

Routers for the Cloud

SEPTEMBER/OCTOBER 2011� 75

BGP state and other data that must be
preserved across failures. The second
component is the shim itself. The solu-
tion routes BGP connections between
BGPD and its peers through the shim,
so that the shim can see all incoming
and outgoing updates as well as any
changes to the routing table. This lets
the shim checkpoint all this informa-
tion so that any incoming update will
be securely logged in FTSS before our
BGPD actually sees it, and any out-
going or routing table update will be
securely logged before being sent to
a neighboring peer or installed into
the hardware.

The shim can also support multiple
routing protocols running side-by-
side, a configuration that often arises
in the core Internet, where an AS
might have internal routing protocols
that it uses to manage its own
network, and a separate BGP routing
layer that talks to neighboring ASs. It
uses a form of voting to select among
competing routing “proposals” in such
cases, combining the routing protocol
outputs to create the routing table that
will be downloaded into hardware.

Of course, the shim itself can expe-
rience a failure, so we’ve designed it
to store its state in the FTSS, enabling
it to recover rapidly on a different
node. The last component of our solu-
tion can “splice” the new TCP con-
nections (which the shim creates) to the
old TCP connections that it was previ-
ously using to connect to remote peers.
Called TCPR (for “TCP with session
recovery”), this splicing technology
works somewhat like network address
translation (NAT), but rather than
translating source and destination
addresses in NAT-style, TCPR also
updates the TCP sequence numbers.
The effect is to connect the new con-
nection to an existing, active, TCP
connection that is open at a peer, in a
manner that won’t lose any data and
imposes just milliseconds of delay.

We’ve focused primarily on the
shim; let’s next look at our approach’s
other components in more detail.

FTSS
FTSS is a fault-tolerant storage solu-
tion that saves and replicates state so
that in the event of a failure, a state-
dependent component can recover its
previous configuration. In our archi-
tecture, the shim is the only com-
ponent that interacts directly with
FTSS, using it to store the wrapped
BGPD’s state, incoming and out
going BGP updates, the routing infor-
mation table, and a small amount
of additional state associated with
TCPR. FTSS runs on all nodes within
the router; in our target setting, this
would range from a few dozen nodes
to several hundred.

FTSS is implemented as a one-hop,
in-memory, performance-optimized
distributed hash table (DHT). Each
state record has a unique ID (basi-
cally, a file name and a block num-
ber), and FTSS uses this as a key.
The component maps the key to a
few nodes within the router (recall
that the router is a cluster), and FTSS
agents on these nodes replicate the
update. Lookup works the same way.

FTSS maintains full membership
tables (with at most a few hundred
nodes in each router, and often far
fewer, the full address list easily fits
in memory). Consequently, FTSS can
perform requests with a single RPC
to each target node. FTSS also lever-
ages parallelism: we break the BGP
state into a large number of small
chunks and spread these over many
machines, doing PUT and GET oper-
ations in parallel, and in this way
gain roughly an order of magnitude
in speed. Even when we take into
account delays associated with the
need to replicate data for robustness,
this yields a fast, flexible store. In
fact, accessing remote memory in this
manner is approximately two orders
of magnitude cheaper than file I/O
to a standard local disk, and many
orders of magnitude faster than
remote file I/O. To support check-
points and complex object stor-
age, FTSS extends the usual DHT

key-value model to also support
record linking and offers efficient ways
to traverse linked data structures.

BGPD
As noted, we made only minor
changes to the existing BGPDs with
which we worked (we’ve applied our
methodology to two, so far: Quagga
BGPD and a proprietary Cisco BGPD).
The main change was to have BGPD
connect to the shim rather than
directly to its remote peers. A side
effect is that without further modifi-
cation, when BGPD restarts, the shim
can supply the initial routing state:
rather than informing remote peers of
the restart, the shim itself senses the
restart, pulls the needed state from
FTSS, and pushes it into BGPD at a
very high data rate. In our experi-
ments, using state typical of real
core-Internet routing conditions, this
took as little as 1.5 to 4 seconds. The
remote peers, of course, remain com-
pletely unaware of the event. Finally,
when the remote peer set changes,
BGPD informs the shim so that it can
manage the associated connections.

