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Figure 1: Stages of our knitted garment modeling system: (a) We begin our interactive modeling process with a polygonal mesh that
specifies the global shape of the cloth model; (b) using this polygonal mesh we produce a high-resolution stitch mesh that serves as a
canvas-like abstraction of the yarn model; (c) then, we specify the desired knitting pattern over the stitch mesh’s surface. (d) Following the
interactive modeling process, the model goes through offline relaxation, beginning with a mesh-based relaxation that moves the stitch mesh to
the subdivision surface of the input model and slides its vertices over this surface based on the topology of the knitting pattern; finally, (e) we
generate the yarn curves and (f) use a physically based relaxation process at the yarn level to compute the final realistic shape.

Abstract

Recent yarn-based simulation techniques permit realistic and effi-
cient dynamic simulation of knitted clothing, but producing the re-
quired yarn-level models remains a challenge. The lack of practical
modeling techniques significantly limits the diversity and complex-
ity of knitted garments that can be simulated. We propose a new
modeling technique that builds yarn-level models of complex knit-
ted garments for virtual characters. We start with a polygonal model
that represents the large-scale surface of the knitted cloth. Using
this mesh as an input, our interactive modeling tool produces a finer
mesh representing the layout of stitches in the garment, which we
call the stitch mesh. By manipulating this mesh and assigning stitch
types to its faces, the user can replicate a variety of complicated
knitting patterns. The curve model representing the yarn is gen-
erated from the stitch mesh, then the final shape is computed by
a yarn-level physical simulation that locally relaxes the yarn into
realistic shape while preserving global shape of the garment and
avoiding “yarn pull-through,” thereby producing valid yarn geom-
etry suitable for dynamic simulation. Using our system, we can
efficiently create yarn-level models of knitted clothing with a rich
variety of patterns that would be completely impractical to model
using traditional techniques. We show a variety of example knitting
patterns and full-scale garments produced using our system.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

1 Introduction

Knitted fabrics are commonplace and their complicated structure is
visually apparent. Stitches can be formed using various knitting op-
erations, leading to a rich variety of possible knitting patterns with
drastically different appearances. Since the final shape of a partic-
ular stitch depends on the types of stitches around it, constructing
realistic knitted clothing requires a simulation at the yarn level.

Unlike sheet-based cloth simulators that approximate the cloth as

a thin surface, yarn-level simulators directly simulate the individ-
ual yarns and interactions resulting in significantly richer dynamics
and more realistic results, especially for knitted clothing. Unfor-
tunately, authoring models for yarn-level simulation is challenging
with existing modeling practices. Yarn-level simulations do not tol-
erate even the slightest topological mistake in the input yarn curves,
since one defective stitch can cause many other stiches to unravel
when the simulation starts. While modeling yarn curves manually
is too complicated for any practical purpose, automatically gener-
ating stitch patterns over a surface using modified texturing meth-
ods provides no topological guarantee that it will not unravel dur-
ing simulation. An alternative approach is to simulate real-world
knitting processes, but this would be very expensive using current
simulation techniques, and the simulation outcome would likely be
hard for an artist to predict, thus complicating garment design.

In this paper we address these challenges by proposing an efficient
framework for modeling knitted clothing with realistic yarn-level
details. Figure 1 shows the stages of our system, starting from a
low-resolution polygonal mesh to the final knitted cloth model. Our
stitch mesh structure provides a novel mesh-based representation of
the knitted yarn geometry. Our stitch-mesh modeling framework
provides an efficient workflow with both low-level and high-level
design control, enabling artists to create a rich variety of knitting
patterns and full-scale garments for virtual characters. To reduce
yarn-level relaxation costs, we propose a novel mesh-based relax-
ation operation using the stitch mesh that can properly handle large-
scale sliding of stitches. Finally, we improve the yarn-level relax-
ation process to support more stitch types for increased realism, and
introduce optimizations, such as yarn pull-through detection, which
accelerate and ensure the correctness of yarn-level simulations.

2 Prior Work

Robust and efficient cloth simulation has long been a research fo-
cus of the graphics community. Much of the work has been di-
rected towards sheet approximations of cloth [Baraff and Witkin
1998; Bridson et al. 2002; Grinspun et al. 2003; Goldenthal et al.
2007; Volino et al. 2009], where the yarn-yarn interactions in fabric
are abstracted away and instead treated as aggregate elastic forces
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on a 2D sheet. Some more recent work has looked at simulating
cloth with explicit yarn interactions [Chu 2005; Kaldor et al. 2008;
Kaldor et al. 2010]. While more expensive than elastic sheet ap-
proximations, these models can replicate yarn-level details in differ-
ent styles of fabric. Our relaxation simulator is a two-phase hybrid
approach, with the first mesh-based relaxation bearing similarities
to sheet-level cloth simulation, and the subsequent relaxation based
on yarn-level simulation. This has similarities to work like No-
cent et al. [2001], which embeds knit stitches within a thin volume
and simulates the forces of the yarns in the reduced volume space.
However, we simulate our yarns directly in the unreduced space,
with our yarn-level relaxation allowing significant local yarn defor-
mation while providing guarantees that the fabric does not unravel,
e.g., through a failure of the yarn-yarn contact forces to adequately
resist yarns pulling through one another.

In both sheet-based and yarn-based models, the initial input to the
simulator must be the original configuration of the model; in sheet-
based approaches the input is a mesh defining the cloth surface,
while in yarn-based approaches it is a curve defining the yarn ge-
ometry. Similar to actual manufacturing processes, sheet-based
cloth modelers have often modeled cloth as panels to be sewn to-
gether [Carignan et al. 1992; Volino and Magnenat-Thalmann 2000;
Volino et al. 2009]. These initial meshes are then simulated us-
ing the sheet-based simulator to generate the relaxed shape of the
clothing on a human form with the user making further changes
to the initial pattern based on the relaxed result. Since the simula-
tion process can be slow, Luo and Yuen [2005] efficiently rebuilt
relaxed 3D meshes from edits to 2D patterns. Other research has
looked at designing useable interfaces for rapid and intuitive design
of new patterns [Volino and Magnenat-Thalmann 2005; Umetani
et al. 2011]. Researchers have also looked at sketch-based inter-
faces for designing garments and other 3D objects composed of 2D
pieces [Decaudin et al. 2006; Turquin et al. 2007; Mori and Igarashi
2007; Igarashi et al. 2008b; Volino et al. 2009; Robson et al. 2011].

