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Computer Vision

Extraction of scene content from images 
and video
Traditional applications 
in robotics and control
– E.g., driver safety

More recently in film
and television
– E.g., ad insertion

Digital images now being
used in many fields
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Computer Vision Research Areas

Commonly broken down according to 
degree of abstraction from image
– Low-level: mapping from pixels to pixels

• Edge detection, feature detection, stereopsis, 
optical flow

– Mid-level: mapping from pixels to regions
• Segmentation, recovering 3d structure from 

motion

– High-level: mapping from pixels and regions to 
abstract categories
• Recognition, classification, localization
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Today’s Overview

Focus on some mid- and high-level vision 
problems and techniques
Illustrate some computer vision algorithms 
and applications
Segmentation and recognition because of 
potential utility for analyzing images 
gathered in the laboratory or the field
– Cover basic techniques rather than particular 

applications
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Image Segmentation

Find regions of image that are “coherent”
“Dual” of edge detection
– Regions vs. boundaries

Related to clustering problems
– Early work in image processing and clustering

Many approaches
– Graph-based

• Cuts, spanning trees, MRF methods

– Feature space clustering
– Mean shift
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A Motivating Example
Image segmentation plays a powerful role 
in human visual perception
– Independent of particular objects or 

recognition

This image has three 
perceptually distinct regions



7

Graph Based Formulation

G=(V,E) with vertices corresponding to pixels 
and edges connecting neighboring pixels

Weight of edge is magnitude of intensity 
difference between connected pixels
A segmentation, S, is a partition of V such 
that each C∈S is connected

4-connected or 8-conneted
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Important Characteristics

Efficiency
– Run in time essentially linear in the number of 

image pixels 
• With low constant factors
• E.g., compared to edge detection

Understandable output 
– Way to describe what algorithm does

• E.g., Canny edge operator and step edge plus noise

Not purely local
– Perceptually important
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Motivating Example

Purely local criteria are 
inadequate 
– Difference along border between 

A and B is less than differences 
within C

Criteria based on piecewise 
constant regions are 
inadequate
– Will arbitrarily split A into 

subparts

B CA
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MST Based Approaches

Graph-based representation
– Nodes corresponding to pixels, edge weights are 

intensity difference between connected pixels
Compute minimum spanning tree (MST)
– Cheapest way to connect all pixels into single 

component or “region”
Selection criterion
– Remove certain MST edges to form components

• Fixed threshold
• Threshold based on neighborhood

− How to find neighborhood
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Component Measure

Don’t consider just local edge weights in 
constructing MST
– Consider properties of two components being 

merged when adding an edge

Kruskal’s MST algorithm adds edges from 
lowest to highest weight
– Only if edges connect distinct components

Apply criterion based on components to 
further filter added edges
– Form of criterion limited by considering edges 

weight ordered
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Measuring Component Difference

Let internal difference of a component be 
maximum edge weight in its MST

Int(C) = max e∈MST(C,E) w(e)
– Smallest weight such that all pixels of C are 

connected by edges of at most that weight  

Let difference between two components be 
minimum edge weight connecting them

Dif(C1,C2) = min vi∈C1, vj∈C2
w((vi,vj))

– Note: infinite if there is no such edge
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Regions Found by this Approach

Three main regions plus a few small ones
Why the algorithm stops growing these 
– Weight of edges between A and B large wrt max 

weight MST edges of A and of B
– Weight of edges between B and C large wrt max 

weight MST edge of B (but not of C)

B CA
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Closely Related Problems Hard

What appears to be a slight change
– Make Dif be quantile instead of min 

k-th vi∈C1, vj∈C2
w((vi,vj))

– Desirable for addressing “cheap path” problem 
of merging based on one low cost edge

Makes problem NP hard
– Reduction from min ratio cut

• Ratio of “capacity” to “demand” between nodes

Other methods that we will see are also 
NP hard and approximated in various ways
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Some Example Segmentations

k=200
323 components
larger than 10

k=300
320 components
larger than 10
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Simple Object Examples
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Monochrome Example

Components locally connected (grid graph)
– Sometimes not desirable
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Beyond Grid Graphs

Image segmentation methods using 
affinity (or cost) matrices
– For each pair of vertices vi,vj an associated 

weight wij

• Affinity if larger when vertices more related
• Cost if larger when vertices less related

– Matrix W=[ wij ] of affinities or costs
• W is large, avoid constructing explicitly
• For images affinities tend to be near zero except 

for pixels that are nearby
− E.g., decrease exponentially with distance

• W is sparse
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Cut Based Techniques

For costs, natural to consider minimum 
cost cuts
– Removing edges with smallest total cost, that 

cut graph in two parts
– Graph only has non-infinite-weight edges

For segmentation, recursively cut resulting 
components
– Question of when to stop

