
1Sliver, a Fast Distributed Slicing Algorithm
Vincent Gramoli∗†, Ymir Vigfusson†, Ken Birman†, Anne-Marie Kermarrec‡, Robbert van

Renesse† ∗EPFL - University of Neuchatel, Switzerland Email: vincent.gramoli@epfl.ch
†Cornell University, Ithaca, NY. Email: {ymir, ken, rvr}@cs.cornell.edu

‡INRIA Rennes Bretagne Atlantique, France. Email: akermarr@irisa.fr

Abstract

Slicing a distributed system involves partitioning the nodes into k equal-size subsets using a one-
dimensional attribute. A new gossip-based slicing algorithm that we call Sliver is proposed here; relative
to alternatives, it converges more rapidly to an accurate solution and does a better job of tolerating churn.
The low cost and simplicity of the solution makes it appropriate for use in a wide range of practical
settings.
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I. INTRODUCTION

Peer-to-peer (P2P) protocols have emerged as the technology of choice for such purposes as building
VoIP overlays and sharing files or storage. The algorithms discussed here are intended to assist such
applications in dealing with heterogeneous, often heavy-tailed resource distributions [1], [2]. For example,
VoIP applications such as Skype [3] must avoid routing calls through nodes that are sluggish or have low
bandwidth, and file sharing services such as Gnutella [4] and Kazaa [5] employ a two-level structure, in
which peers with longer lifetime and greater bandwidth capabilities function as superpeers.

A distributed slicing protocol organizes n nodes into k equally balanced slices in a one-dimensional
attribute space, such that when the classification algorithm terminates, each node knows the slice number
to which it belongs. Potential applications include:

• Construction of multi-level hierarchies (generalizing the two-level ones common today).
• Identifying outliers with respect to attributes indicative of possible malfunction or malicious behavior.
• Load-balancing in datacenters, or to provide varying levels of service in accordance with a classifi-

cation of clients.
We are not the first to study slicing. In [6], the authors offer a communication-efficient parallel sorting

algorithm and point to node classification as a possible application, but do not actually propose a slicing
algorithm. Subsequent work [7] presented an accurate slicing algorithm (the Ranking protocol), but it
converges very slowly: in larger deployments, churn would often disrupt the underlying system long
before the algorithm stabilizes, and it might never catch up. Ideally, a slicing algorithm:
(i) Should efficiently compute accurate slice numbers, in a sense formalized below.

(ii) Should achieve provably rapid convergence.
(iii) Should be robust to membership churn and potentially rapid evolution of underlying attribute values.
For practical purposes, it is also preferable that the protocol be as simple as possible.

This work was supported, in part, by NSF, AFRL, AFOSR, INRIA/IRISA and Intel Corporation.
Manuscript created 12/10/2007. Revised 04/24/2008.



2
In what follows, we develop a new gossip-based algorithm we call Sliver (for Slicing Very Rapidly).

A rigorous analysis of convergence properties establishes the first known upper bound on expected
convergence time as a function of k, the number of slices. We implemented Sliver, and report our
findings for a trace-driven evaluation, using real data from the Skype VoIP overlay.

As a part of our effort, we reviewed other ways of solving the slicing problem. In the section on
related work, we suggest a simple way of adapting parallel sorting algorithms for use in P2P settings.
This gives us access to some very sophisticated options. However, such algorithms also bring substantial
complexity, and churn would limit the size of problems that can be tackled using them. Neither problem
arises with Sliver, which is relatively simple and tolerant of churn.

II. MODEL AND PROBLEM DEFINITION

A. Problem Statement

The system consists of n nodes with unique IP addresses; each node knows of a small number of
neighbors, and the resulting graph is closed under transitivity. We assume that n is large: solutions that
collect Ω(n) information at any single node are impractical. Nodes can join and leave (or fail by halting),
hence the set of nodes and the value of n changes over time; we say that the nodes currently in the
system are active. Each node i has an attribute value xi ∈ R that represents its capacity in the metric of
interest, for example uplink bandwidth. At any time, the relative position ri of node i is the index of xi

within the sorted attribute values, normalized to fall within the range [0, . . . ,1] (computed by dividing
the index by n). If two nodes have identical values, we break ties using the node identifiers. The sets
P1, . . . ,Pk partition (0,1] and are called slices. Here, we focus on equally sized slices, that is, we set
Pj = ( j−1

k , j
k ] for any j, 0 < j ≤ k. Node i belongs to slice Pj if ri ∈ Pj. Given a value of k, a slicing

protocol [7] computes k slices such that upon termination, each node knows its slice membership. Nodes
communicate by message-passing, hence message load will be a metric of interest. A slicing protocol
converges if it eventually provides a correct slicing of a static network.