For yarn-based simulators, the problem of generating initial geom-
etry is more complicated, since the entire yarn curve must be spec-
ified and any topological errors can propagate through the cloth in
unpredictable and potentially disastrous ways, e.g., unraveling. Re-
searchers have looked at replicating the manufacturing processes
used by knitting machines [Eberhardt et al. 2000; Duhovic and
Bhattacharyya 2006]. These processes produce correct knitted pat-
terns, but are typically extremely slow (limiting them to small
patches of material), and support only a limited set of stitch types
much like real knitting machines. Meißner and Eberhardt [1998]
estimated the appearance of some knitting patterns by using input
data of a knitting machine to help generate and simulate simplified
topologies. Kaldor [2011] describes a semi-automated process in-
volving models of individual knit loops that can be tiled together to
form cloth; however, constructing a new garment requires the user
to write code specifying how loops are laid down, to create geomet-
ric models for any new types of loops used, and to verify that the
final result is topologically correct.

There has also been work in the textile community on geometric
modeling of knitted materials. Several works generate knit geome-
try using spline curves and focus on the plain knit stitch [Demiroz
and Dias 2000; Göktepe and Harlock 2002; Choi and Lo 2003;
Choi and Lo 2006; Renkens and Kyosev 2011]. Other research
has looked at modeling representative cells of complex knitted fab-
ric [Kurbak and Alpyildiz 2008; Kurbak 2009; Kurbak and Soydan
2009], but depending on the pattern, these cells might have to con-
tain many individual stitches, and combining multiple patterns in a
single fabric requires the boundaries of each representative cell to
be carefully and correctly matched up.

Generating knitted yarn geometry also bears some similarity to tex-

ture synthesis [Heeger and Bergen 1995; Kwatra et al. 2003]. In
both, a large scale output is to be generated from a small set of
inputs and constraints on where they can appear in the output. In
particular, extensions of texture synthesis-like methods have been
proposed such as Mesh Quilting [Zhou et al. 2006], constrained
structure preserving reshaping of architectural models [Cabral et al.
2009], and Celtic knots on surfaces [Lai et al. 2010]. However,
unlike these applications, our intent is to generate curve models
suitable for simulation, and the nature of knitted fabric means that
errors in the construction affect the behavior of the material or
can lead to unraveling. Unfortunately, texture synthesis based ap-
proaches can typically make no guarantees that the resulting model
is topologically valid.

Recently, Igarashi et al. [2008a] proposed a method on the opposite
problem of computing a set of knitting instructions for a given vir-
tual model, Akleman et al. [2009] developed a system that converts
any manifold mesh to a plain-woven object, and Igarashi and Mitani
[2010] introduced an interactive layer operation that can produce
woven patterns by flipping the depth order of deformable objects.

3 Overview

The real-world knitting process begins by placing (casting on)
stitches on a knitting needle. These cast-on stitches form the first
row of stitches for the garment. Then, an additional row of stitches
are knitted by pulling the yarn through the stitches on the first row.
This operation is continued by knitting an additional row onto the
previous row of stitches until a desired number of rows are knitted.

Examining these stitches, we see that the yarn typically takes the
shape of the curve shown in Figure 2a that we call a yarn loop.
Yarn loops are placed side-by-side forming a row along the course
direction. During knitting, these rows are formed one by one in
order, such that the yarn loops on each row are pulled through the
ones on the previous row in the wale direction as show in Figure 2b.
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Figure 2: Yarn loops: (a) An isolated yarn loop; (b) interlocked
yarn loops forming a piece of knitted cloth.

The relatively simple structure shown in Figure 2 can easily get
complicated when loops are pulled through others in different ways
to form various knitting patterns. Therefore, it is very difficult to
manually prepare the yarn curves for a full cloth model in any but
the simplest fabrics. However, while the yarn curves have compli-
cated shapes, they are produced by a small number of stitch types,
which are described by relatively simple knitting instructions.

To separate the pattern of stitches, which the user needs to specify,
from the resulting yarn geometry, which should be generated au-
tomatically, we propose a mesh-based representation of the knitted
yarn structure that we call the stitch mesh (Section 4). The stitch
mesh is essentially a high-resolution polygonal mesh where each
face corresponds to a stitch of the yarn-level model, and it is the
foundation of our mesh-based modeling system. The user models
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the stitch mesh using an interactive modeling interface (Section 5)
and the yarn-level cloth model is generated automatically from the
stitch mesh through offline relaxation (Section 6).

During the interactive modeling process we produce a stitch mesh
from a given polygonal model. This stitch mesh includes all the
necessary information for generating yarn curves with a valid topo-
logical structure, including the knitting pattern and the stitch types
used everywhere on the model. In that respect, the stitch mesh is an
abstraction for representing the desired yarn curves that also allows
easier visualization and interactive editing.

While the stitch mesh represents a valid topological structure for
the yarn curves, the yarn curves generated from the stitch mesh do
not necessary have a realistic shape. Therefore, following the inter-
active modeling process, an offline simulation is used to estimate
physically based deformations of the knitted structure. To enforce
that the offline relaxation stage produces predictable and useful re-
sults, we use soft and hard constraints to preserve the garment’s
overall shape.

4 The Stitch Mesh

The stitch mesh structure is an abstraction for the yarn-level ge-
ometry that enables easier modeling. Each stitch-mesh face is a
building block which represents a portion of the knitted garment.
The obvious building block for a knitted fabric is a yarn loop, as
has been used in other work, but this is not a good choice since it
does not encode topological state, and its shape changes depending
on how it interlocks with adjacent loops. Instead we propose a new
approach that uses a cell where two yarns interact. Our building
block is the top part of one yarn loop, and the bottom part of an-
other yarn loop that is pulled through forming a stitch as shown in
Figure 3a. These individual units are much more independent since
they connect only at single points between cells, and it is simple to
create complicated structures by composing such building blocks.
For example, by tiling the quad in Figure 3a over a surface we can
easily form a patch of knitted cloth as shown in Figure 3b.
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Figure 3: A quad stitch-mesh face (a) with associated yarn pieces,
and labeled wale and course edges; (b) a stitch mesh (and associ-
ated yarn curves) formed by tiling the quad face.

