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BGP state and other data that must be 
preserved across failures. The second 
component is the shim itself. The solu-
tion routes BGP connections between 
BGPD and its peers through the shim, 
so that the shim can see all incoming 
and outgoing updates as well as any 
changes to the routing table. This lets 
the shim checkpoint all this informa-
tion so that any incoming update will 
be securely logged in FTSS before our 
BGPD actually sees it, and any out-
going or routing table update will be 
securely logged before being sent to 
a neighboring peer or installed into 
the hardware.

The shim can also support multiple 
routing protocols running side-by-
side, a configuration that often arises 
in the core Internet, where an AS 
might have internal routing protocols 
that it uses to manage its own 
network, and a separate BGP routing 
layer that talks to neighboring ASs. It 
uses a form of voting to select among 
competing routing “proposals” in such 
cases, combining the routing protocol 
outputs to create the routing table that 
will be downloaded into hardware.

Of course, the shim itself can expe-
rience a failure, so we’ve designed it 
to store its state in the FTSS, enabling 
it to recover rapidly on a different 
node. The last component of our solu-
tion can “splice” the new TCP con-
nections (which the shim creates) to the 
old TCP connections that it was previ-
ously using to connect to remote peers. 
Called TCPR (for “TCP with session 
recovery”), this splicing technology 
works somewhat like network address 
translation (NAT), but rather than 
translating source and destination  
addresses in NAT-style, TCPR also 
updates the TCP sequence numbers. 
The effect is to connect the new con-
nection to an existing, active, TCP 
connection that is open at a peer, in a 
manner that won’t lose any data and 
imposes just milliseconds of delay.

We’ve focused primarily on the 
shim; let’s next look at our approach’s 
other components in more detail. 

FTSS
FTSS is a fault-tolerant storage solu-
tion that saves and replicates state so 
that in the event of a failure, a state-
dependent component can recover its 
previous configuration. In our archi-
tecture, the shim is the only com-
ponent that interacts directly with 
FTSS, using it to store the wrapped  
BGPD’s state, incoming and out
going BGP updates, the routing infor-
mation table, and a small amount 
of additional state associated with 
TCPR. FTSS runs on all nodes within 
the router; in our target setting, this 
would range from a few dozen nodes 
to several hundred.

FTSS is implemented as a one-hop, 
in-memory, performance-optimized 
distributed hash table (DHT). Each 
state record has a unique ID (basi-
cally, a file name and a block num-
ber), and FTSS uses this as a key. 
The component maps the key to a 
few nodes within the router (recall 
that the router is a cluster), and FTSS 
agents on these nodes replicate the 
update. Lookup works the same way. 

FTSS maintains full membership 
tables (with at most a few hundred 
nodes in each router, and often far 
fewer, the full address list easily fits 
in memory). Consequently, FTSS can 
perform requests with a single RPC 
to each target node. FTSS also lever-
ages parallelism: we break the BGP 
state into a large number of small 
chunks and spread these over many 
machines, doing PUT and GET oper-
ations in parallel, and in this way 
gain roughly an order of magnitude 
in speed. Even when we take into 
account delays associated with the 
need to replicate data for robustness, 
this yields a fast, flexible store. In 
fact, accessing remote memory in this 
manner is approximately two orders 
of magnitude cheaper than file I/O  
to a standard local disk, and many 
orders of magnitude faster than 
remote file I/O. To support check-
points and complex object stor-
age, FTSS extends the usual DHT  

key-value model to also support  
record linking and offers efficient ways 
to traverse linked data structures.

BGPD
As noted, we made only minor 
changes to the existing BGPDs with 
which we worked (we’ve applied our 
methodology to two, so far: Quagga 
BGPD and a proprietary Cisco BGPD). 
The main change was to have BGPD 
connect to the shim rather than 
directly to its remote peers. A side 
effect is that without further modifi-
cation, when BGPD restarts, the shim 
can supply the initial routing state: 
rather than informing remote peers of 
the restart, the shim itself senses the 
restart, pulls the needed state from 
FTSS, and pushes it into BGPD at a 
very high data rate. In our experi-
ments, using state typical of real 
core-Internet routing conditions, this 
took as little as 1.5 to 4 seconds. The 
remote peers, of course, remain com-
pletely unaware of the event. Finally, 
when the remote peer set changes, 
BGPD informs the shim so that it can 
manage the associated connections.

