobjectsreferencedby anobjectarealwaysaccessed
throughthatouterobject. If this is thecase,anaggregateac-
cesscheckis generatedto fault in the outerobjectandall its
referencedsubobjects.This maygreatlyincreasegranularity,
andmaysave a numberof network round-trips.Theapplica-
bility of thisoptimizationstronglydependson interprocedural
analysis.Escapeanalysis[6] in combinationwith heapanaly-
sisis usedto removechecksonobjectsthatremainlocal to the
creatingthread.
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The compiler may generatecodefor computationmigra-
tion [12]: part or all of a methodinvocationis moved to the
machinewherethedataresides.Thismaybeespeciallyeffec-
tive for synchronizedblocksandthreadobjectconstructors.

In Jackal,thehomenodeof thelock objectactsastheman-
agerof thelock. Lock, unlock,wait andnotify callsareimple-
mentedascontrol messagesto the lock’s homenode. When
thedataprotectedby thelock resideson thesamenodeasthe
lock, it is oftenmoreefficient to shipthewholesynchronized
computationto its home:only two messagesareinvolved.

A comparableoptimizationis appliedto calls to threadob-
ject constructors.Theseconstructorcalls areshippedto the
machinewherethenew threadwill run. Theresultis that the
threadobjectanddatacreatedfrom the constructorhave the
machinewherethethreadwill run astheirhomenode.

4.2 Runtime Optimizations: AdaptiveLazy
Flushing

Thecoherenceprotocoldescribedin Section3.3invalidates
and possiblyflushesall datain a thread’s working memory
at eachsynchronizationpoint. That is, the protocol exactly
follows thespecificationof Java’s memorymodel,which po-
tentially leadsto much interprocessorcommunication. The
implementation,however, canrelaxthis protocolwithout vio-
lating thememorymodel. In particular, it is not necessaryto
invalidateor flusharegion thatis accessedby a singleproces-
sor, or that is only readby any accessingthreads.This covers
severalimportantcases:

� home-onlyregions that are accessedonly at their home
node,� read-onlyregionsthatareaccessedin readmodeonly,� exclusiveregionsthathave beencreatedandinitialized by
onenode,but arecurrentlyaccessedby oneothernode.

Eachof thesecasescorrespondsto aregionstate. In general,
a region is in shared state;if a region is in any of the other
states,thethread(s)holdingtheregionapply lazyflushing: the
region is not flushedon a synchronizationoperation.Home-
only is a specialcaseof exclusive. It is profitableto make this
distinction,however, sincetheprotocolto supporthome-only
is muchsimplerthantheprotocolfor exclusive.

A processoris saidto share a region if theregion occursin
the flush list of oneor moreof the threadson thatprocessor.
In its optimizedversion,theRTStrackswhichmachinesshare
a region; moreover, it distinguishesbetweenreadand write
sharers.

The optimizedversionbringsa performancetrade-off. In
the unoptimizedversion,regionsarealwaysmappedat their

homenode; they are never faulted or flushedby the home
node.To detectany of theotherstates,theRTSmustbeaware
whetherthehomenodealsosharestheregion (for read-only,
it must monitor whetherthe homenode is a writer). Now,
threadsmustalsoflush andfault regionsat their homenode:
presentor dirty bits must be set and clearedin homenode
threadbitmaps,anda pointerto the region mustbe addedto
thethreads’flushlist. However, lazy flushingmaybecapable
of removing mostof theflushesandfaultsat thehomenode.

A secondpenaltyfor theoptimizedversionis thatnon-home
machinesmusttrackthenumberof threadsthatsharearegion;
if this numberdropsto zero,thehomenodemustbenotified,
even whenthe region hasbeenmappedfor readaccessonly.
We alleviatethis penaltyby combiningreleasenoticesduring
a flushinto a singlemessageperhomenode,like we did with
diff messages.