The yarn curves that correspond to each face of the stitch mesh are
constructed using a 2.5D representation. Each control point of the
yarn curves is represented using mean value coordinates [Floater
2003] that specify the projection of the control point on the corre-
sponding stitch-mesh face, and an offset value in the surface normal
direction at this point.

We refer to face edges that are aligned with the course direction as
course edges, and edges that are aligned with the wale direction as
wale edges (Figure 3a). Each edge of the stitch mesh is either a
course edge or a wale edge. Notice that each wale edge has a single
yarn crossing it, whereas each course edge has two.

4.1 Increases and Decreases

In general, stitch-mesh faces do not have to be quads, but each
face must have exactly two wale edges that connect it to adjacent
stitches on the same row. Considering the edges of a face, the two
wale edges separate the course edges into two groups: top and bot-
tom, such that the wale direction on the face points from the bottom
edges towards the top edges. A face can have any number of top
and bottom course edges. Some examples of faces with different
number of top and bottom edges are shown in Figure 4.

kp kyk
x

k

y−1 d12k d123k

Figure 4: Example stitch-mesh polygons demonstrate yarn mod-
els corresponding to faces with different numbers of edges: (top
row) faces with a single bottom edge, and (bottom row) faces with
a single top edge. Wale edges are shown thicker than course edges.

A stitch-mesh face with multiple top edges represents a single stitch
that is connected to multiple stitches on the next row. Such stitches
are typically used for increasing the number of stitches on the next
row; therefore, they are referred to as increases. Similarly, stitch-
mesh faces with multiple bottom edges decrease the number of
stitches on the current row as compared to the previous row, so
they are called decreases. Increases and decreases are used to knit
non-planar shapes, as well as to produce various patterns.

4.2 Stitch Types

There are three fundamental actions for generating stitches while
knitting: pulling the yarn through an existing loop either from the
back side towards the front (knit) or from the front side towards
the back (purl), and simply wrapping the yarn around the knitting
needle without pulling it through a loop (yarn-over). We represent
these actions using k, p, and y symbols, respectively. Increases
are formed by using combinations of k, p, and y on one existing
loop. On the other hand, decreases are formed by using k or p
through multiple existing loops. While forming a decrease stitch,
the order in which the existing loops are stacked together is impor-
tant, as it determines the direction that the stitch tends to twist. We
represent decreases with the symbol d followed by a subscript that
determines the stacking order. Some examples of possible stitch
types are shown in Figures 4 and 5, along with their symbols. Ta-

pyp yky kpk

d312p k1y s sk

Figure 5: Example stitch types for stitch-mesh faces.
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Table 1: Stitch Types used in our system
# bottom # top possible stitchesedges edges

1 1 k, p
1 2 kp, ky, yk, py, yp

1 3 kpk, kyk, yky, kpy, ykp,
pkp, pyp, ypy, pky, ypk

2 1 d12k, d21k, d12p, d21p

3 1 d123k, d132k, d213k, d231k, d312k, d321k,
d123p, d132p, d213p, d231p, d312p, d321p

ble 1 includes all stitch types used in our system. Furthermore, the
top edge connections of any k, p, and y can be twisted in clock-
wise (positive) or counterclockwise (negative) directions, as y−1 in
Figure 4 and k1y in Figure 5.

In addition to these standard stitches, the stitch mesh can be used for
representing other stitch types, such as the x stitch in Figure 4, or s
and sk in Figure 5. In general, the stitch mesh structure permits any
stitch model that has a single yarn crossover on both wale edges,
and a double yarn crossover on each course edge.

4.3 Borders of the Cloth Model

The borders of the cloth model correspond to the boundary edges
of the stitch mesh. The simple example in Figure 6 shows how the
loose ends of the yarn curve can be handled. Notice that the loose
ends that correspond to the wale edges are either tied (the bottom-
left and top-right faces in Figure 6) or connected to another loose
end on a nearby wale edge (the bottom-right and top-left faces in
Figure 6). The faces of the stitch mesh that are on the first row (the
bottom row in Figure 6) represent cast-on stitches. In our imple-
mentation we merely use y1 or y−1 for cast-on stitches (ignoring
the bottom edges). As for the last row (the top row in Figure 6), we
add yarn pieces that form the bind-off stitches.

Tube-shaped portions of knitted clothing are typically formed by
placing stitches on a 3D spiral as shown in Figure 7a. The stitch
mesh structure also permits having separated rows of stitches as
shown in Figure 7b, which corresponds to having a separate piece
of yarn on each row and each piece of yarn is tied to itself forming a
closed yarn curve around the surface. While such structures are not
really used (since they would need a separate knot on each row),
they form topologically valid yarn structures for our purposes and
they produce only a minor visual difference from the spiral layout.
Therefore, in our system we use separate rows and avoid the spiral
layout to keep the topology of the stitch mesh simpler.

4.4 Mismatched Wale Direction

Typically the wale directions on neighboring faces of a stitch mesh
are aligned with each other. Yet, sometimes it is necessary to

bind-off

cast-on
Figure 6: Handling the borders of the stitch mesh with cast-on
and bind-off stitches.

(a) (b)

Figure 7: Two possible stitch meshes for a tube: (a) A spiral struc-
ture that is analogous to real-world knitting approaches, and (b) a
simpler ring-like structure formed by separate rows but which is
much harder to knit in reality.

bind stitches with opposing wale directions. In reality, these spe-
cial cases require either placing special stitches, or sewing together
those stitches with opposing wale direction. However, the stitch
mesh structure can automatically handle opposing wale directions
(see Figure 8) by forming multiple separate small yarn pieces.
While these pieces correspond to sewing the two patches together,
they do not produce a real-world yarn structure.

