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Computer Vision Research Areas

Commonly broken down according to
degree of abstraction from image
— Low-level: mapping from pixels to pixels

= Edge detection, feature detection, stereopsis,
optical flow

— Mid-level: mapping from pixels to regions

= Segmentation, recovering 3d structure from
motion

— High-level: mapping from pixels and regions to
abstract categories

= Recognition, classification, localization
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Image Segmentation

= Find regions of image that are “coherent”
“Dual” of edge detection
— Regions vs. boundaries
= Related to clustering problems

— Early work in image processing and clustering
= Many approaches

— Graph-based

= Cuts, spanning trees, MRF methods
— Feature space clustering
— Mean shift
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Computer Vision

= Extraction of scene content from images
and video

= Traditional applications
in robotics and control
— E.g., driver safety

= More recently in film
and television
— E.g., ad insertion

= Digital images now being
used in many fields

FIEya (C) 1999-2607 =~

Today’s Overview

= Focus on some mid- and high-level vision
problems and techniques

= |llustrate some computer vision algorithms
and applications

= Segmentation and recognition because of
potential utility for analyzing images
gathered in the laboratory or the field

— Cover basic techniques rather than particular
applications
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A Motivating Example

= Image segmentation plays a powerful role
in human visual perception

— Independent of particular objects or
recognition

This image has three
perceptually distinct regions
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Graph Based Formulation

= G=(V,E) with vertices corresponding to pixels
and edges connecting neighboring pixels

EEEE 4-connected or 8-conneted

= Weight of edge is magnitude of intensity
difference between connected pixels

= A segmentation, S, is a partition of V such
that each CeS is connected
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Motivating Example

= Purely local criteria are
inadequate
— Difference along border between

A and B is less than differences
within C

= Criteria based on piecewise
constant regions are
inadequate

— Will arbitrarily split A into
subparts
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Component Measure

= Don’t consider just local edge weights in
constructing MST

— Consider properties of two components being
merged when adding an edge

» Kruskal’s MST algorithm adds edges from
lowest to highest weight
— Only if edges connect distinct components

= Apply criterion based on components to
further filter added edges

— Form of criterion limited by considering edges
weight ordered
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Important Characteristics

= Efficiency
— Run in time essentially linear in the number of
image pixels
= With low constant factors
= E.g., compared to edge detection
= Understandable output
— Way to describe what algorithm does
= E.g., Canny edge operator and step edge plus noise
= Not purely local
— Perceptually important
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MST Based Approaches

= Graph-based representation
— Nodes corresponding to pixels, edge weights are
intensity difference between connected pixels
= Compute minimum spanning tree (MST)
— Cheapest way to connect all pixels into single
component or “region”
= Selection criterion
— Remove certain MST edges to form components
= Fixed threshold

= Threshold based on neighborhood
— How to find neighborhood
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Measuring Component Difference

= Let internal difference of a component be
maximum edge weight in its MST
INt(C) = MaXx ¢eystcg) W(E)
— Smallest weight such that all pixels of C are
connected by edges of at most that weight
= Let difference between two components be
minimum edge weight connecting them
Dif(C, Cp) =min . ¢ vjeCy w((viVy))
— Note: infinite if there is no such edge
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Regions Found by this Approach

A B C

= Three main regions plus a few small ones

= Why the algorithm stops growing these
— Weight of edges between A and B large wrt max
weight MST edges of A and of B
— Weight of edges between B and C large wrt max
weight MST edge of B (but not of C)

Some Example Segmentations

k=300
- - 320 components
1 larger than 10

k=200
323 components
larger than 10

Monochrome Example

= Components locally connected (grid graph)
— Sometimes not desirable

Closely Related Problems Hard

= What appears to be a slight change
— Make Dif be quantile instead of min
k-th vjeCy, vjecz W((Vi,vj))
— Desirable for addressing “cheap path” problem
of merging based on one low cost edge
= Makes problem NP hard
— Reduction from min ratio cut
= Ratio of “capacity” to “demand” between nodes
= Other methods that we will see are also
NP hard and approximated in various ways