As noted earlier, we are interested in protocols that are (i) simple, (ii) accurate, (iii) rapidly convergent,
and (iv) efficient. With respect to efficiency, we will look at message load both in terms of the load
experienced by participating nodes and the aggregated load on the network.

A quick example will illustrate our goal. Suppose the active nodes have attribute values 1, 2, 3, 7, 8,
9 and that k = 3. One way to slice the set is to sort the values (as shown), divide the list into three sets,
and inform the nodes of the outcome. Alternatively, we might use an estimation scheme. For example,
if node 7 obtains a random sample of the values, that sample might consist of 1, 7, and 9, enabling it to
estimate the correct slice number. In the next section, we consider these and other options.

III. GOSSIP PROTOCOLS

In a gossip protocol, nodes exchange bounded amount of information (“gossip”) with a constant number
of peers picked uniformly at random in every time step. Here, we discuss two prior gossip-based solutions
to the slicing problem, identifying serious limitations to each. The analysis motivates the Sliver protocol.

The Ordering algorithm by Jelasity and Kermarrec [6] uses a randomized parallel sort implemented
over a gossip-based communication substrate. The key idea is to have each node start by picking a
random number as its initial estimate of its rank in the sort order, and then to adjust the rankings via
gossip exchange: if node A gossips with node B and A has a smaller attribute value than B, A takes the
smaller of the two ranking estimates and B the larger.
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If we assume that the initial random estimates are uniformly distributed, the Ordering algorithm

converges after O(logs) steps to a sorted set of nodes, where s denotes the number of rank exchanges,
which is bounded by O(logn).

In the Ranking algorithm by Fernández et al. [7], each node i picks a set of neighbors uniformly at
random, using a background algorithm that can be shown (with simulations) to produce distributions close
to uniform. During each gossip round, node i estimates its relative position by comparing the attribute
values of its neighbors with its own attribute value. Node i then estimates its rank (and hence its slice)
as the ratio of the number of smaller attribute values that i has seen over the total number of values i
has seen. As the algorithm runs, the estimate improves.

However, node i does not keep track of the nodes from which it has received values, hence two identical
values sent from the same node j are treated by i as coming from two distinct nodes. In part for this
reason, while the Ranking protocol achieves eventual accuracy, it can be very slow to converge if the
initial selection embodies any form of non-uniformity.

Both of these algorithms require uniform randomness. Unfortunately, neither algorithm is able to
guarantee this requirement. As we saw earlier, the key idea of the Ordering algorithm [6] is to use
a random number as a rank that is exchanged between nodes. Initially, every node chooses a random
number as its rank, then periodically each node compares its value with that of a randomly selected peer.
Because the initial random numbers will be used as the final ranks of the nodes, if the number distribution
is skewed then final slice estimate can be inaccurate. For example, suppose the initial random numbers
of three nodes in a three-node network are 0.1, 0.15, and 0.2 instead of the ideal values 0, 0.5, and 1.
When the parallel sort terminates, all three will believe they belong in the first half of the system.

The Ranking protocol suffers from a similar problem associated with the randomness of the initial
neighbor selection: if these are biased, the algorithm may converge very slowly.

Churn raises a further potential problem when dynamic events and the attribute values are correlated,
for instance if attribute values correspond to average uptimes. The Ordering protocol cannot adjust to
variable attribute value distributions, and the Ranking protocol incurs significant delays in its convergence
because of this variation.

A. The Sliver Algorithm

This section introduces Sliver, a simple distributed slicing protocol that works by sampling attribute
values from the network and estimating the slice number from the sample. More precisely, Sliver
temporarily retains the attribute values and the node identifiers that it encounters. With this information,
nodes in Sliver make fast and precise estimates of the global attribute value distribution and thus of their
correct slice number.

To address churn, we also retain the time at which we last interacted with each node, and gradually
age out any values associated with nodes that have not been encountered again within a prespecified time
window. The timeout ensures that the amount of saved data is bounded, because the gossip mechanism
we use has a bandwidth limit that effectively bounds the rate at which nodes are encountered. Moreover,
this technique allows all nodes to cope with churn, regardless of potential changes to the distribution of
attribute values in the presence of churn.