Figure 8: Mismatched wale directions result in closed yarn loops
between rows with mismatched directions.

4.5 Cables

During a real-world knitting process, instead of pulling loops
through the ones on the previous row in order, one can change the
order by skipping a few stitches, pulling loops through the next few
stitches, and then going back and pulling loops through the ones
that were skipped. Such operations create cables. They are com-
mon in knitting, and result in interesting surface deformations (see
Figure 9(left)). In our system we handle cables by replacing a group
of selected course edges with a special face that we call the cable
face (see Figure 9(right)). A cable face is placed in between two
consecutive rows and has no wale edges. The yarn model that cor-
responds to the cable face determines the order in which the loops
are pulled through the ones on the previous row. In our implemen-
tation, cable faces are introduced right before generating the yarn
curves from the stitch mesh, and until then the selected course edges
are merely marked as cable edges.

Figure 9: Knitting cables: (Left) An example cable pattern; (Right)
a cable stitch is modeled by replacing a set of “cable edges” in blue
(top) by the blue-shaded “cable face” (bottom).
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5 Interactive Modeling

The aim of the interactive modeling stage is to design a stitch mesh
that represents the yarn-level model that we would like to generate.
We begin with an input polygonal mesh model that defines the sub-
division surface of the desired garment model. In addition, we use
the topological structure of this input mesh to determine the desired
knitting direction over the surface.

The modeling process begins with labeling the input mesh to spec-
ify the knitting direction over each face of the input mesh. Using
this information, we produce a high-resolution stitch mesh, which
is used as a canvas for easily defining the desired stitch pattern over
the surface. In the rest of this section we explain the stages of our
interactive modeling process.

5.1 Labeling the Input Mesh Model

Given an input mesh that represents the surface of the garment
model, there are often many ways it can be knitted. To provide
the user direct control over the knitting direction over the surface,
we begin our modeling process with labeling, during which each
edge of the input mesh is labeled as either a wale edge or a course
edge. We require that each face of the input mesh is assigned ex-
actly two wale edges, and the rest of its edges are labeled as course
edges. This way, we can uniquely define the knitting direction over
the entire face, such that the yarn curves “enter” the face from one
of the wale edges and “exit” the face from the other wale edge.

The collection of faces that are connected by wale edges are called
a row. Hence, the labeling process conceptually separates the input
mesh into a number of rows, as shown in Figure 10. Note that there
is no guarantee that an input mesh with an arbitrary topology can be
separated into a number of rows in this fashion. On the other hand,
there might be multiple ways to separate the input mesh into rows
as shown in Figure 10. If the input mesh cannot be separated into a
number of rows according to the user’s intentions, we require that
the input mesh topology be modified manually as desired. There-
fore, the input mesh must be modeled with a desired row structure
in mind.

In our implementation we use a number of high-level tools for the
labeling process, so that a typical input mesh can be easily labeled
in a matter of seconds. In our system the user begins labeling by
selecting a border edge of the input mesh as shown in Figure 11.
Then, the entire border is automatically marked as course edges,
all faces that use any of the the border edges form the first row, all
unmarked edges of this first row that have a vertex on the border are
labeled as wale edges, and the remaining edges are labeled as the
course edges of the first row. Afterwards, the user can select any
course edge on this row or another border edge to automatically
label another row, until the entire input mesh is labeled. We also
store the labeling order to determine the wale direction on the faces.
Moreover, we allow the user to flip the wale direction of an entire
row by selecting a face on that row, which automatically changes
the labeling order accordingly.

5.2 Generating the Stitch Mesh

Once the labeling is completed, we generate a high-resolution stitch
mesh by tessellating each face of the input mesh. We begin by
determining each edge’s tessellation value, ni, which determines
how many stitches will be placed along the edge. We initialize the
ni values based on edge length and the stitch size specified by the
user, then the user can modify the ni values as desired.

We enforce that the two wale edges of a polygon are assigned the
same tessellation value, hence all wale edges on the same row get

(a) (b) (c) (d)

Figure 10: Labeling input meshes into knitting rows: (a) input
model; (b), (c), and (d) examples of possible rows each of which is
displayed as a disjoint piece with a different color.

the same tessellation value, thereby dividing each row of the labeled
input mesh into a number of stitch-mesh rows. On the other hand,
the tessellation values of the top and bottom edges of a polygon
can be different. In that case the polygon must contain increases or
decreases (Figure 12). Increases and decreases are typically placed
in the same locations on consecutive rows, resulting in a line pattern
forming a “seam.” Based on this observation, we place the increases
and decreases on a polygon near its wale edges, so that the user can
easily control the positions of these seams. We also allow the user
to mark a wale edge such that all increases and decreases on the
polygon are automatically placed along that wale edge only.

The tessellation operation begins by tessellating all the edges by in-
serting vertices that are uniformly spaced along the edge (see Fig-
ure 12). Then, we determine the number of vertices to be placed for
each stitch-mesh row over each input mesh face by interpolating
the total tessellation values of the course edges on either side of the
face. Finally, we place vertices on the input-mesh face using mean
value coordinates [Floater 2003], and we generate stitch-mesh faces
using these vertices, such that increase/decrease faces (ones with
more than 4 vertices) are placed near the marked wale edge. Once
the stitch mesh is generated, the user can modify it as we explain in
the next section.

5.3 Editing the Stitch Pattern

It is crucial that a knitted garment modeling system allows the user
to modify any individual stitch, since a single “wrong” stitch can
cause highly visible changes in the final model.

We have implemented a number of low-level operations that modify
the topology and attributes of the stitch mesh. Change stitch type
allows specifying the desired stitch model for each face. In our im-
plementation each stitch type has a particular color, and changing
the stitch type changes the color of the face in the interactive win-
dow. Set cable edges is used for marking a number of connected
course edges as cable edges (with the desired shift and order val-
ues), which are converted to cable faces right before generating the
yarn curves, as explained in Section 4.5. Finally, split/collapse edge
can be used on course edges and add/remove/shift can be used on
wale edges to specify increases and decreases (see Figure 13).