TCPR
TCPR is a TCP-splicing technology.
The approach is best understood by
first considering the behavior of a
standard NAT box: it has the effect of
grafting a TCP end point that thinks
itself to be connected to server X
on port P to a server that might
really be running on machine Y using
port S. The NAT box translates
back and forth. TCPR works in much
the same way but at the level of the
byte-sequence numbering used within
TCP’s sliding window protocol.

The key idea is very NAT-like: when
a restarting BGPD’s shim wrapper tries
to connect to a peer, TCPR intercepts
the three-way handshake so that the
remote peer won’t see a connection
reset. Instead, it computes the “delta”
between the randomly chosen initial
sequence number for the new connec-
tion and the sequence numbering used

IC-15-05-VftC.indd 75 8/11/11 12:06 PM

View from the Cloud

76	 www.computer.org/internet/� IEEE INTERNET COMPUTING

in the old connection. As packets are
sent back and forth, TCPR adds or sub-
tracts the delta, depending on which
way the packets are going. Thus the
new connection end point finds itself
talking to the old remote end point.
TCPR handles the TCP options used in
routing protocols such as BGP, includ-
ing the MD5 signatures. In our experi-
ments, TCPR splicing takes as little as
350 microseconds, and having TCPR
on the path has a negligible impact on
TCP connection performance.

TCPR and the shim cooperate
in several ways. First, TCPR delays
outgoing acknowledgments until the
shim confirms that it’s backed up the
associated incoming data; this ensures
that, after a crash, the new BGPD
won’t see any gaps or duplicated bytes
in the incoming data stream. Simi-
larly, the shim backs up any outgo-
ing data so that, after a node crash, the
recovered shim/BGPD pair can finish
transmitting any data that was being
sent at the time of the crash. Finally,
the shim backs up parts of the TCPR
state, enabling TCPR itself to recover
if a node running it crashes and the
TCPR daemon must restart.

Solution Performance
As this article was going to press, we
were just finishing our port of the full
fault-tolerant BGP implementation to
an actual CRS-1 router and hadn’t yet
measured recovery times or the corres
ponding router-availability levels in
a true Internet deployment. However,
we do have a full implementation
running on a testbed, and were able
to experiment with it using realis-
tic BGP routing tables and update
traffic. The results are encourag-
ing: complete recovery finished in
as little as 30 ms for a BGPD that had
no routes to recover (for instance,
one with an empty routing table) and
405 ms for a BGPD with a large rout-
ing table containing 157,975 entries.
These numbers were essentially
unchanged when we tested with BGP
updates arriving every 130 ms, and

fall within the window of normal
asynchrony between BGP peers in
the core Internet. Overall, the abi
lity to fail and recover transparently,
coupled with the ability to test new
versions and configurations of rout-
ing software in production without
risk, eliminates many of what used
to be the biggest causes of downtime.

Today’s cloud computing systems
are appealing for their low cost

of ownership, amazing scalability,
and flexibility. The cloud even brings
environmental benefits: users share
computing resources, which are used
more efficiently, and the data centers
are typically located near power-
generating sources: by using the net-
work to move data to a data center, the
need to move electricity to widely scat-
tered computing devices is reduced.
However, for many applications, net-
work routing instabilities make the
cloud less reliable than it needs to be.