The code running on each node in this scheme can be described as follows.
• Each node i gossips its attribute value to c random nodes in the system.
• Each node j keeps track of the values it receives, along with the sender i and the time they were

received, and discards value records that have expired.



4Leader-based Parallel Sorting Ordering Ranking Sliver
Accurate yes yes no yes yes
Efficient no yes yes yes yes

Robust to churn no no no yes yes
Handles non-uniformity yes yes no no yes

Convergence time O(logn) O(log2 n) O(logs) O(p(1− p)/d2) O( 3
√

k2 logn)

TABLE I
COMPARISON OF SOLUTIONS TO THE SLICING PROBLEM. HERE s IS THE NUMBER OF SUCCESSFUL RANK EXCHANGES OF

THE ORDERING PROTOCOL, p IS THE ESTIMATED NORMALIZED INDEX OF A NODE, d IS THE MAXIMAL DISTANCE BETWEEN
ANY NODE AND THE SLICE BOUNDARY AS DEFINED IN THE RANKING PROTOCOL, c IS THE CONSTANT NUMBER OF

NEIGHBORS, AND k (THE NUMBER OF SLICES) IS AT MOST A CONSTANT FRACTION OF n.

• Each node j sorts the m current values. Suppose B j of them are lower than or equal to the attribute
value of node j.

• Each node j estimates its slice number as the closest integer to kB j/m.
Conceptually, Sliver is similar to the Ranking protocol. They differ in that nodes in Sliver track

the node identifiers of the values they receive, whereas nodes in the Ranking protocol only track the
values themselves. This change has a significant impact: Sliver retains the simplicity of the Ranking
algorithm, but no longer requires uniformity in the choice of the communicating nodes. Moreover, whereas
convergence cannot be established for the Ranking algorithm, Sliver is amenable to a formal analysis.

IV. THEORETICAL ANALYSIS OF SLIVER

Recall that Sliver stores recent attribute values and node identifiers it encounters in memory. At
any point in time, each node can estimate its slice number using the current distribution of attribute
values it has stored. We show analytically that relatively few rounds have to pass for this estimate to be
representative for all nodes. More precisely, we derive an analytic upper bound on the expected number
of rounds the algorithm needs to run until each node knows its correct slice number (within one) with
high probability.

A. Assumptions

We focus on a static system with n nodes and k slices, and we assume that there is no timeout, so that
all values/identifiers encountered are recorded. The analysis can be extended to incorporate the timeouts
we introduced to battle churn and to adapt to distribution changes, but may not offer as much intuition
for the behavior and performance of the algorithm.

For the sake of simplicity, we assume that each node receives the values of c other randomly selected
nodes in the system during each round. Clearly, if a node collects all n attribute values it will know its
exact slice number. A node i is stable if it knows its slice number within at most one. This ensures that
nodes whose attribute values lie on the boundary of two partitions are able to converge without having
to know most or all values in the system.

B. Convergence to a Sliced Network

In the following we show that Sliver slices the network rapidly. The first lemma gives the number of
attribute values a node must receive from distinct nodes in order to be stable. The subsequent theorem
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gives the number of rounds necessary to achieve stability with arbitrarily high probability. The corollary
is then used to obtain our desired result. Here ln(·) denotes the natural logarithm with base e.

Lemma 1 Let ε > 0. For all nodes to be stable with probability 1− ε, each node must collect at least

3

√
4k2 ln

(
1+

2n
ln(1/(1− ε))

)
.

distinct attribute values.

Proof: Fix some node i with value xi. We will say that node i receives a previously unknown attribute
value in each time step. Let Bt denote the number of values that are known after t time steps which
are below or equal to xi. The fraction Bn/n is the true fraction of nodes with lower or equal attribute
values. Knowing this fraction is equivalent to knowing the exact slice number. There are on average n/k
nodes per slice, so node i is stable as long as it reports a value within n/k of Bn/n. We will estimate the
probability that at time t, Bt/t is within t/k of Bn/n.