Many knitted garments include repeated knitting patterns. There-
fore, we have also developed a number of high-level operations that
modify multiple faces of the stitch mesh at once based on a desired
pattern. For example, the stitch type of multiple faces on neighbor-
ing rows and/or columns of the stitch mesh can be changed all at
once. This feature can be used to specify common patterns that use
alternating k and p stitches (such as rib, garter, and moss).

As for more complicated patterns that include increases and de-
creases, we replace a selected portion of the stitch mesh with a tiled
pattern. In our implementation, a pattern is merely a stitch mesh
generated on a quad with equal tessellation values on both course
edges. Its internal topology and the stitch types of the faces define
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Figure 11: The user interface for labeling: Starting with the input mesh on the left, the user selects a border, and the first row is automatically
labeled. Subsequent operations label the remaining rows and finally the knitting direction of some rows are flipped as desired to avoid
mismatched wale directions.



Figure 12: Generating the stitch mesh: An example input mesh
face (Left) is tessellated into stitch-mesh faces (Right). The red wale
edge is the marked increase/decrease edge.

the knitting pattern. Some patterns can be tiled entirely and others
can be tiled partially, such that a number of stitch-mesh faces on
either side of each row can be part of a border that is not tiled. To
model a pattern we use the low-level editing operations explained
above. A pattern can also be created using a text-based description:
each line corresponds to a row of the stitch mesh, and lists the stitch
types on that row. Figure 14b shows an example pattern modeled
based on the knitting instructions in Figure 14a.

Prepared patterns can be used to replace a number of faces on any
stitch mesh with the tiled pattern. In our implementation the user
selects a face on a stitch mesh, and our system automatically finds
the group of stitch mesh faces to be replaced. Then, all faces inside
this region are removed from the stitch mesh and new faces are
generated according to the pattern description.

6 Offline Relaxation

In the previous section we explained how to prepare a stitch mesh
that defines the stitch topology of the knitted garment. When the
yarn geometry is generated from this stitch mesh, it generally does
not have a realistic appearance. This is because the realistic shape
of a stitch can only be determined in the presence of other stitches
around it, and knitted garments often include complicated 3D de-
formations that are defined by the knitting pattern. Therefore, we
use a physically based yarn-level relaxation to compute the realistic
rest shape of the yarn curves. Since we use yarn-level relaxation,
the shapes of the stitch models used for generating the yarn level
model from the stitch mesh are less important.

Furthermore, the stitch mesh prepared using the interactive mod-
eling procedure may have faces with significantly different sizes,
leading to varying stitch sizes over the model. This distortion is un-
desirable and often unintended, being caused by the fact that input-
mesh edge lengths are not equal to their tessellation value times the
average stitch size. Moreover, certain knitting patterns may sig-
nificantly change the stitch layout, dictating significant amounts of
physical deformation. To handle these large deformations and esti-
mate more uniform stitch distributions over the model surface, we
employ a mesh-based relaxation procedure that uses the stitch mesh
itself before we generate the yarn curves. Next, after we generate
the yarn curves, we use the yarn-level relaxation to compute the fi-
nal rest shape of the garment model. Figure 14 shows the stages of
offline relaxation on a small pattern.

split

collapse
shift

Figure 13: Split/collapse and shift are low-level operations on
course and wale edges, respectively.

6.1 Mesh-based Relaxation of the Stitch Mesh

Mesh-based relaxation first moves the vertices of the stitch mesh
onto a subdivision surface defined by the input mesh model. Instead
of projecting the stitch-mesh vertices directly onto the subdivision
surface, we tessellate the input mesh using the subdivision rule and
project the vertices onto this surface to compute the barycentric co-
ordinates of the projection, which are then used to compute the ver-
tex positions on the subdivided input mesh. In our implementation
we use Catmull-Clark subdivision [Catmull and Clark 1978].

During the simulation we restrict the vertices of the stitch mesh
to remain on the subdivided surface, and vertices on stitch-mesh
borders are restricted to remain on the borders of the subdivided
surface. In order to compute the quasistatic rest state of the ver-
tex positions, x, we timestep a simple first-order dynamics model,
ẋ = f(x), where f are spring forces defined later. A backward
Euler discretization yields a linear system to be solved for the
timestep’s change in position ∆x:(

I− h ∂f
∂x

)
∆x = hf0 , (1)

where h is the timestep size, and f0 = f(x) is the force at the begin-
ning of the timestep. We solve this linear system using the modified
Conjugate Gradients algorithm of Baraff and Witkin [1998]. We
constrain ∆x by discarding the component in the surface normal
direction, and at the end of each step we move the vertices of the
stitch mesh on a high resolution triangular mesh approximation of
the subdivision surface in the direction of ∆x.

Before computing forces we estimate the rest lengths r for all wale
and course edges using Nrwalercourse = αA and rwale = a rcourse,
where a is the aspect ratio of a stitch (in our implementation a =
1), N is the number of faces, A is the total surface area of the
subdivision surface, and α is a scaling factor (0 < α ≤ 1). We use
α to make sure that we do not overestimate the stitch size around
the parts of the model where the stitches are not stretched. While
underestimating rwale and rcourse makes minor changes to the final
relaxed state, over-estimating these values deforms the stitches due
to strong stretch forces.

We use three different types of spring forces: stretch, shear, and a
wale strut. The way we apply the stretch and shear forces assumes
that the rest shape of each quad face is a rectangle with edge lengths
rcourse and rwale. Stretch and shear forces on non-quad faces are
constructed assuming that such faces are composed of multiple sub-
quads as shown in Figure 15, with a quad face having a single sub-
quad, and triangular faces having no sub-quads.
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(a) knitting instructions (b) stitch mesh model (c) mesh-based relaxation (d) yarn curves (e) yarn-level relaxation
Figure 14: Preparation of the flame ribbing pattern: (a) The real-world knitting instructions adapted from [Walker 2001] (

∧
is three way

decrease,
∨
| is three-way increase, X is no stitch, • is purl, and empty cells are knit), (b) the stitch mesh model ( k and p) generated

from these instructions has significant distortions evident, (c) the result of the mesh-based relaxation, (d) the initial yarn model generated
from the relaxed stitch mesh, and (e) the final result after yarn-level relaxation.