Simple Object Examples

Beyond Grid Graphs

= Image segmentation methods using
affinity (or cost) matrices
— For each pair of vertices Vi, Vi an associated
weight w;;

= Affinity if larger when vertices more related
= Cost if larger when vertices less related

— Matrix W=[ w;; ] of affinities or costs
= W is large, avoid constructing explicitly
= For images affinities tend to be near zero except

for pixels that are nearby
— E.g., decrease exponentially with distance

W is sparse




Cut Based Techniques

= For costs, natural to consider minimum
cost cuts
— Removing edges with smallest total cost, that

cut graph in two parts

— Graph only has non-infinite-weight edges

* For segmentation, recursively cut resulting
components
— Question of when to stop

= Problem is that cuts tend to split off small
components

= Coenell Univessity

Computing Normalized Cuts

= Has been shown this is equivalent to an
integer programming problem, minimize
y' (b-W)y
y'Dy
Subject to the constraint that y;,e{1,b}
and y'D1=0
— Where 1 vector of all 1's
= W is the affinity matrix
* D is the degree matrix (diagonal)
D(i,i) = % w;
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Normalized Cut Examples

= Ceenell University

= Coenell Univessity

Normalized Cuts

A number of normalization criteria have

been proposed

One that is commonly used

cut(A,B) cut(A,B)
+

assoc(A,V)  assoc(B,V)

Ncut(A,B) =

= Where cut(A,B) is standard definition
Zicajes Wi
* And assoc(A,V) = X Xica W

Approximating Normalized Cuts

= Integer programming problem NP hard
— Instead simply solve continuous (real-valued)
version — relaxation method
— This corresponds to finding second smallest
eigenvector of
(D-W)y; = %; Dy;
= Widely used method
— Works well in practice
= Large eigenvector problem, but sparse matrices
« Often resolution reduce images, e.g, 100x100
— But no longer clearly related to cut problem
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Spectral Methods

= Eigenvectors of affinity and normalized
affinity matrices
= Widely used outside computer vision for
graph-based clustering
— Link structure of web pages, citation structure
of scientific papers
— Often directed rather than undirected graphs

= Ceenell University



Segmentation

= Many other methods

— Graph-based techniques such as the ones
illustrated here have been most widely used
and successful

— Techniques based on Markov Random Field
(MRF) models have underlying statistical
model

= Relatively widespread use for medical image
segmentation problems

— Perhaps most widely used non-graph-based
method is simple local iterative update
procedure called Mean Shift

= Coenell Univessity

Recognition

= Specific objects
— Much of the history of object recognition has
been focused on recognizing specific objects in
images
= E.g., a particular building, painting, etc.
= Generic categories

— More recently focus has been on generic
categories of objects rather than specific
individuals

= E.g., faces, cars, motorbikes, etc.
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Hausdorff Distance

= Classical definition
— Directed distance (not symmetric)
< h(A,B) = max,_, min,_z la-bl
— Distance (symmetry)
= H(A,B) = max(h(A,B), h(B,A))
* Minimization term is simply a distance
transform of B
—h(A,B) = max,, Dg(a)
— Maximize over selected values of DT
= Not robust, single “bad match” dominates

= Ceenell University

Some Segmentation References

= J. Shi and J. Malik, “Normalized Cuts and Image
Segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence ,vol. 22, no. 8, pp. 888-905, 2000.

=  P. Felzenszwalb and D. Huttenlocher, “Efficient Graph
Based Image Segmentation,” International Journal of
Computer Vision, vol. 59, no. 2, pp. 167-181, 2004.

= D. Comaniciu and P. Meer, “Mean shift: a robust approach
toward feature space analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 4,
pp. 603-619, 2002.