One can visualize the process, which we coin the P-process, as follows. There are Bn balls marked
red and n−Bn marked blue. In each time step t, a ball is randomly picked from the remaining ones and
discarded. If it is red, Bt+1 = Bt +1, otherwise Bt+1 = Bt . The probability

P[blue ball at time t] =
Bn−Bt

n− t
depends on the current distribution of ball colors. Denote this by pt . To simplify the analysis, we will
consider the Q-process in which a red ball is picked with probability qt = Bn/n independently of prior
events in each time step and blue otherwise. Notice that if Bt/t ≤ Bn/n then

pt =
Bn−Bt

n− t
≥ Bn− tBn/n

n− t
=

Bn

n
= qt ,

and similarly if Bt/t ≥ Bn/n then pt ≤ qt . This means that the P-process tends to move towards Bn/n in
each time step, whereas the Q-process ignores the proximity entirely. This means that deviation bounds
from Bn/n on the Q-process act as an upper bound for the P-process.

We see that under the Q-process, E[Bt ] = ∑t
i=1 qt = tBn/n, since the steps are independent and identically

distributed. Standard Chernoff-bounds now give

P
[

Bt > E[Bt ]+
t2

k

]
= P

[
Bt >

(
1+

nt
kBn

)
E[Bt ]

]
< exp

(
−E[Bt ](nt)2

4(kBn)2

)
= exp

(
− tn

4kBn

)
≤ exp

(
− t3

4k2

)

since Bn ≤ n, and similarly

P
[

Bt < E[Bt ]− t2

k

]
< exp

(
− t3

4k2

)
.

Let st = P
[
Bt > E[Bt ]+ t2

k

]
and s′t = P

[
Bt < E[Bt ]− t2

k

]
. The probability that all nodes are stable at time

t, i.e. Bt/t is within t/k from Bn/n, is at least

n

∏
i=1

(1− st)(1− s′t) >
n

∏
i=1

(
1− exp

(
− t3

4k2

))2

=
(

1− exp
(
− t3

4k2

))2n

.

Set m = 1− 2n
ln(1−ε) which is clearly O(n) for a fixed value of ε. Now let

t ≥ 3
√

4k2 lnm. (1)
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Then

(
1− exp

(
− t3

4k2

))2n

≥
(

1− 1
m

)2n

=
(

1− 1
m

)(m−1)(− ln(1−ε))

≥ (1/e)− ln(1−ε) = 1− ε

by using the fact that
(
1− 1

x

)x−1 ≥ 1/e for x≥ 2.
The following theorem bounds the expected number of rounds for the system to achieve stability.

Theorem 1 Let ε > 0. After

n
c

ln

(
n

n− 3
√

4k2 ln(1−2n/ ln(1− ε))

)
+O(1)

rounds in expectation, all n nodes will be stable with probability at least 1− ε.

Proof: Assume for a moment that a node receives only one attribute value per round. The classical
coupon collector problem asks how many coupons one should expect to collect before having all x
different labels if each coupon has one of x distinct labels. The answer is roughly x ln(x). For our
purposes, the coupons correspond to attribute values (n distinct labels) and we wish to know how many
rounds it will take to collect t distinct ones. Let Tj denote the number of rounds needed to have j distinct
coupons if we start off with j− 1. Then Tj is a geometric random variable, so E[Tj] = n/(n− j + 1).
Thus the total time expected to collect t distinct coupons is

t

∑
j=1

n
n− j +1

= n(lnn− ln(n− t))+O(1) = n ln
(

n
n− t

)
+O(1).

The O(1) is at most the Euler-Mascheroni constant which is less than 0.6. By plugging in the lower
bound (1) of t from the lemma and noticing that each node receives c attribute values per round, the
result follows easily.

The ln expression in formula (1) in the lemma is deceptive and should be thought of as a weight
on n/c between 0 and 1 that depends on the input parameters. The case where the number of slices k
exceeds n is uninteresting, so to provide more intuition for the case when k is at most linear (or slightly
superlinear) in n we give the following result.

Corollary 1 If k = O
(√

n3/ logn
)

, then all nodes in Sliver will be stable with high probability after

O( 3
√

k2 log(n)) rounds in expectation.

Proof: Since k = O
(√

n3/ logn
)

, for a fixed ε > 0 there exists a constant α such that after rearranging

the equality we get 3
√

4k2 ln(1−2n/ ln(1− ε))≤ αn for large n. Let t denote the expression on the left
hand side. Using the theorem, we expect to reach stability with high probability after n

c ln n
n−t + O(1)

rounds. Since 1− x≤ exp(−x) for x≥ 0, we derive for 0 < x < 1 that

1
x

ln
1

1− x
≤ 1

1− x
.