Figure 15: Sub-quads of a non-quad face are used to define stretch
and shear forces. Here a face representing a three-way increase has
three sub-quads connecting course edges from different rows.

We model the stretch force contribution to vertex i by an edge con-
nected to vertex j using

f stretch
ij = κstretch

(
`ij

|xi − xj |
− 1

)
xi − xj

|xi − xj |
, (2)

where κstretch is the stiffness, and `ij is the rest length, which is
rcourse or rwale for course and wale edges respectively. Note that this
is a nonlinear stretch force that goes to infinity as the edge length
goes to zero. This nonlinearity prevents edges from shrinking too
much even when other forces offer strong resistance. We also apply
stretch forces between diagonal vertices of each sub-quad of each
face, and use rest length ` =

√
r2course + r2wale.

Shear forces try to give a rectangular shape to each sub-quad. Given
a corner vertex j of a sub-quad with neighboring vertices i and k,
we apply a shear force to it using

f shear
ijk = −κshear (xi − xj)

T (xk − xj)
(
xj −

xi + xk

2

)
, (3)

and the vertices i and k are both applied half of this force in the
opposite direction.

Finally, we use a wale strut force that tries to stiffen wale edges on
consecutive rows, which helps keep them aligned. Consider a wale
edge that connects vertices i and j, and another wale edge on the
next row that connects j and k. A wale strut force with stiffness
κwale is applied to vertex i using

fwale
ijk = −κwale

(
|xi − xk|
rijk

− 1

)
xi − xk

|xi − xk|
, (4)

where rijk = max(rwale, |xi − xj | + |xk − xj |), and an opposite
force is applied to vertex k.

We use the same stiffness parameters to generate all the examples
in this paper (κstretch = 2, κshear = 0.2, and κwale = 2) and we
needed no parameter tuning for different examples.

Note that mesh-based relaxation merely uses the topology of the
stitch mesh and it does not take the stitch types or cables into con-
sideration. Therefore, while the yarn geometry generated after the

mesh-based relaxation is closer to the final relaxed shape, we still
need yarn-level relaxation to estimate the final position and shape
of each stitch.

6.2 Yarn Generation

After the mesh-based relaxation is completed, we are ready to gen-
erate the actual yarn curves. We first convert the cable edges to
cable faces (Section 4.5). We replace each face of the stitch mesh
with the corresponding stitch model that is embedded on the face
using mean value coordinates and the surface normal (Section 4).
Finally, we handle the borders of the stitch mesh (Section 4.3). The
generated yarn curves have the desired topology, but their shapes
are not necessarily realistic. Therefore, we employ yarn-level re-
laxation to compute a realistic rest pose for the yarn curves.

6.3 Yarn-level Relaxation

Given the spline geometry generated by the modeling step, the cloth
is relaxed using an implementation of adaptive contact lineariza-
tion [Kaldor et al. 2010]. Length constraints are replaced with stiff
springs with a user-defined rest length per yarn loop, the rod is
treated as isotropic with a straight rest configuration, and bending
plasticity is disabled. In addition, gravity is set to zero and large
amounts of mass-proportional damping are used to stably relax the
cloth. Because the initial geometry may be distorted, the contact set
strategy proposed by Kaldor et al. [2010] may result in excessively
large contact sets being created; to avoid this inefficiency, we define
our contact sets as a pair of yarn segments in contact. We also in-
troduce several modifications so that the overall shape of the cloth
model is preserved while realistic small-scale deformations due to
the stitch pattern are properly resolved.

Shape Preservation: To preserve the overall shape of the gar-
ment, we use moment-preserving constraints and forces as in
[Bergou et al. 2007]. For each yarn loop Sj on the boundary, a
hard constraint is inserted, such that

Cj =
∑
i∈Sj

qi −
∑
i∈Sj

q̄i , (5)

where qi is control point i in yarn loop Sj , and q̄i is its initial po-
sition at the start of relaxation. This causes the boundary to closely
match the original mesh, but does not constrain the interior of the
cloth. Since it is expected that significant relaxation and movement
will likely occur, hard constraints are inappropriate for the interior.
Instead, patches Pk are defined by choosing yarn loops to be cen-
ters, selecting all yarn loops that are within a k-ring of faces on the

7
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Mrs. Montague’s Pattern [Matthews 1984] Openwork Trellis Pattern [Matthews 1984]

Photo courtesy of Schoolhouse Press

Ridged Feather Pattern [Matthews 1984] Flame Ribbing Pattern [Walker 2001]

Photo courtesy of Schoolhouse Press

Braid Cables Pattern [Allen et al. 2008] Cable Work Pattern [Walker 2001]
Stitch Mesh color coding (odd rows are slightly darker): k p ky yk yky d12k d21k

Figure 16: Comparison to real knitted samples: (Left images) Stitch meshes after mesh-based relaxation, (Middle images) knit patterns after
yarn-level relaxation, and (Right images) photographs of real-world knitted samples using the same knitting patterns.

stitch mesh. An anisotropic, biphasic force is then defined from an
energy term as follows:

E tracks
k =

κN(nT
k vk) (nT

k vk)2 + κT v
T
k (I− nkn

T
k )vk∑

Sj∈Pk

∑
i∈Sj

wk
j

, (6)

vk =
∑

Sj∈Pk

∑
i∈Sj

wk
j qi −

∑
Sj∈Pk

∑
i∈Sj

wk
j q̄i, (7)

where κN() is a linearly biphasic stiffness function in the normal di-
rection which stiffens when |nT

k vk| is greater than a defined thresh-
old, κT is the constant stiffness in the tangential direction, nk is the
normal of the cloth surface at the center of the patch at the start
of relaxation, and wk

j is a tent function which falls off according
to the topological distance of yarn loop Sj from the center of Pk.
This encourages patches to stay close to their original starting po-
sitions (which are on the subdivision surface), while allowing them
to move and change shape as necessary for relaxation.