A regionstatecanbechangedby its homenodeonly whena
new sharerrequeststheregion,or whenamachinegivesnotice
thatit no longersharestheregion. Thenew stateis computed
basedon the numberof reador write sharers,with the home
nodeasa specialcase.Somestatechangeshave only localef-
fect(to andfrom home-only), for somestatechangestheinfor-
mationcanbepiggy-backedon thedatareply (to read-only).

Two statetransitionsbringextracommunicationwith them.
First, for a region that goesfrom read-onlystateto shared
state,all sharersmust be notified; the region is restoredon
theflushlistsof all threadsthataccesstheregion onall sharer
machines.Second,transitionsto andfrom exclusivestateare
rathercomplicated(seeFig. 4). If a region is sharedby zero
nodesandsomenoderequestsacopy for write access(1), then
thehomenodemakestherequestingnodetheregion’s owner
andgivesit anexclusive copy (2). The region remainsin ex-
clusivestateuntil anothernoderequestsanothercopy from the
homenode(3). In thatcase,thehomenodefirst sendsa mes-
sageto the owner, informing it to move the region to shared
state(4). The owner replieswith an acknowledgementor a
diff (5). Thehomenodemergesthediff into its own copy and
sendstheresultingcopy to therequestingnode(6). Sincethe
region is now in shared state,modificationswill beflushedto
the homenodeat synchronizationpoints(7). The region re-
mainsin shared stateuntil thereis only onesharingnode,or
thereareonly readsharersleft. If any nodeno longershares
the region, thenodeinforms the homenodethat thereis one
sharerless(8). If thelastthreadon this nodehadwrite access
to the region, this information is piggybacked onto the diff
that is senthome. Whenonly onewrite sharerremains,the
homenodeputsthe region in exclusivestateandinforms the



remainingsharerthat it is now the region’s owner (9). Since
thenew ownerwill not invalidatetheregion from now on, its
copy mustbe broughtup to date,so the homenodeincludes
theregiondatain message(9). Whenonly readsharersremain
aftera releasenotice,thehomenodeputsthe region in read-
onlystate;sharersarenotexplicitly notified,andthey will find
out thenext time theregion is accessed.

Frequenttransitionsto andfrom exclusivestatemaycause
thrashing. We arbitrarily limit the numberof timesa region
is allowed to go to exclusivestateto 5. From thenon, such
a region is allowed to go to all region statesexceptexclusive
state.

5. PERFORMANCE
In thissectionwestudytheimpactof RTSoptimizationson

Jackal’s performance.All testswereperformedon a cluster
of 200MHz PentiumPros,runningLinux, andconnectedby a
Myrinet [5] network. We useLFC [4], anefficient user-level
communicationsystem.Onourhardware,LFC achievesanull
roundtriplatency of 20.8µs anda throughputof 27.6Mbyte/s
(for a 256bytemessage,includinga receiver-sidecopy).

Jackalwasconfiguredso that eachprocessorhasa maxi-
mumof 32 Mbyte of local heapand32 Mbyte of cacheavail-
ablefor mappingpagesfrom otherprocessors.

We quoteresultson Jackal’s basicperformancefrom [24].
The time to fault andretrieve a region thatcontainsonly one
pointerasdatais 35 µs. Throughputfor a streamof arrayre-
gionsis 24 MByte/s (768userbytesper1K packet). Jackal’s
compilergeneratesgoodsequentialcode;sequentialspeedof
codewithout accesschecksis at leastasgoodasthe perfor-
manceof IBM’ sJIT version1.3for Linux, which is thefastest
JIT compiler systemcurrently available [7, 23]. Generation
of accesscheckswithout optimizationcreatesa large perfor-
mancepenalty: up to a factorof 5.5 for the applicationsde-
scribedbelow. The compileroptimizationpassesreducethe
overheadfor accesschecksto 9 % on averagefor theseappli-
cations.