It follows that
n ln

n
n− t

= t
(

n
t

log
1

1− t
n

)
≤ t

1− t
n
≤

(
1

1−α

)
t = O(t).

Dividing by c gives the result.
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An important special case is that if k is at most a constant fraction of n, then the protocol is expected to
converge in O( 3

√
k2 logn) time.

For example, in a system with n = 100,000 nodes and k = 1,000 slices where each node gossips to
c = 10 peers, our bound says that we expect the system to be stable with at least 99.9% confidence
(ε = 0.001) within 43.2 rounds. In the next section we will run an experiment with k = 20 slices, and
n = 3000 nodes that each gossip to c = 20 other nodes. According to our analysis, if all nodes are present
and there is no churn then with at least 99.9% confidence we expect the system to become stable within
only 3 rounds. These assumptions are rather strong, so to highlight the performance of the algorithm in
practice, we use real-life churn in the experiment.

C. Comparing Sliver with Previous Solutions

Here, we compare the performance of Sliver with the performance of other solutions, including the
parallel sorting schemes presented in Section VI. Even though Sliver does not compete in terms of
convergence with all existing algorithms, it seems to be the best suited approach to solve the distributed
slicing in large-scale and dynamic systems. As explained previously, there are several solutions with
differing parameters such as convergence-time, accuracy, churn-robustness, and uniformity-requirement.
Table I summarizes the characteristics of those solutions. The first column, labeled Leader-based, is
included for completeness: it summarizes properties of slicing protocols that collect the n attribute values
at some single location (a leader), sort them, and distribute k slice boundaries. This would be a reasonable
option if n were small, but as the system scales up, the leader quickly overloads.

We see the simplicity of Sliver as a strong advantage. The protocol is gossip-based and does not require
that we build any special sort-exchange network. Node arrivals and node departures do not trigger any
special work. Sliver is communication-efficient because each node simply sends small messages at a fixed
rate to a small number of neighbors, independent of system size. As previously stated in Section IV-B
the convergence-time of Sliver is O( 3

√
k2 logn) when k is at most a constant fraction of n. We can expect

this complexity to be competitive with that of the Ordering algorithm even though the convergence of
this latter algorithm has not been precisely analyzed yet.

The parallel sorting algorithms that will be reviewed in Section VI achieve faster convergence than
Sliver. However, as we will see later, these protocols bring a great deal of complexity, and require helper
data structures that may need to be reconstructed in the event of churn. In light of this, the Ranking
algorithm appears to be the most competitive of the existing options. In order to obtain a fair comparison
of these two algorithms, we evaluate both algorithms experimentally in the next section.

V. EXPERIMENTAL ANALYSIS

This section presents an experimental analysis of Sliver. First, Sliver and the Ranking protocols are
compared using a real trace of storage space and 90 machines of the Emulab [8] testbed. Then to evaluate
scalability, we simulated Sliver on thousands of nodes, using a realistic trace that embodies substantial
churn.

A. Distributed Experimentation

We ran an experiment on 90 machines of the Utah Emulab Cluster running RedHat Linux or FreeBSD.
The Sliver protocol was executed among 60 machines while the 30 remaining machines were emulating
the physical layer to make communication latencies realistic.

We implemented Sliver using GossiPeer [9], a framework that provides a low-level Java API for the
design of gossip-based protocols. The underlying communication protocol is TCP and the average latency
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of communication has been chosen to match real latencies observed between machines distributed all
over the world in PlanetLab. Additionally, we used storage information extracted from a real data set.
The distribution of storage space used on all machines follows the distribution of 140 millions of files
(representing 10.5 TB) on more than 4000 machines [10]. The source code of the current experiment
and the outputs are available online at http://lpd.epfl.ch/gramoli/podc08/podc_src.zip .

This experiment seeks to slice the network according to the amount of storage space used. This sort of
slicing would be of great interest in file sharing applications where the more files a node has, the more
likely it is to be useful to others. To bootstrap the protocol, we provide each machine with the addresses of
a few (five) others; these are discovered by random walks where special packets are randomly forwarded
between nodes in the network for a few rounds, and the requested information is subsequentially sent
back to the initiator [11].