Detection of Yarn Pull-through: Perhaps the most important im-
provement over prior yarn-level simulators, though, is a method to
guarantee that the knit topology remains consistent through the en-
tire process by detecting when a piece of yarn could pass through
another, an event we call yarn pull-through, and preventing pull-
through from occuring. To begin with, the simulator enforces a rate
limit τ on the maximum movement of any point on the yarn curves
per step, where τ is some fraction of the yarn radius. This reduces
the problem of detecting yarn pull-through per step to only those
pieces of yarn already in contact at the beginning of the step.

We represent the yarn curves using cubic Catmull-Rom splines,
hence directly solving for the intersection of two cubic curves
within a timestep forms a multivariate nonlinear equation which,

in general, is challenging to solve both robustly and efficiently. In-
stead, we place a number of bounding spheres with regular param-
eter intervals along the two parametric curves, and check for the
intersection of these spheres within the time step interval, which in-
volves solving a quadratic equation. If an intersection is found, we
replace each intersecting sphere with a number of smaller spheres
that bound the same part of the curve, and repeat the intersection
test until the sizes of the spheres are sufficiently small. If an inter-
section still exists at the finest bounding sphere level, we conclude
that step size would cause a pull-through and reduce the step size
to avoid it.

However, performing this for every pair of contacting segments at
every timestep is still expensive. We can further accelerate this
detection by computing safe bounds for each control point at the
end of the timestep and using this bound to possibly avoid intersec-
tion test for the next timestep. Suppose that while detecting pull-
through, we evaluate bounding spheres f[s1,s2](t) and g[s3,s4](t),
which respectively bound the parametric intervals [s1, s2] and
[s3, s4] on the two spline segments over the timestep t ∈ [0, 1],
and determine that they do not intersect at the end of the step, thus
‖f[s1,s2](1)− g[s3,s4](1)‖2 = d > 0. This implies that each point
within the intervals [s1, s2] and [s3, s4] can move by up to d

2
with-

out possibly causing pull-through. Let s′ ∈ [s1, s2] be arbitrary,
bi(s) be the spline basis functions, and ei (which we want to bound)
be the allowable movement for the i-th control point before these
computed bounding spheres will intersect. Then, we can write∥∥∥∥∥

4∑
i=1

bi(s
′) ei

∥∥∥∥∥
2

≤
4∑

i=1

|bi(s′)| ‖ei‖2 , (8)

Introducing di as any partition of d
2

such that
∑
di = d

2
, we can
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(a) (b)

Figure 17: Knitted dresses with two different stitch layouts and
knitting patterns.

simplify the equation above as

‖ei‖2 ≤
di

|bi(s′)|
. (9)

While the simplest partition is di = d
8

, this doesn’t account for the
relative importance of the control points, and so a better choice is
di = |bi(s′)|d∑

|bi(s′)|
for s′ ∈ [s1, s2]. We must take the maximum value

to compute the bound for the whole interval, such that

‖ei‖2 ≤
di∑(

maxs′∈[s1,s2] |bi(s′)|
) . (10)

Taking the minimum allowed movement for each control point over
all non-contacting spheres as we descend in the hierarchy gives us
a bound on the allowable movement for each control point in which
we are guaranteed not to have a pull-through for this segment pair.
This allows us to bypass the hierarchical descent on future steps if
the movement of the control points does not violate these bounds,
providing more than an order of magnitude speedup in our tests.

Relaxation: We run the yarn-level relaxation on a model until it
converges to a final shape. When the change in the garment shape
per time step falls below a certain threshold, we conclude that the
rest shape for the yarn-level model has been computed.

Note that a garment can be relaxed on a character with collision
constraints. However, since we are not using gravity during the
relaxation and we apply forces that preserve the overall garment
shape, we may need to simulate the garment on the character with
full gravity for a number of frames until wrinkles are formed wher-
ever necessary and a natural garment shape has been reached.

7 Results

We have tested our approach on two fronts: (1) its ability to produce
the small-scale details of challenging knitting patterns, and (2) its
effectiveness at generating full-scale garments for virtual charac-
ters. All stages of our framework are implemented in C++ except
for the yarn-level relaxation, which is written in Java.

Figure 18: Knitted glove with a Ribbing pattern formed by alter-
nating knit and purl stitches.

The procedure we follow for generating knitting patterns is shown
in Figure 14. We begin with a written or visual pattern description
for real-world knitting instructions (Figure 14a). Once we under-
stand the pattern description, we can easily model a stitch mesh
model in several minutes (Figure 14b). Then we use mesh-based
relaxation with no constraints to see the natural shape of the pattern,
which typically converges in less than 10 seconds (Figure 14c). Fi-
nally, we can generate the yarn curves (Figure 14d) and perform
yarn-level relaxation (Figure 14e). The computation time for yarn-
level relaxation heavily depends on the total deformation that the
yarn curves need to undergo. For example, models with cables take
significantly longer to converge to a relaxed state, because the ca-
bles introduce large deformations that are not handled by the mesh-
based relaxation. The yarn-level relaxation for the model in Fig-
ure 14e took about 10 minutes.

We have picked a number of knitting patterns from knitting books
with visually different characteristics to test how closely we could
replicate them. Considering that the results of knitting a particular
pattern depend on the yarn and needles used, as well as the style
of the individual knitter, Figure 16 shows that we can qualitatively
match the visual appearance of various patterns. It is very difficult
to exactly match the results produced by a particular knitter, since
various parameters affect the outcome both in the real world and in
our yarn-level relaxation procedure. Note that preparing such pat-
terns by manually modeling the yarn curves using standard model-
ing practices would be extremely difficult.

Figures 1 and 17 through 20 show full scale cloth models prepared
using our framework. Some of the knitting patterns we prepared
are tiled on these models (using Section 5.3), which shows how
our framework can be used to model various knitted garments for
virtual characters with realistic details. The computation times for
the relaxation operations are provided in Table 2. Both relaxation
operations generate relatively large deformations in the beginning
of the simulation, and we terminate the relaxation as the magnitude
of the deformations per timestep diminish. Notice that we had to
use significantly more yarn-level relaxation steps for the model in
Figure 21b merely because of the Braid Cables pattern.