5.1 Application Suite
Our applicationsuite consistsof four multithreadedJava

programs: ASP, SOR, TSP, and Water. Besidesthe multi-
threaded,shared-memoryversionsof theseprograms,we also
wroteequivalentRMI (message-passing)versionsof thesepro-
grams.Thedatasetfor eachapplicationis small.Fine-grained
applicationsshow protocoloverheadmuchmoreclearly than
coarse-grainedapplications,whichcommunicateinfrequently.
Thedifferencesfor thevariousoptimizationscomeoutmarkedly;
also,thecomparisonwith theRMI implementationsbecomes
extremely competitive, since RMI has substantiallysmaller
protocoloverhead.

5.2 Parallel Performance
Thissectioncompares,for eachapplication,theperformance

of variousJackalconfigurations,andpresentstheperformance
of anequivalent,hand-optimizedRMI programasayardstick.
TheRMI programsusea highly optimizedRMI implementa-
tion [19] andrun on the samehardwareandcommunication
platform (LFC) asJackal. On this platform, an emptyRMI
costs38µs. BoththeJackalandtheRMI programswerecom-
piledusingJackal’s Java compiler.

RMI hasits own sourcesof overhead:parametersandreturn
valuesmustbe marshaledandunmarshaledandat the server
sidea threadis createdto executethemethodinvoked by the
client. Nevertheless,RMI hasseveral importantadvantages
overJackal:dataandsynchronizationtraffic canbecombined;
large arrayscan always be transferredas a unit; and object
treescanbetransferedasa singleunit.

In certaincircumstances,Jackal’s compiler is alsoable to
identify theseoptimizations[24]; however, the programmer
hasno opportunityto fine-tunethem,sincehecompletelyde-
pendson theautomaticoptimizationpassesof thecompiler.

Below, wediscusstheperformanceof eachapplication.All
speedupsare relative to the sequentialJackalprogramcom-
piledwithoutaccesschecks.

We vary RTS optimizationsby successively allowing more
casesof lazyflushing:

� basic: no lazyflushing� home-only� home-onlyandread-only� home-only, read-onlyandexclusive

Compileroptimizationsareall enabled,except for computa-
tion migration,which is toggledto allow comparisonof RTS
optimizationswith compiler optimizations. We toggle only
oneof thecompileroptimizationsbecauseswitchingoff many
of thecompileroptimizations(accesschecklifting, escapeanal-
ysis,etc)severelyimpairssequentialperformance,whichmakes
performanceevaluationuseless.Computationmigrationhas
no impactonsequentialperformance.

To accesstheimpactof RTSvs.compileroptimizations,we
presenttwo sequencesof measurements:in thefirst sequence,
we start with basic, then computationmigration is enabled,
thentheseriesof lazy flushingstatesis successively enabled.
In thesecondsequenceof measurements,first all statesof lazy
flushingaresuccessively enabled,andfinally computationmi-
gration is enabled. If lazy flushing hasa far larger impact
on performancethanthecompileroptimization,thesetwo se-
quenceswill resembleeachother in their performancedata.
If, however, compileroptimizationsare more important,the
sequenceswill differ in theirperformancedata.

Fig. 5 shows therelative datamessagecounts,controlmes-
sagecounts(which includeslock andunlock messages)and
network datavolumesfor all applicationvariantson 16 pro-
cessors.TheRMI datais usedto normalizethestatistics.

ASP. TheAll-pairs ShortestPaths(ASP)programcomputes
theshortestpathbetweenany two nodesin a 500-nodegraph.
Eachprocessoris the homenodefor a contiguousblock of
rows of thegraph’s shareddistancematrix. In iterationk, all
threads(oneperprocessor)readrow k of thematrixanduseit
to updatetheir own rows.