Problem is that cuts tend to split off small 
components
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Normalized Cuts

A number of normalization criteria have 
been proposed
One that is commonly used

Where cut(A,B) is standard definition
∑i∈A,j∈B wij

And assoc(A,V) = ∑j ∑i∈A wij

Ncut(A,B) = 
cut(A,B) cut(A,B)

assoc(B,V)assoc(A,V)
+
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Computing Normalized Cuts

Has been shown this is equivalent to an 
integer programming problem, minimize

yT (D-W)y
yT D y

Subject to the constraint that yi∈{1,b} 
and yTD1=0
– Where 1 vector of all 1’s

W is the affinity matrix
D is the degree matrix (diagonal)

D(i,i) = ∑j wij
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Approximating Normalized Cuts

Integer programming problem NP hard
– Instead simply solve continuous (real-valued) 

version – relaxation method
– This corresponds to finding second smallest 

eigenvector of
(D-W)yi = λi Dyi

Widely used method
– Works well in practice

• Large eigenvector problem, but sparse matrices
• Often resolution reduce images, e.g, 100x100

– But no longer clearly related to cut problem
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Normalized Cut Examples
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Spectral Methods

Eigenvectors of affinity and normalized 
affinity matrices
Widely used outside computer vision for 
graph-based clustering
– Link structure of web pages, citation structure 

of scientific papers
– Often directed rather than undirected graphs
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Segmentation

Many other methods
– Graph-based techniques such as the ones 

illustrated here have been most widely used 
and successful

– Techniques based on Markov Random Field 
(MRF) models have underlying statistical 
model
• Relatively widespread use for medical image 

segmentation problems

– Perhaps most widely used non-graph-based 
method is simple local iterative update 
procedure called Mean Shift
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Some Segmentation References

J. Shi and J. Malik, “Normalized Cuts and Image 
Segmentation,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence ,vol. 22, no. 8, pp. 888-905, 2000.

P. Felzenszwalb and D. Huttenlocher, “Efficient Graph 
Based Image Segmentation,” International Journal of 
Computer Vision, vol. 59, no. 2, pp. 167-181, 2004.

D. Comaniciu and P. Meer, “Mean shift: a robust approach 
toward feature space analysis,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 24, no. 4, 
pp. 603-619, 2002.
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Recognition

Specific objects
– Much of the history of object recognition has 

been focused on recognizing specific objects in 
images
• E.g., a particular building, painting, etc.

Generic categories
– More recently focus has been on generic 

categories of objects rather than specific 
individuals
• E.g., faces, cars, motorbikes, etc.
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Recognizing Specific Objects

Approaches tend to be based on geometric 
properties of the objects
– Comparing edge maps: Hausdorff matching
– Comparing sparse features extracted from 

images: SIFT-based matching
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Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B ⎟⎜a-b⎟⎜

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term is simply a distance 
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Not robust, single “bad match” dominates
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Distance Transform Definition

Set of points, P, some distance ⎟⎜•⎟⎜
DP(x) = miny∈P ⎟⎜x - y⎟⎜

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (⎟⎜x - y⎟⎜ + 1P(y) )

– Where 1P(y) = 0 when y∈P, ∞ otherwise

0
0
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Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over 

given space of transformations

Good matches
– Above some fraction (rank) and/or below some 

distance

Each point in (quantized) transformation 
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip 
transformations that cannot be good
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Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈B⎟⎜a-b⎟⎜ = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25

33

Fast Hausdorff Search

Branch and bound hierarchical search of 
transformation space
Consider 2D transformation space of 
translation in x and y
– (Fractional) Hausdorff distance cannot change 

faster than linearly with translation
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance 
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children
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Branch and Bound Illustration

Guaranteed (or admissible) 
search heuristic
– Bound on how good answer 

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything 
out

In practice rule out vast 
majority of transformations
– Can use even simpler tests than 

computing distance at cell center
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SIFT Feature Matching

Sparse local features, invariant to changes 
in the image
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Object Category Recognition

Generic classes rather than specific objects
– Visual – e.g., bike

– Functional – e.g., chair

– Abstract – e.g., vehicle
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Recognition Cues

Appearance
– Patterns of intensity or color, e.g., tiger fur

– Sometimes measured locally, sometimes over 
entire object

Geometry
– Spatial configuration of parts or local features

• E.g., face has eyes above nose above mouth

Early approaches relied on geometry 
(1960-80) later ones on appearance 
(1985-95), more recently using both
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Using Appearance and Geometry

Constellations of parts [FPZ03]
– Detect affine-invariant features

• E.g., corners without preserving angle

– Use Gaussian spatial model of how feature 
locations vary within category (n x n covariance)