8 Limitations and Future Directions

The modeling framework we propose in this paper makes it possi-
ble to generate realistic full-scale knitted garments with yarn-level
detail. Yet, our framework has certain limitations that might be
overcome with future research.

The high computational demand of the yarn-level relaxation stage
is arguably the most obvious limitation. In addition, since our stitch
models are not optimized for a particular knitting pattern, the effec-
tive curve sampling rates we use are higher than in earlier works
[Kaldor 2011], leading to higher computational costs. Since yarn-
level simulations are computationally expensive, we designed our
system such that in a production environment the yarn-level re-

9
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Table 2: Performance Results for the Mesh-based and Yarn-level Relaxation Implementations

# Stitch # Control Mesh-based Yarn-level Relaxation
Mesh Faces Points Relaxation Time/Step # Steps Total

Sweater (Fig.1) 21,568 407,746 ∼ 5 min. ∼ 8 min. 50 7 hours
Dress 1 (Fig.17a) 60,560 1,134,597 ∼ 6 min. ∼ 10 min. 50 9 hours
Dress 2 (Fig.17b) 65,732 1,194,833 ∼ 6 min. ∼ 13 min. 50 11 hours
Glove (Fig.18) 5,373 88,196 ∼ 1 min. ∼ 1 min. 50 1 hour
Tea Cozy (Fig.19) 10,220 208,506 ∼ 1 min. ∼ 2 min. 50 2 hours
Poncho (Fig.20) 9,976 166,882 ∼ 1 min. ∼ 1 min. 50 1 hour
Alien 1 (Fig.21a) 13,440 209,170 ∼ 3 min. ∼ 2 min. 50 2 hours
Alien 2 (Fig.21b) 13,440 213,856 ∼ 3 min. ∼ 4 min. 500 33 hours
Sheep (Fig.22) 52,916 1,094,173 ∼ 6 min. ∼ 13 min. 100 21 hours

The timings were generated using a dual Intel Xeon X5690 CPU @ 3.46 GHz with 48 GB RAM.

Figure 19: Knitted tea cozy with a Stockinette pattern formed by
repeated knit stitches. The model shape is defined by the input mesh.

laxation procedure can be performed overnight after the model is
prepared. By constraining the overall shape of the model during
relaxation, we try to minimize the possibility of unexpected out-
comes and the need for multiple relaxation operations per model.
Nonetheless, investigating ways to speed up the yarn-level relax-
ation step would be a good direction for future research.

While developing our modeling framework, we decided to rely on
the topology of the input mesh so that the user can precisely define
the desired stitch layout and specify the tessellation value of each
input mesh edge. On the other hand, this requires that the user have
some understanding of the knitting process while preparing the in-
put mesh, so that the topology and the geometry of the input mesh
can be prepared considering the stitch layout and the knitting pat-
tern. Thus, our framework cannot automatically convert any polyg-
onal mesh to a realistic knitted cloth model. An interesting future
direction would be decoupling the stitch mesh generation from the
input mesh topology in a way that would still allow the user to pre-
cisely control the stitch layout over the surface.

The stitch mesh structure provides a very good abstraction for most
knit topologies, but obviously it cannot represent everything that
can be done with yarn. In our investigations we did not come across
any knitting patterns using a single piece of yarn that we cannot
represent with the stitch mesh structure [Matthews 1984; Walker
2001]. Even though we have not designed the stitch mesh structure
to handle knitting patterns that use multiple yarns with different col-
ors, in computer graphics we always have the option to modify the
yarn color as needed to simulate such colored patterns. More im-
portantly, while knitting a real garment, one can always pull loops
through anywhere on the garment (not just the loops on the previ-
ous row). Such unusual operations are typically reserved for spe-
cial cases, such as adding a pocket on a knitted garment or knitting

Figure 20: Knitted poncho with a Ribbing pattern, simulated on a
mannequin after yarn-level relaxation.

pieces of a garment separately, disregarding the knitting direction at
the seams, and our stitch mesh abstraction cannot currently handle
these cases.

Finally, our system requires the stitch layout over the surface to be
carefully constructed so that enough stitches are generated every-
where on the surface to allow the final garment model to conform
realistically to the desired surface. While our offline simulation
preserves the shape of the garment, individual stitches may have to
deform more than desired as a result of the surface constraints. In
other words, the relaxation operations can force the knitted garment
to take a shape that is not natural for the number of stitches speci-
fied. The top row of Figure 23 shows a dress model that does not
have enough stitches under the armpit and has too many stitches
around the arm, resulting a large hole under the armpit and unin-
tended wrinkle formation around the arm. In our implementation,
during and at the end of the mesh-based relaxation, we show the
user the stretching of each face by color coding. This lets the user
immediately identify undesired stretching or compression and mod-
ify the input mesh or the stitch mesh if needed, without having to
wait for the yarn-level relaxer to see if a modification would be
necessary. This is analogous to knitting in the real world, which
often requires repeated measurements of the knitted portions of the
garment to see if the number of stitches should be adjusted any-
where. The bottom row of Figure 23 shows the final model after
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(a) (b)

Figure 21: A knitted sweater for an alien character and the same
sweater model with the Braid Cables pattern.

the input mesh and the stitch mesh are modified to avoid exces-
sive stretching/compression. An interesting future direction would
be semi-automatically modifying the stitch layout to better suit the
desired garment shape.

9 Conclusion

In this paper we have presented the first modeler for realistic knit-
ted clothing suitable for computer graphics. The interactive mod-
eling tool provides the user precise control over the placement and
the shape of each individual stitch with immediate feedback, and
the final model is produced by a physically based simulation that
relaxes local yarn shape, while preserving the global shape of the
cloth model to ensure predictable results. With this tool it is now
possible to create yarn-level models of unprecedented intricacy and
structural detail, making fuller use of the potential of yarn-level
simulation and rendering to create visually compelling garments of
a quality that cannot be approached with sheet-based simulation.
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