TCPR
TCPR is a TCP-splicing technology. 
The approach is best understood by 
first considering the behavior of a 
standard NAT box: it has the effect of 
grafting a TCP end point that thinks 
itself to be connected to server X 
on port P to a server that might 
really be running on machine Y using  
port S. The NAT box translates 
back and forth. TCPR works in much 
the same way but at the level of the  
byte-sequence numbering used within 
TCP’s sliding window protocol.

The key idea is very NAT-like: when 
a restarting BGPD’s shim wrapper tries 
to connect to a peer, TCPR intercepts 
the three-way handshake so that the 
remote peer won’t see a connection 
reset. Instead, it computes the “delta” 
between the randomly chosen initial 
sequence number for the new connec-
tion and the sequence numbering used 
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in the old connection. As packets are 
sent back and forth, TCPR adds or sub-
tracts the delta, depending on which 
way the packets are going. Thus the 
new connection end point finds itself 
talking to the old remote end point. 
TCPR handles the TCP options used in 
routing protocols such as BGP, includ-
ing the MD5 signatures. In our experi-
ments, TCPR splicing takes as little as 
350 microseconds, and having TCPR 
on the path has a negligible impact on 
TCP connection performance.

TCPR and the shim cooperate 
in several ways. First, TCPR delays 
outgoing acknowledgments until the 
shim confirms that it’s backed up the 
associated incoming data; this ensures 
that, after a crash, the new BGPD 
won’t see any gaps or duplicated bytes 
in the incoming data stream. Simi-
larly, the shim backs up any outgo-
ing data so that, after a node crash, the 
recovered shim/BGPD pair can finish 
transmitting any data that was being 
sent at the time of the crash. Finally, 
the shim backs up parts of the TCPR 
state, enabling TCPR itself to recover 
if a node running it crashes and the 
TCPR daemon must restart.

Solution Performance
As this article was going to press, we 
were just finishing our port of the full 
fault-tolerant BGP implementation to 
an actual CRS-1 router and hadn’t yet 
measured recovery times or the corres
ponding router-availability levels in 
a true Internet deployment. However, 
we do have a full implementation 
running on a testbed, and were able 
to experiment with it using realis-
tic BGP routing tables and update  
traffic. The results are encourag-
ing: complete recovery finished in 
as little as 30 ms for a BGPD that had 
no routes to recover (for instance, 
one with an empty routing table) and 
405 ms for a BGPD with a large rout-
ing table containing 157,975 entries. 
These numbers were essentially 
unchanged when we tested with BGP 
updates arriving every 130 ms, and 

fall within the window of normal 
asynchrony between BGP peers in 
the core Internet. Overall, the abi
lity to fail and recover transparently, 
coupled with the ability to test new 
versions and configurations of rout-
ing software in production without 
risk, eliminates many of what used 
to be the biggest causes of downtime.

Today’s cloud computing systems 
are appealing for their low cost 

of ownership, amazing scalability, 
and flexibility. The cloud even brings 
environmental benefits: users share 
computing resources, which are used 
more efficiently, and the data centers 
are typically located near power- 
generating sources: by using the net-
work to move data to a data center, the 
need to move electricity to widely scat-
tered computing devices is reduced. 
However, for many applications, net-
work routing instabilities make the 
cloud less reliable than it needs to be.

Our work tackles a root cause for 
this problem, and by dramatically 
improving router availability, offers 
a path toward better stability in the 
Internet as a whole. The technique 
is incrementally deployable (mean-
ing that it can be rolled out without 
change to routers that run existing 
protocols) and brings immediate ben-
efit to any path that traverses even 
just a few routers using our approach. 
With enough routers using the 
method, we could imagine that VoIP 
telephony could achieve the same  
(or even better) quality of service seen 
in wired telephone networks, and 
that other kinds of streaming media 
applications could be deployed with 
sharply improved quality guarantees 
relative to what’s feasible today.�
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