Thecommunicationpatternof ASPis aseriesof broadcasts
from eachprocessorin turn. BoththeRMI andtheJackalpro-
gramimplementthebroadcastwith a spanningtree. A span-
ning treeis usedfor theshared-memory(Jackal)implementa-
tion to avoid contentionon the dataof the broadcastsource.
TheRMI implementationintegratessynchronizationwith the
datamessagesandusesonly onemessage(andan emptyre-
ply) to forwardarow to achild in thetree.Thismessageis sent
asynchronouslyby a specialforwarderthreadon eachnodeto
avoid latencieson thecritical path.
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Figure 5: Messagecountsand data volume for Jackal, relative to RMI. In the top graph, data messagesare counted. The
numbers under the X axis are the messagecounts for RMI. In the middle graph, control messagesare counted; theseare
normalized with respectto RMI data messages,sincecontrol messagesdo not occur for RMI. In the bottom graph, data
volume is presented;only the Java application data is counted,messageheadersare ignored. The numbersunder the X axis
are the RMI data volumes.
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In thecompiler-optimizedJackalversion(with computation
migration and array accesschecklifting enabled),transmis-
sionof abroadcastrow is reducedto only oneround-trip.The
speedupof the RMI programremainsbetterbecauseit uses
asynchronousforwardingof rows in its spanning-treebroad-
cast. An alternative RMI implementationwith synchronous
forwardinggivesthesamespeedupastheJackalversion.

As appearsfrom Fig. 6, the performanceof ASP without
optimizationsis badindeed.This is becauseASPallocatesits
datasetsin its threadconstructors;without threadconstructor
migration,machine0 is thehomenodefor all data.Evenwith
all runtimeoptimizationsenabled,speedupis low (at most2
on 16 processors),sincemachine0 mustserviceall dataand
control messages;seeFig. 5. Performancebecomesreason-
ableonly whenthethreadconstructoris migratedandat least
read-onlyflushingis enabled.

SOR.Successive over-relaxation(SOR)is a well-known it-
erative methodfor solvingdiscretizedLaplaceequationson a
grid. Theprogramusesonethreadperprocessor;eachthread
operateson a numberof contiguousrows of the matrix. In
eachiteration,thethreadthatownsmatrix partitiont accesses
(andcaches)thelastrow of partitiont � 1 andthefirst row of
partition t � 1. We ran SORwith a 2050 � 2050(16 Mbyte)
matrix.

The Jackalversionof SOR attainsexcellent speedup(see
Fig. 7). This is entirelydueto thoseJackalcompileroptimiza-
tionswedid notvary: thecompilerdeterminesthatit cancom-
bine all accesschecksin SOR’s innermostloop into a single
checkfor all of a row’s elements.Theentirerow is streamed
to therequestingprocessorafteronerequest.In theJackalver-
sionof SOR,thedatasetis not allocatedin theconstructorof
theworker-threadobjects,but in their run() method,which is
not executeduntil the threadexecuteson its targetprocessor.
Datais written only by homenodes;neighborrows areonly
read. This makes the DSM accesspatternsalreadyoptimal
even beforelazy flushing is applied. Sincedatais allocated
from the run() method,computationmigrationbringsno im-
provementeither.

TSP. TSPsolvesthewell-known Traveling SalesmanProb-
lem (TSP)for a 15-city inputset.First,processorzerocreates
a list of partial pathsanda distancetablebetweeneachcity.
Next, a worker threadon every processortries to stealand
completepartialpathsfrom theshared,centralized,job queue.
The cut-off boundis encapsulatedin an object that contains
the lengthof the shortestpathdiscoveredthusfar. To avoid
non-deterministiccomputation(which maygive riseto super-
linear speedup),the cut-off boundhasbeenset to the actual
minimumfor thisdataset.

Communicationin TSPstemsfrom accessingthe central-
ized job queue,from flushing the current partial path, and
from readingtheminimumobject.TheRMI programandthe
optimizedJackalprogramstransmitapproximatelythe same
amountof data.