= Coenell Univessity

Recognizing Specific Objects

= Approaches tend to be based on geometric
properties of the objects
— Comparing edge maps: Hausdorff matching

— Comparing sparse features extracted from
images: SIFT-based matching
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Distance Transform Definition

= Set of points, P, some distance ||
Dp(x) = minyp Ix -yl
— For each location x distance to nearesty in P
— Think of as cones rooted at each point of P

= Commonly computed on a grid T" using

Dp() = miny. - (Ix -yl + 1:(y) )
— Where 1,(y) = 0 when yeP, « otherwise
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Hausdorff Matching

= Best match
— Minimum fractional Hausdorff distance over
given space of transformations
= Good matches
— Above some fraction (rank) and/or below some
distance
= Each point in (quantized) transformation
space defines a distance
— Search over transformation space

= Efficient branch-and-bound “pruning” to skip
transformations that cannot be good
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Fast Hausdorff Search

= Branch and bound hierarchical search of
transformation space

= Consider 2D transformation space of
translation in x and y
— (Fractional) Hausdorff distance cannot change
faster than linearly with translation
= Similar constraints for other transformations
— Quad-tree decomposition, compute distance
for transform at center of each cell
= If larger than cell half-width, rule out cell
= Otherwise subdivide cell and consider children
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SIFT Feature Matching

= Sparse local features, invariant to changes
in the image

SIFT Features
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Hausdorff Matching

= Partial (or fractional) Hausdorff distance to
address robustness to outliers

— Rank rather than maximum

= h(A,B) = kth,_, minyzla-bl = kth,_, Dg(a)
— K-th largest value of Dg at locations given by A
— Often specify as fraction f rather than rank

= 0.5, median of distances; 0.75, 75" percentile

1,1,2,2,3,3,3,3,4,4,512,14,15
A
.25 .5 .75 1.0

O ——

Branch and Bound lllustration

= Guaranteed (or admissible)
search heuristic
— Bound on how good answer
could be in unexplored region Skbchnde
= Cannot miss an answer
— In worst case won’t rule anything &
out
= |In practice rule out vast Subbvide
majority of transformations

— Can use even simpler tests than el
computing distance at cell center

Evaluate

Object Category Recognition

= Generic classes rather than specific objects
— Visual — e.g., bike

7> GO C@i

— Functional — e.g., chair

— Abstract — e.g., vehicle

< haf el B,
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Recognition Cues

= Appearance
— Patterns of intensity or color, e.g., tiger fur
— Sometimes measured locally, sometimes over
entire object

= Geometry
— Spatial configuration of parts or local features
= E.g., face has eyes above nose above mouth

= Early approaches relied on geometry

(1960-80) later ones on appearance
(1985-95), more recently using both

Using Appearance and Geometry

= Constellations of parts [FPZ03]
— Detect affine-invariant features
= E.g., corners without preserving angle

— Use Gaussian spatial model of how feature
locations vary within category (n X n covariance)

— Match the detected features to spatial model

Problems With Feature Detection

= Local decisions about presence or absence
of features are difficult and error prone
—E.g., often hard to determine whether a corner
is present without more context
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Spatial Models Without Feature Detection

= Pictorial structures [FE73]
— Model consists of parts arranged £ —*=—X
in deformable configuration &
= Match cost function Lerr [ 46
for each part e
= Deformation cost function

for each connected pair of parts o
= Intuitively natural notion of parts connected
by springs

— “Wiggle around until fits” — no feature detection
— Abandoned due to computational difficulty

Formal Definition of Model

= Object modeled by graph, M=(V,E)
— Parts V=(vq, ..., V)
— Spatial relations E={e;;}
= Gaussian on relative locations
for pair of parts i,j
= Spatial prior Py(L) on
configurations of parts

L=(, ..., 4) 7 nodes
f 9 edges
— Where 4 over discrete (out of 21)

configuration space
- E.g., translation, rotation, scale
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Single Overall Estimation Problem