Our work tackles a root cause for
this problem, and by dramatically
improving router availability, offers
a path toward better stability in the
Internet as a whole. The technique
is incrementally deployable (mean-
ing that it can be rolled out without
change to routers that run existing
protocols) and brings immediate ben-
efit to any path that traverses even
just a few routers using our approach.
With enough routers using the
method, we could imagine that VoIP
telephony could achieve the same
(or even better) quality of service seen
in wired telephone networks, and
that other kinds of streaming media
applications could be deployed with
sharply improved quality guarantees
relative to what’s feasible today.�

Acknowledgments
We are deeply grateful to professors Jonathan

Smith (University of Pennsylvania) and Doug

Comer (Purdue University) for helping us iden-

tify this research topic, and for their encourage-

ment and advice at many stages. We also thank

John Denisco for his invaluable assistance.

Our effort was supported by Cisco and is a

part of the NEBULA project within the US

National Science Foundation’s Future Internet

Architectures (FIA) program (see http://r3.cis.

upenn.edu/paperspdfs/R3_WP_Full.pdf).

References
1.	 C. Labovitz, G.R. Malan, and F. Jahanian,

“Internet Routing Instability,” IEEE/ACM

Trans. Networking, vol. 6, no. 5, 1998,

pp. 515–526.

2.	 E. Keller, J. Rexford, and J. van der

Merwe, “Seamless BGP Migration with

Router Grafting,” Proc. Networked Sys-

tems Design and Implementation (NSDI 10),

Usenix Assoc., 2010, pp. 16–30.

Andrei Agapi is a PhD student at Vrije Univer-

siteit, Amsterdam, and a software engi-

neer with Cisco Systems. Contact him at

aagapi@few.vu.nl.

Ken Birman is the N. Rama Rao Professor of

Computer Science at Cornell University.

Contact him at ken@cs.cornell.edu.

Robert M. Broberg leads the Reliable Router

Research Effort and is a Distinguished

Engineer at Cisco Systems. Contact him

at rbroberg@cisco.com.

Chase Cotton is a senior scientist with the

University of Delaware. Contact him at

ccotton@udel.edu.

Thilo Kielmann is an associate professor at

Vrije Universiteit, Amsterdam. Contact

him at kielmann@cs.vu.nl.

Martin Millnert is writing his master’s thesis

at Cisco Systems. Contact him at martin@

millnert.se.

Rick Payne is a software engineer at Cisco Sys-

tems. Contact him at rpayne@cisco.com.

Robert Surton is a PhD student at Cornell Univer-

sity. Contact him at burgess@cs.cornell.edu.

Robbert van Renesse is a principal research

scientist with the Department of Com-

puter Science at Cornell University. Con-

tact him at rvr@cs.cornell.edu.

IC-15-05-VftC.indd 76 8/11/11 12:06 PM

Take the
CS Library
wherever
you go!

Bmm 3122 jttvft pg JFFF Dpnqvufs Tpdjfuz nbhb{joft
boe Usbotbdujpot bsf opx bwbjmbcmf up tvctdsjcfst
jo uif qpsubcmf fQvc gpsnbu/

Kvtu epxompbe uif bsujdmft gspn uif Dpnqvufs Tpdjfuz
Ejhjubm Mjcsbsz- boe zpv dbo sfbe uifn po boz efwjdf
uibu tvqqpsut fQvc- jodmvejoh;

• Bepcf Ejhjubm Fejujpot)QD- NBD*
• Bmejlp)Boespje*
• Bluefi re Reader (iPad, iPhone, iPod Touch)
• Bookworm Online Reader (Online)
• Dbmjcsf)QD- NBD- Mjovy*

)dbo dpowfsu fQVC up /NPCJ gpsnbu gps Ljoemf*
• ibis Reader (Online)
• ePUBReader (FireFox add-on)
• jCpplt)jQbe- jQipof- jQpe Upvdi*
• Oppl)Oppl- QD- NBD- Boespje- jQbe- jQipof-

jQpe- puifs efwjdft*
• Sony Reader Library (Sony Reader devices, PC, Mac)
• Tubo{b)jQbe- jQipof- jQpe Upvdi*

www.computer.org/csdl/epub_info.html

IC-15-05-VftC.indd 77 8/11/11 12:06 PM