Figure 1 compares the performance of Sliver and the Ranking protocol [7] in the settings mentioned
above with a timeout of 30 minutes and c = 1. The curves represent the evolution of the relative position
estimate over time on each of these 60 machines for both protocols. (Four curves representing the nodes
with the lowest position 0 and the largest position 1 are hidden at the bottom and top edges of the figure.)
Note that each node can easily estimate the slice it belongs to by using this position estimate, since it
knows the total number of slices k.

At the beginning of the experiment, all nodes have their relative position estimate set to 0, and time
0 represents the time the first message is received in the system. In the Sliver protocol, a majority of
nodes know their exact position after 1,000 seconds and remain stable. In contrast, observe that with the
Ranking protocol, even if no nodes join or leave, the random walks may not sample enough nodes to
rapidly get a precise relative position estimate. As a result, even at 1700 seconds, no nodes know their
exact position with the Ranking protocol and remain unstable. Since Sliver keeps track of the identity of
the sending nodes, it stabilizes as soon as the values are known. Consequently in a larger system, even
if the number of slices is linear in the system size (e.g. k = n), each node would know the slice to which
it belongs.

This relative position is exploitable by a node to determine its slice. Depending on the portions of the
network the slices represent, the relative position requires to be approximated more or less precisely. For
instance, if slices represent small portions (i.e., the number of slices k is large), then the relative position
must be precisely approximated. In contrast, if slices represent large portions (i.e., k is low), then a rough
approximation of the relative position suffices to determine the right slice.

To better understand the impact of approximating the relative position on determining the slices, we
illustrate how fast nodes using Sliver determine their slice number compared to the Ranking protocol
while varying the number of slices k. Figure 2 indicates the slice disorder measure [7] of the system over
time. This disorder is measured as the sum over all nodes of the distance between the correct slice and the
slice to which it believes it belongs. More precisely, the slice disorder at time t is ∑

i∈At

|si−ei| where At is

the set of active nodes at time t, si and ei are respectively the correct slice number and the estimated slice
number of node i at time t. The first observation is that in both protocols the convergence slows down as
the number of slices enlarges. As mentioned previously, if k enlarges then the portion represented by each
slice shrinks; this requires a finer approximation of the relative positions, hence a longer execution of
the protocols. The second observation is that for varying number of slices k, the Sliver protocol reduces
the slice disorder measure more rapidly than the Ranking protocol. For instance, after 60 seconds, the
slice disorder measure obtained with the Ranking and the Sliver protocols are respectively 1 and 0 when
k = 2, and are respectively 87 and 0 when k = n.
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B. Churn in the Skype Network

Next, we explored the ability of Sliver to tolerate dynamism in a larger scale environment. We simulated
the Sliver protocol on a trace from the popular Skype VoIP network [3], using data that was assembled
by Guha, Daswani, and Jain [12]. The trace tracks the availability of 3000 nodes in Skype between
September 1, 2005 to January 14, 2006. Each of these nodes is assigned a random attribute value and
we evaluate our slicing protocol under the churn experienced by the nodes in the trace.

The goal of this experiment is to slice n = 3000 nodes into k = 20 slices. We assume that every node
sends its attribute value to c = 20 nodes chosen uniformly at random every 10 seconds. Attribute values
that have not been refreshed within 5000 seconds are discarded. The top curve in Figure 3 shows the
number of nodes that are available at a given point in time. The results show that on average less than
10% of the active nodes at any given time report a slice number off by one (or more), and the network
quickly converges to have very low slice disorder.

Figures 4 and 5 illustrate the sensitivity of convergence time to k, the number of slices; the results are
within the analytic upper bounds derived in Section IV. For each of these figures, we ran the algorithm
continuously within the Skype trace, identified erroneous slice estimates, and then averaged to obtain a
“quality estimate” covering the full 100,000 seconds of the trace. Each node gossips every 10 seconds.
Modifying this parameter effectively scales the convergence time by the same amount. We discard values
that have not been refreshed within the last 5000 seconds. Note that when churn occurs, or a value
changes, any algorithm will need time to react, hence the best possible outcome would inevitably show
some errors associated with this lag.

VI. PRIOR WORK: PARALLEL SORTING

Earlier, we noted that parallel sorting algorithms can be adapted for use in P2P settings. In this section
we review the required steps, undertake a rough complexity estimate, and then review the best known
sorting algorithms. We are not aware of any prior investigation of this option.