The performancedifferencescausedby the various opti-
mizationsaresmall but telling (seeFig. 8). A leapin perfor-
manceoccurswhencomputationmigrationisswitchedon,and
therun-timeoptimizationsaddasmallerimprovement.TSPis
theoneapplicationwheresupportof theexclusivestateoffers
discernibleimprovement.Partialpathsarehandedout in write
mode,andthethreadthatevaluatesthepartialpathis theonly
sharerof thatpath.After its evaluation,thepathis susceptible
to lazy flushingonly if exclusivestateis enabled.Read-only
modegivesriseto improvementbecausethedistancetablethat
describesthecity topographyis read-only. This alsoappears
clearly from themessagestatisticsin Fig. 5. Whenread-only
lazy flushing is enabled,the datacommunicationvolume is
decreasedby anorderof magnitude.

Water. Wateris a Java port of theWater-n-squaredapplica-
tion from theSplashbenchmarksuite[25]. Theprogramsim-
ulatesa collection of 343 water molecules. Eachprocessor
is assigneda partitionof the moleculesetandcommunicates
with otherprocessorsto computeintermoleculeforces.

Most communicationin Waterstemsfrom readmisseson
Moleculeobjectsandthesubobjectsreferencedby them(po-
sition vectorsof the molecule). A molecule’s force, acceler-
ation, andhigherordervectorsarestoredin separatearrays,
whicharewrittenonly by their ownerthread.

Unlike theRMI version,theindividualmoleculesaretrans-
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Figure7: Speedupfor SOR.Seethe ASP speedupgraph for explanations.
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ferredoneat a time. Consequently, theJackalprogrammakes
many moreroundtripsthantheRMI program.In thefuture,we
intendto extendJackal’scompilerwith analysisto allow fetch-
ing of the entiresub-arrayof moleculesat once; this would
enablebulk communicationfor Water’sMoleculeobjects.

As in ASP andTSP, themajorperformanceimprovements
stemfrom thecompileroptimizations;again,therun-timeop-
timizations do add significantly, but without compiler opti-
mizationsthe performanceis bad indeed. Without compiler
optimizations,lazy flushing causesa performancedeteriora-
tion comparedto thebasicversion.This maybeattributedto
the extra overheaddescribedin Section4.2. Enablingof ex-
clusivemodein theright-handgraphof Fig. 9 causesa further
performancedecrease.The reasonis that part of the shared
dataareallocatedfrom thethreadconstructor. Thesedataare
written by their owner thread,but readby all other threads.
Without computationmigration, the homenodefor all these
datais processor0, which is swampedwith statecontrol traf-
fic, asdepictedin Fig. 4.

5.3 Discussionand futur e work
Fromtheperformancedatapresentedabove,aclearconclu-

sioncanbedrawn. Turningoncomputationmigrationpresents
a major boostin performance(except for SOR,which gives
goodspeedupin all versions).Enablingall lazy flushingopti-
mizations,but disablingcomputationmigration,doesnotyield
evenreasonableperformancefor ASPandWater. Thisismainly
due to the fact that theseapplicationsallocatedatafrom the
threadconstructor, which is a naturalthing to do for a Java
program. Disablingof further compileroptimizationswould
maketheresultingperformancemuchlessgood,sincesequen-
tial performanceis impaired.

However, for all applicationsexceptSOR,the runtimeop-
timizations on top of the compiler optimizationsyield dis-
cernibleimprovements.The smallestimprovementseemsto
begainedfrom exclusivestate.On theeye, this stateseemsa
sophisticatedoptimizationthat coversmany importantcases.
However, its benefitsarealreadyreapedby threadconstruc-
tor migrationandhome-onlystate:nearlyalways,threadcon-
structormigrationcausesa region that is candidatefor exclu-
sivestateto lie at its homenode.

A fact that cannotbe readdirectly from the graphsis that
the total time spentin twinning, patchinganddiffing of ob-
jectsis negligible in theoptimizedapplicationruns.Datathat
is written is usuallyonly writtenby asingleowner, andthread
constructormigrationensuresthattheowneris thehomenode.
Theexceptionis TSP, but therethepartialpathsthatareactu-
ally modifiedby theworkerthreadsarehandedoutin exclusive
mode,which obviatesthe needfor flushing and hencetwin
creation,diffing andpatching.

