
Performance Issues in TACOMA

Dag Johansen�

Nils P� Sudmann�

Robbert van Renesse�

� Department of Computer Science� University of Troms�� NORWAY���

� Department of Computer Science� Cornell University� Ithaca� NY� USAy

Abstract� Mobile code performance depends� in part� on the costs of
transferring an agent from one host to another and of initiating execution
of that agent on a target host� These costs are reported for TACOMA
�Troms� and COrnell Moving Agents� v���� a UNIX�based system that
supports agents� The experiments suggest opportunities for performance
enhancements� both by changing the underlying operating system and
by changing the architecture of the TACOMA run�time system�

� Introduction

One of the motivations for using mobile code in distributed applications is the
potential for improved performance� Moving a program between hosts in a net�
work may be cheaper than moving large amounts of data between those hosts� Of
course� the performance improvement will depend on the relative cost of moving
and installing code�

This paper describes detailed measurements of move and install operations
for mobile code that is run using the TACOMA �Troms� and COrnell Moving
Agents� system�� In TACOMA� a piece of mobile code is called an agent and is
accompanied by state information in a briefcase �JvRS�	
� By executing a meet

operation� an agent initiates the installation and execution of code at another
host�

TACOMA v���� used in these experiments� is the latest in a series of im�
plementations� The system runs under most 
avors of UNIX� and it supports
agents implemented in C� Perl� Python� Scheme� and Tcl� Other agent systems�
like Telescript �Whi��
� Agent�Tcl �Gra�	
 and Messengers �LFB��
� have sim�
ilar architectures to TACOMA� However� in contrast to these other systems�
TACOMA does not depend on properties of a speci�c programming language
for preserving the integrity of hosts that execute agents� TACOMA relies only on
operating systems mechanisms �e�g�� address spaces and �le system protection�
for host integrity�

��� This work was supported by NSF �Norway� grant No� �	
�����
 and ���
�����
�
y This work was supported by ARPA�ONR grant N


������J������
� For more information� URL� http���www�cs�uit�no�DOS�Tacoma�



� The Experiment

In TACOMA� a meet operation is executed by an initiating agent to cause the
execution of a target agent on some speci�ed host� The syntax of the meet is�

meet ag�h bc �syncjasync


Execution causes target agent ag at host h to be executed using briefcase bc�
A briefcase is a collection of named folders� each containing an uninterpreted
sequence of bits� When async is speci�ed� the initiating agent continues execut�
ing in parallel with execution of ag� otherwise the initiating agent blocks� The
experiments of this paper are based on blocking meets with a target agent that
has a null body �it simply accepts and returns a briefcase�� and varying sized
briefcases�

Our experiments were conducted using � Hewlett�Packard C���� worksta�
tions running HP�UX �version ������ executing in single�user mode and with
TACOMA�s logging and security features disabled� Each workstation was
equipped as follows�

� ��� MHz �PA������ CPU�
� ��� Mbyte RAM�
� � Gbyte F�W di�erential disk�

The workstations were connected by a dedicated �� Mbit�s Ethernet segment�

� Implementation and Performance

The critical path of meet is depicted in the time�space diagram of Figure ��
There� the leftmost arrow represents the initiating agent� the rightmost arrow
represents the target agent� The two other arrows correspond to TACOMA
system processes that are involved in implementing the meet� tac �rewall and
ch �rewall� Both of these processes run on the host executing the target agent�
tac �rewall monitors a well�known network port and forks an instance of
ch �rewall for each incoming meet request�

The �� labeled steps in Figure � can be grouped as follows�

� Marshalling and sending a briefcase �steps � � ���
� Receipt of briefcase by ch �rewall �steps 	 � ���
� Creation of an execution environment for the meeting �steps � � ����
� Sending a message back to the initiating agent �steps �� � ����

Each of these is explained in the subsections that follow� To measure these� we
ran ��� meet operations and pro�led each using calls to gettimeofday��� In some
cases� we summarize our experimental results using a sample distribution plot

�SDP�� which gives the number of samples that fall within each of �� consecutive
time intervals of equal length�



(1) Marshal briefcase
(2) TCP connect

(4) Transmit briefcase

(3) Create ch_firewall

(5) Receive and examine

(12) Return status to client

(13) Terminate

Client (meet lib) tac_firewall ch_firewall ag_vm

(6) Locate agent
(7) Create pipes
(8) Activate agent

(9) Deliver briefcase

(10)Unmarshal and

(11) Return status
to ch_firewall

start agent

Fig� �� Event diagram illustrating a meet operation�

��� Marshalling and Sending

Step � � Marshalling a briefcase� In this step� the briefcase is marshaled for
transmission� The briefcase contains a collection of strings� For a minimal size
briefcase ��� bytes�� the median cost measured for this step is �� microseconds�
Figure � shows the median cost as a function of the briefcase size �which depends
on the size of the strings��

Step � � TCP connect� In this step� a TCP connection is established with
tac �rewall� The median cost measured for this step was 	�� microseconds� and
is independent of the briefcase size� Figure �a is an SDP for this step�

Step � � Creating ch �rewall� Here there are two sub�steps� a� tac �rewall
forks to create ch �rewall for processing the meet request� �After forking� tac �
�rewall is ready to receive another meet request�� The median cost measured for
the fork was ���� microseconds� b� An additional �� microseconds is required
for ch �rewall for initialization� Figure �b is an SDP for this entire step� The
elapsed time is largely independent of the briefcase size�



0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

T
im

e 
(m

ic
ro

se
c)

Size (Kbytes)

Marshal briefcase

Sample
95% Confidence Interval

Fig� �� Marshalling cost vs� briefcase size�

0

10

20

30

40

50

60

70

80

90

100

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

S
am

pl
es

Time (microsec)

Client connects to the remote fw (TCP/IP)

Samples

0

10

20

30

40

50

60

1650 1700 1750 1800 1850 1900 1950 2000 2050 2100

S
am

pl
es

Time (microsec)

Firewall accepts and creates a new process

Samples

�a� �b�

Fig� �� �a� Cost of connecting to tac �rewall� �b� Cost of tac �rewall forking to
create ch �rewall�

Step 	 � Transmitting the briefcase� In this step� the marshaled briefcase is
transferred to ch �rewall� The median cost for executing the send �for a minimal
briefcase� was measured as 	� microseconds� this re
ects only the elapsed time
to copy the briefcase into the kernel at the sender� Figure � gives SDPs for three
di�erent briefcase sizes� Notice that step � overlaps the execution of step ��

��� Receipt of the Briefcase

Step 
 � Receive and examine� Here there are two sub�steps� a� ch �rewall
receives the incoming briefcase� The median cost measured for this step was
�	�� microseconds� The receive �read� itself accounts for a surprising �	�� micro�
seconds � we are currently attempting to isolate the reasons� b� The remaining



0
10
20
30
40
50
60
70
80
90

100

100 120 140 160 180 200 220

S
am

pl
es

Time (microsec)

Client delivers the archive bc to remote fw

Samples

0

5

10

15

20

25

30

35

440 460 480 500 520 540 560 580 600

S
am

pl
es

Time (microsec)

Client delivers the archive bc to remote fw

Samples

0

5

10

15

20

25

30

35

780 800 820 840 860 880 900 920 940

S
am

pl
es

Time (microsec)

Client delivers the archive bc to remote fw

Samples

�a� �k �b� �k �c� ��k

Fig� 	� The cost of shipping a briefcase to the ch �rewall�

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

T
im

e 
(m

ic
ro

se
c)

Size (Kbytes)

Deliver briefcase (TCP/IP)

Sample
95% Confidence Interval

Fig� 
� The median cost of briefcase transmission� varying the size of the brief�
case�

� microseconds are spent checking the message contents for consistency with its
header�

Step � � Locate local TACOMA agent� In this step ch �rewall determines
the location of the executable for the target agent� This involves issuing a stat��
kernel call� The median cost measured for this step was �	� microseconds�

��� Building an Execution Environment

Step � � Create pipes� In this step� ch �rewall creates two UNIX pipes for
sending the briefcase to the target agent and receiving results� The median cost
measured for this operation was ��� microseconds�

Step 
 � Activate the TACOMA agent� This step initiates execution of the
target agent and consists of two sub�steps� a� A vfork�� �	�� microseconds� is



invoked� followed by an b� execl�� �which returns after ���� microseconds��� The
median cost measured for this step was ��	� microseconds and is independent
of the size of the briefcase� Figure � shows the SDP for this step� The samples
grouped around �� miliseconds is probably caused by occasional cache misses
and� consequently� accessing the disk�

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20 22

S
am

pl
es

Time (milisec)

Ch_firewall activates the contact (execl)

Samples

Fig� �� The cost of activating the destination agent�

Step � � Transfer the briefcase� In this step� ch �rewall sends the marshaled
briefcase to the target agent using one of the pipes created in step �� This cost
is independent of briefcase size as long as the briefcase is smaller than �Kb and�
therefore� �ts in the pipe�s kernel bu�er� However� if the marshaled briefcase
is larger than �Kb� context switches are necessary between ch �rewall and the
agent� Above �Kb the overhead grows linearly�

For a minimal size briefcase� the median cost measured for this step is ���
microseconds� Figure � shows SDPs for three di�erent sizes of briefcases� and
Figure � gives the median cost for additional briefcase sizes�

Step �� � Unmarshal and start agent� Here there are three sub�steps� a�
First� completion of the step � target agent creation is awaited� If the target agent
executable was not in the kernel �le cache� the executable must be loaded from
disk� When a cache hit occurs� which was the common case in our experiments�
a delay of ���� microseconds was measured�

b� The target agent receives the briefcase sent in step � from the pipe created
in step �� This seems to require �	�	 microseconds� according to our measure�
ments�

� Execution of the target agent starts at step �� and occurs only after the execl��
returns�



0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

S
am

pl
es

Time (milisec)

Ch_firewall delivers the archive to the contact

Samples

0
10
20
30
40
50
60
70
80
90

100

10 11 12 13 14 15 16 17 18 19

S
am

pl
es

Time (milisec)

Ch_firewall delivers the archive to the contact

Samples

0

5

10

15

20

25

30

35

40

45

10.6 10.8 11 11.2 11.4

S
am

pl
es

Time (milisec)

Ch_firewall delivers the archive to the contact

Samples

�a� �k �b� �k �c� ��k

Fig� �� SDPs of pipe communication cost� three di�erent briefcase sizes�

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16

T
im

e 
(m

ic
ro

se
c)

Size (Kbytes)

Deliver briefcase (pipe)

Sample
95% Confidence Interval

Fig� 
� The cost of delivering the marshaled briefcase to the agent�

c� The briefcase is unmarshalled and the target agent is invoked� We mea�
sured ��� microseconds for this step when there is a small briefcase� Figure �
shows a graph of this cost as a function of briefcase sizes�

The median cost for this entire step is ������ microseconds�

��	 Termination

Step �� � Return status to ch �rewall� In this step� the target agent sends a
status message through the pipe created in step � to ch �rewall� The median cost
measured for this step was ���� microseconds� but with a high variance �values
ranging from ��� to ��	� microseconds were measured�� We cannot account for
the high variance and are investigating further�

Step �� � Return status to client� In this step� ch �rewall returns the target
agent�s status message back to the initiating agent� The delay of this step was
estimated by measuring the TCP round�trip time and halving it� obtaining 		�
microseconds�



0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16

T
im

e 
(m

ic
ro

se
c)

Size (Kbytes)

Unmarshall and acctivate

Sample
95% Confidence Interval

Fig� �� Graph of unmarshalling cost�

Step �� � Terminate� In this step� the TCP connection is closed at both ends�
The median cost for this �nal operation was measured as ��� microseconds�

��
 Total Cost

By summing the measurements given above� we calculate a median value of
�����	 microseconds �see Table ��� As a point of reference� a Sun RPC for the
same data is 	��	 miliseconds� However� for such an RPC� the server�s execution
environment is static and set up in advance�

Table �� Cost of steps in a meet �in microseconds��

Step � � �a �b ��� 
a 
b � 	 �a �b � �
a �
b �
c �� �� ��

Median �� 
�	 ��	� �	 
	 �

	 � �
� ��� 

� ���	 ��� ���	 �
�
 �
� ��	� 

� ���

� Discussion

This paper gives the delay associated with executing a meet in TACOMA� The
delay results from setting up an environment for executing the code that was
included by the source host� Our measurements suggest places where contemplat�
ing performance improvements is worthwhile� We now turn attention to those�

Steps �� �� and �� which account for ���� microseconds �approximately ���
of the total cost of a meet�� can be improved by re�using resources rather than



repeatedly allocating and freeing them� By keeping a cache of TCP connections
to cached child �rewall processes� the delay for steps �� �� and � is eliminated�

Step � and the second part of step �� account for ���� microseconds �approx�
imately ��� of the total cost of a meet� also can be eliminated by �i� sending the
briefcase directly from the initiating agent to the target agent and �ii� sending
the status message directly back to the initiating agent�

Finally� the vfork�� operation in step � that ch �rewall uses to set up a process
can be removed from the critical path� saving another 	�� microseconds� A real
fork�� would then have to be substituted� since now the child of ch �rewall will
have to locate the agent executable� but since it will be out of the critical path
this should not add to extra overhead�

The high cost of steps 	� ��� and �� could be reduced if HP�UX provided
better performance for transferring data between the kernel and user memory�
We are investigating the current source of this poor performance�

An higher�level technique for improving performance of meet operations is
to copy parts of a briefcase to the remote host on demand �i�e� lazily�� Typically
not all data in the briefcase will be needed at every host that an agent visits�
This can be exploited to speed the activation of a target agent� sending data to
that agent only when it is needed� After all� reducing data transfer is the raison

d�etre for the mobile agent paradigm�

Acknowledgments

We would like to thank Fred B� Schneider for many discussions and comments
on this paper�

References

�Gra�
� R� S� Gray� Agent Tcl� A transportable agent system� Technical report�
Dartmouth College� Hanover� New Hampshire 
�	

� November ���
�

�JvRS�
� D� Johansen� R� van Renesse� and F� B� Schneider� Operating System Sup�
port for Mobile Agents� In Proceedings of the �th Workshop on Hot Topics
in Operating Systems �HOTOS�V�� pages ����
� IEEE Press� May ���
�

�LFB��� M� B� Dillencourt L� F� Bic� M� Fukuda� Distributed Computing using Au�
tonomous Objects� IEEE Computer� ������ August �����

�Whi��� J� E� White� Telescript technology� The foundation for the electronic mar�
ketplace� General Magic white paper� General Magic Inc�� �����

This article was processed using the LATEX macro package with LLNCS style