The structure of this subsection is as follows:
1) We lay out the roadmap by showing that, given a parallel sorting algorithm, slicing can be solved

accurately with a single additional phase of message exchanges.
2) Next, we show that an overlay graph can be constructed in a P2P network in a way that will satisfy

assumptions typical of parallel sorting algorithms in time O(logn). In particular, this involves
counting the nodes, assigning them sequential identifiers, and creating a routing capability so that
nodes can efficiently exchange messages.

3) We review the state of the art in parallel sorting, identifying several best-of-breed solutions, and
giving their complexity.

4) Finally, we discuss the implications of churn.

A. Roadmap

Parallel sorting algorithms typically make assumptions that would not hold for the P2P networks in
which slicing is desired:

1) These algorithms typically assume that the number of nodes, n, is known in advance, and that
nodes have sequential identifiers 0, . . . ,n− 1. In P2P settings the number of nodes is usually not
known a-priori and can change as nodes join and leave, or fail. Nodes are generally identified by
IP addresses.

2) They typically require that nodes be able to perform pairwise comparison and exchange operations:
at least one needs the IP address of the other. In a P2P network, however, the typical assumption
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is that each node knows a small constant number of neighbors, and that the graph of connectivity
is transitively closed.

As a first step, we show how to take a P2P system satisfying the assumptions used in Sliver and build
an overlay network that can resolve all of these requirements. We can then run a parallel exchange sort
algorithm on the overlay. In particular, if we sort the attributes of interest, at the outcome of the sorting
process, node i (in the sequential numbering) will hold the attribute with rank i in the sort order.

To obtain slice numbers, we simply sort pairs (attr, id): attribute values and these new node numbers,
using node-number to break ties if two nodes have the same attribute value. At the end of the sorting
algorithm, the ith node will hold a pair (attr, j) that originated on node j; i can then send j a message
telling it that its attribute value ended up having index i and hence falls into slice i/k. Thus, with a single
additional round, parallel sorting solves slicing.

B. Overlay Construction

Accordingly, we start by developing a very simple P2P protocol that counts and numbers our nodes
and constructs an overlay within which they can communicate with one-another. In fact, this is not a
hard problem and one can imagine many ways of solving it. For clarity we present a specific protocol
and provide a rough analysis.

Any node starts the protocol.
1) Node x sends each of its neighbors a span(x) packet containing its IP address.
2) If node y receives span(x) and y < x and rooty < x (comparing IP addresses) then y executes step

1, starting its own span(y) protocol.
3) Each node y tracks its rooty its parenty and its childreny. Initially, y sets its root = y, parent =

/0,children = /0. When y receives a span(x) message from a neighbor z, if x ≥ rooty, y rejects the
message. Otherwise, y sets root = x, parent = z,children = /0 and accepts the message. y sends an
accept(x) or reject(x) message to z, as appropriate. Then y forwards span(x) to all neighbors other
than z.

4) If node y receives accept(x) from z, it adds z to childreny.
If nodes have fanout f it is easy to see that this protocol constructs a spanning tree in time O(log f n)

rooted at the node with the smallest IP address. Define a leaf node for span(x) to be a node y that is not
x, has rooty = x, and receives reject(x) from all neighbors other than parenty.

We can use our spanning tree to count n: each leaf node y sends count(x, 1) to parenty. An inner
node z ignores a count(x,c) message if rootz 6= x, and otherwise aggregates the counts for each node in
childrenz, and sends count(x,sumz) to parentz. The root, x, thus learns the current number of nodes, n,
and also how many reside below each of its children. It sends a message number(x, a) to each child.
An inner node z, receiving number(x, a), ignores the message if rootz 6= x, and otherwise sets its own
node-id to a and sends number messages to its own children, in the obvious manner.

Thus, in time O(logn) we construct a spanning tree, compute n, and number the nodes 0, . . . ,n−1. A
leaf node at distance logn from the root may receive as many as logn span messages, hence the message
complexity as seen by the network is roughly O(n logn). For our purposes below, this rough analysis
will suffice.

C. Churn

In the event that some node joins or leaves the system, or fails, it is necessary to rebuild the spanning
tree: such events can disconnect the tree or disrupt the numbering, and the parallel sorting algorithms of
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interest here are exquisitely sensitive to node numbering and connectivity. However, because our goal is
a continuous slicing algorithm that adapts as events occur, there is a simple expedient for dealing with
such events. Suppose that we extend the basic protocol with an epoch number in the obvious way, and
make the rule that a spanning tree for epoch e′ will replace one for epoch e if e′ > e.