– Match the detected features to spatial model
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Problems With Feature Detection

Local decisions about presence or absence 
of features are difficult and error prone
– E.g., often hard to determine whether a corner 

is present without more context
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Spatial Models Without Feature Detection

Pictorial structures [FE73]
– Model consists of parts arranged 

in deformable configuration
• Match cost function 

for each part

• Deformation cost function 
for each connected pair of parts

Intuitively natural notion of parts connected 
by springs
– “Wiggle around until fits” – no feature detection

– Abandoned due to computational difficulty
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Formal Definition of Model

Object modeled by graph, M=(V,E)
– Parts V=(v1, …, vm) 

– Spatial relations E={eij}
• Gaussian on relative locations 

for pair of parts i,j

Spatial prior PM(L) on
configurations of parts 
L=(l1, …, lm)
– Where li over discrete 

configuration space
• E.g., translation, rotation, scale

7 nodes
9 edges

(out of 21)
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Single Overall Estimation Problem

Likelihood of image given parts 
at specific configuration
– E.g., under translation

Degree to which configuration 
fits prior spatial model

No error-prone local
feature detection step

Tractability depends on
graph structure
– E.g., for trees

PM(I|l1)

PM(I|l2)

I
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Single Estimation vs. Feature Detection

Feature based
– Local feature detection

(threshold likelihood) 
– “Matching” techniques 

that handle missing and 
extra features

Single estimation
– Determine feature 

responses (likelihood)
– Dynamic programming 

techniques to combine 
with spatial model (prior)

Detected Locations of Individual Features

Transform Feature Maps Using Spatial Model
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Graphical Models

Probabilistic model
– Collection of random variables with explicit 

dependencies between certain pairs

Undirected edges – dependencies not 
causality
– Markov random field (MRF)

Reachability corresponds to 
(conditional) independence
– E.g., case of star graph
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Tree Structured Models

Kinematic structure of 
animate objects
– Skeleton forms tree
– Parts as nodes, joints as edges

2D image of joint
– Spatial configuration for 

pair of parts
– Relative orientation, 

position and scale 
(foreshortening)
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Best Match (MAP Estimate)

All possible spatial configurations 
“considered” – most eliminated implicitly
– Dynamic programming for efficiency

Example using simple binary silhouette for 
appearance
– Model error, min cost match not always “best”
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Sampling (Total Evidence)

Compute (factored) posterior distribution
Efficiently generate sample configurations
– Sample recursively from a “root part”

Used by best 2D human pose 
detection techniques, e.g. [RFZ05]
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Single Estimation Approach

Single estimation more accurate (and 
faster) than using feature detection
– Optimization approach [CFH05,FPZ05] for 

star or k-fan vs. feature detection for full joint 
Gaussian [FPZ03]

– 6 parts under translation, Caltech-4 dataset

– Single class, equal ROC error

92.2%98.2%97.0%93.3%Est.-Fan [CFH05]

87.7%90.3%97.3%93.6%Est.-Star [FPZ05]

90.3%96.4%92.5%90.2%Feat. Det. [FPZ03]

CarsFacesMotorbikeAirplane
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Learning the Models

[FPZ05] uses feature detection to learn 
models under weakly supervised regime
– Know only which training images contain 

instances of the class, no location information

[CFH05] does not use feature detection 
but requires extensive supervision
– Know locations of all the parts in all the 

positive training images

Investigate weak supervision but without 
relying on feature detection
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Weakly Supervised Learning

Consider large number of initial patch 
models to generate possible parts

Generate all pairwise models formed by 
two initial patches – compute likelihoods

Consider all sets of reference parts for 
fixed k

Greedily add parts based on likelihood to 
produce initial model

EM-style hill climbing to improve model
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Example Learned Models

Six part models, weak supervision
– Black borders illustrate reference parts
– Ellipses illustrate spatial uncertainty with 

respect to reference parts

Motorbike 2-fan Car (rear) 1-fan Face 1-fan
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Detection Examples
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Some Recognition References

D.P. Huttenlocher, G.A. Klanderman, W.A. Rucklidge, 
“Comparing Images Using the Hausdorff Distance,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence ,vol. 15, no. 9, pp. 850-863, 1993.

D.G. Lowe, “Object recognition from local scale-invariant 
features,” IEEE Conference on Computer Vision and Pattenr
Recognition, pp. 1150-1157, 1999.

D. Crandall, P. Felzenszwalb and D. Huttenlocher, “Spatial 
priors for part-based recognition using statistical models,”
IEEE Conference on Computer Vision and Pattenr
Recognition, pp. 10-17, 2005.