One areafor future work is dynamicmigration of an ob-
ject’s homenode.All controlmessageswould behandledby
the new homenode,andtwinning is unnecessaryat the new
homenode. Possibly, this would make exclusivelazy flush-
ing and threadconstructormigration redundant. The proto-
col requiredfor homenodemigrationseemslesscomplicated
than the exclusivestateprotocol. Currently, the application
programmermustbequiteconcernedon which machinedata
is allocated,sincehaving it at the wrong homenodebrings
largeperformancepenalties.This is a valid concernnot only
for DSM machines,sincelargesharedmemorymachinesalso

have a homenodeconcept. However, homenodemigration
wouldprobablymake allocationconsiderationssuperfluous.

6. RELATED WORK
Most DSM systemsare either page-based[15, 18, 17] or

object-based[2, 3, 14] while discardingtransparency. Jackal
managespagesto implementa sharedaddressspacein which
regionsarestored.Thisallowsshareddatato benamedby vir-
tualaddressesto avoid softwareaddresstranslation.For cache
coherence,however, Jackalusessmall,software-managedre-
gionsratherthanpagesandthereforelargely avoidsthefalse-
sharingproblemsof page-basedDSM systems. Like page-
basedDSMssupportingreleaseconsistency, we usetwinning
anddiffing, albeitnotover pagesbut over objects.

TreadmarksandCVM arebothpage-basedsystemsthatuse
someform of lazy releaseconsistency (LRC). LRC, like our
lazyflushingoptimization,postponeswritting updatesto their
homenodes. LRC waits until an acquireis made. Thenthe
new accessorsynchronizeswith the previous releaserof the
lock associatedwith thedata.This allows many statechanges
tobepiggybackeduponsynchonizationmessages.Jackalasyn-
chronouslyupdatesregion statesto supportlazyflushing.

CRL [14] is anobjectbasedDSMthatrequirestheprogram-
mer to annotatehis (C) sourcecodewith start-read/writeand
end-read/writecallsaroundaccessesto sharedregions,so the
region to beaccessedis locally available. Unlike Jackal,that
implementstheJava memorymodel,CRL implementsa sin-
gle writer protocolwith sequentialconsistency. Regionsare
locally cacheduntil anothermachinerequiresthesameobject,
performingsomelazyflushingateachend-read/write.

MCRL [11] is an object-basedsystemderived from CRL
that implementscomputationmigration. Write operationsare
shippedto the region’s creatingmachine,readoperationsare
performedlocally. Unlike Jackal,however, it doessouncon-
ditionally usingsomeheuristics.

Hyperion[20] rewritesJava bytecodeto C andinstruments
thecodewith accesschecks.Hyperioncachesall sharedJava
objects,includingarrays,in theirentiretyandis thereforesen-
sitive to falsesharing. It doesnot employ any form of lazy
flushing.

Fine-grainedDSM systemslargely avoid falsesharingby
using a small unit of cachecoherenceand software access
checks.Shasta[22] usesabinaryrewriter to addaccesschecks
to an existing executable.All implementsomeform of lazy
flushingto recordwhena processoris exclusively usinga re-
gion.

7. CONCLUSION
Wehavedescribedoptimizationsfor theJackalRTS.Jackal

is a DSM systemfor Java thatconsistsof anoptimizingcom-
piler anda runtimesystem;we refer to [24] for a description
of thesystem,includingcompileroptimizations.

WefoundthattheRTSoptimizationsdescribedin thispaper
arenecessaryto gaingoodperformance,but only in conjunc-
tion with compileroptimizations.If only oneof thecompiler
optimizations(computationmigration)is switchedoff, perfor-
mancebecomesbadfor threeof thefour applications.

Whenbothcompilerandruntimeoptimizationsareenabled,
our four Java applicationsattain reasonableto good perfor-
mancecomparedto well-tunedandequivalent RMI applica-



tions. This is the moresignificantsincesmall datasetswere
used,to betterbringout performancedifferences.
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