Any node that senses the failure of any other node can simply launch a new instance of the span
protocol, with a incremented epoch number. A sorting algorithm running on a spanning tree that changes
before the sort terminates is simply abandoned mid-way.

Notice that because each membership event can trigger an O(logn) time overlay construction protocol,
there will be a scale of system beyond which this entire method breaks down: for sufficiently large n,
the likelihood is that a further churn event would arise before we have time to compute even a single
slice. This scaling limit is a further argument in favor of our Sliver protocol, which has no such issue.

D. Parallel Sorting

Most parallel sorting algorithms [13], [14], [15], [16], [17], [18], [19] “wire together” nodes into a
sort-exchange network, within which they can compare their value and decide whether to exchange their
position. Our distributed overlay structure permits us to run such algorithms in P2P settings: for node i
to compare and exchange its value with node j, if i and j have not previously communicated, we can
route a message from one to the other within the overlay, for example from i to j through some common
ancestor. When j receives this message, it learns the IP address of i and can reply directly, at which
point i learns the IP address of j. This brings an overhead: the first message will take O(logn) hops, and
the root node may need to forward a high percentage of such messages.

As noted earlier, our overlay construction approach makes sense only if the overlay is used for an
extended period of time before being reconstructed. The algorithms discussed below use sort-exchange
networks in which the same comparison links are employed for each instance of the sorting problem.
Thus, the O(logn) cost of constructing shortcut links will only be incurred once, after which the shortcuts
will be used many times. Recall that the cost of building the overlay itself was O(logn). Thus the delay
of first-time routing will not impact the predicted convergence time of the parallel sorting algorithms we
consider.

We should again note that there are many ways to build spanning trees, count nodes, number nodes and
build routing structures. The scheme we’ve outlined is offered simply as an example of a fast, efficient
way to adapt parallel sorting to the task at hand without increasing the time complexity of the underlying
sorting algorithm.

Ajtai, Komlós, and Szemerédi proposed the first algorithm to sort a system of n nodes in O(logn)
steps. The big-O notation hides a large constant, which subsequent work has sought to decrease [20];
nonetheless, it remains over 1000. Batcher’s algorithm [13] has complexity O(log2 n). Although an
O(logn log logn)-step algorithm is known [17], it competes with Batcher’s solution only when n > 220.
Other algorithms significantly reduce the convergence-time, sorting in O(logn) steps at the cost of achiev-
ing probabilistic precision. For example, an intuitive algorithm known as the Butterfly Tournament [17]
compares nodes in a pattern similar to the ranking of players during a tennis tournament. At the end of
the algorithm each player has played O(logn) matches and can approximate her rank to good accuracy.

We can thus expect a probabilistic parallel sorting algorithm to solve slicing exactly within time
O(logn): independent of k and hence asymptotically faster than what we can achieve with Sliver.
Nonetheless, we believe that our gossip-based solution is preferable: the construction is simpler and
the protocol is reasonably efficient.
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VII. CONCLUSION

Our paper evaluates a number of possible solutions to the distributed slicing problem. We introduce a
new protocol, Sliver, and offer an analysis of its convergence properties. Some prior protocols converge
slowly, some don’t guarantee accuracy, and some (the adaptations of parallel sort) are too easily disrupted
by churn. We believe that Sliver offers the best overall balance of simplicity, accuracy, rapid convergence
and robustness to churn.
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Fig. 1. Comparison of Sliver and the Ranking protocol for determining relative positions. Solid lines represent the relative
positions given by the Ranking protocol over time, while dashed lines represent the relative positions given by the Sliver
algorithm over time.
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Fig. 2. Convergence time depending on the number of slices k.
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Fig. 3. Slice disorder measure (bottom) of Sliver along with number of active nodes (top) in a trace of 3000 Skype peers.
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Fig. 4. Average slice disorder and number of misreporting nodes over the first 100,000 seconds in the Skype trace of 3000
nodes as a function of the number of slices. Error bars represent one standard deviation from the mean, and are drawn for every
three data points for clarity.
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Fig. 5. Fraction of misreporting nodes at every step averaged over the first 100,000 seconds in the Skype trace as a function
of the number of slices. Error bars represent one standard deviation from the mean, and are drawn for every three data points
for clarity.
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