= Likelihood of image given parts
at specific configuration
— E.g., under translation |

= Degree to which configuration

fits prior spatial model oot o Yoy
= No error-prone local Pu(11E)
feature detection step
= Tractability depends on :
graph structure ]
Pu(lle)

— E.g., for trees
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Single Estimation vs. Feature Detection

= Feature based

— Local feature detection - ? -"
(threshold likelihood) oy Yy
— “Matching” techniques =

that handle missing and Detected Locations of Individual Features
extra features

= Single estimation
— Determine feature

u - %
responses (likelihood) s 2 -
— Dynamic programming H zl | z

techniques to combine
with spatial model (prior)
Transform Feature Maps Using Spatial Model

Tree Structured Models

= Kinematic structure of
animate objects
— Skeleton forms tree
— Parts as nodes, joints as edges
= 2D image of joint
— Spatial configuration for

pair of parts '
— Relative orientation,
position and scale :?
(foreshortening) z.

Sampling (Total Evidence)

= Compute (factored) posterior distribution

= Efficiently generate sample configurations
— Sample recursively from a “root part”

Used by best 2D human pose
detection techniques, e.g. [RFZ05]

Graphical Models

= Probabilistic model

— Collection of random variables with explicit
dependencies between certain pairs

= Undirected edges — dependencies not
causality
— Markov random field (MRF)

= Reachability corresponds to
(conditional) independence
— E.g., case of star graph
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Best Match (MAP Estimate)

= All possible spatial configurations
“considered” — most eliminated implicitly

— Dynamic programming for efficiency

= Example using simple binary silhouette for
appearance
— Model error, min cost match not always “best”

i
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Single Estimation Approach

= Single estimation more accurate (and
faster) than using feature detection

— Optimization approach [CFHO5,FPZ05] for
star or k-fan vs. feature detection for full joint
Gaussian [FPZ03]

— 6 parts under translation, Caltech-4 dataset
— Single class, equal ROC error

Airplane Motorbike Faces Cars
Feat. Det. [FPZ03] 90.2% 92.5% 96.4% 90.3%
Est.-Star [FPZ05] 93.6% 97.3% 90.3% 87.7%

Est.-Fan [CFHO5] 93.3% 97.0% 98.2% 92.2%
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Learning the Models

= [FPZO05] uses feature detection to learn
models under weakly supervised regime

— Know only which training images contain
instances of the class, no location information

= [CFHO5] does not use feature detection
but requires extensive supervision
— Know locations of all the parts in all the
positive training images

= Investigate weak supervision but without
relying on feature detection
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Example Learned Models

= Six part models, weak supervision
— Black borders illustrate reference parts

— Ellipses illustrate spatial uncertainty with
respect to reference parts

- ==1E:”
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Motorbike 2-fan Car (rear) 1-fan Face 1-fan
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Some Recognition References

= D.P. Huttenlocher, G.A. Klanderman, W.A. Rucklidge,
“Comparing Images Using the Hausdorff Distance,” |IEEE
Transactions on Pattern Analysis and Machine
Intelligence ,vol. 15, no. 9, pp. 850-863, 1993.

= D.G. Lowe, “Object recognition from local scale-invariant
features,” IEEE Conference on Computer Vision and Pattenr
Recognition, pp. 1150-1157, 1999.

= D. Crandall, P. Felzenszwalb and D. Huttenlocher, “Spatial
priors for part-based recognition using statistical models,”
IEEE Conference on Computer Vision and Pattenr
Recognition, pp. 10-17, 2005.
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Weakly Supervised Learning

Consider large number of initial patch
models to generate possible parts

= Generate all pairwise models formed by
two initial patches — compute likelihoods

= Consider all sets of reference parts for
fixed k

Greedily add parts based on likelihood to
produce initial model

EM-style hill climbing to improve model
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Detection Examples




