
Astrolabe: A Robust and Scalable Technology For
Distributed System Monitoring, Management, and
Data Mining

ROBBERT VAN RENESSE

and

KENNETH P. BIRMAN

and

WERNER VOGELS

Cornell University

Scalable management and self-organizational capabilities are emerging as central requirements

for a generation of large-scale, highly dynamic, distributed applications. We have developed an
entirely new distributed information management system called Astrolabe. Astrolabe collects

large-scale system state, permitting rapid updates and providing on-the-fly attribute aggregation.
This latter capability permits an application to locate a resource, and also offers a scalable way

to track system state as it evolves over time. The combination of features makes it possible to
solve a wide variety of management and self-configuration problems. The paper describes the

design of the system with a focus upon its scalability. After describing the Astrolabe service, we
present examples of the use of Astrolabe for locating resources, publish-subscribe, and distributed

synchronization in large systems. Astrolabe is implemented using a peer-to-peer protocol, and
uses a restricted form of mobile code based on the SQL query language for aggregation. This

protocol gives rise to a novel consistency model. Astrolabe addresses several security considera-
tions using a built-in PKI. The scalability of the system is evaluated using both simulation and

experiments; these confirm that Astrolabe could scale to thousands and perhaps millions of nodes,
with information propagation delays in the tens of seconds.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—network communications; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—distributed applications; D.1.3 [Programming Techniques]:

Concurrent Programming—distributed programming; D.4.4 [Operating Systems]: Communi-
cations Management—network communication; D.4.5 [Operating Systems]: Reliability—fault

tolerance; D.4.6 [Operating Systems]: Security and Protection—authentication; D.4.7 [Oper-
ating Systems]: Organization and Design—distributed systems; H.3.3 [Information Systems]:

Information Search and Retrieval—information filtering; H.3.4 [Information Systems]: In-
formation Storage and Retrieval—distributed systems; H.3.5 [Information Systems]: Online

Information Services—data sharing

General Terms: Algorithms, Design, Management, Performance, Reliability, Security

Additional Key Words and Phrases: aggregation, epidemic protocols, failure detection, gossip,

membership, publish-subscribe, scalability

Authors’ address: Department of Computer Science, Cornell University, Ithaca, NY 14853.

This research was funded in part by DARPA/AFRL-IFGA grant F30602-99-1-0532. The authors
are also grateful for support from the AFRL/Cornell Information Assurance Institute.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–42.

2 · Robbert van Renesse et al.

1. INTRODUCTION

With the wide availability of low-cost computers and pervasive network connec-
tivity, many organizations are facing the need to manage large collections of dis-
tributed resources. These might include personal workstations, dedicated nodes in
a distributed application such as a web farm, or objects stored at these computers.
The computers may be co-located in a room, spread across a building or campus, or
even scattered around the world. Configurations of these systems change rapidly—
failures and changes in connectivity are the norm, and significant adaptation may
be required if the application is to maintain desired levels of service.

To a growing degree, applications are expected to be self-configuring and self-
managing, and as the range of permissible configurations grows, this is becoming
an enormously complex undertaking. Indeed, the management subsystem for a
contemporary distributed system (i.e., a Web Services system reporting data col-
lected from a set of corporate databases, file systems, and other resources) is often
more complex than the application itself. Yet the technology options for building
management mechanisms have lagged. Current solutions, such as cluster man-
agement systems, directory services, and event notification services, either do not
scale adequately or are designed for relatively static settings (see Related Work,
Section 8).

At the time of this writing, the most widely-used, scalable distributed manage-
ment system is DNS [Mockapetris 1984]. DNS is a directory service that organizes
machines into domains, and associates attributes (called resource records) with each
domain. Although designed primarily to map domain names to IP addresses and
mail servers, DNS has been extended in a variety of ways to make it more dynamic
and support a wider variety of applications. These extensions include Round-Robin
DNS (RFC 1794) to support load balancing, the Server record (RFC 2782) to sup-
port service location, and the Naming Authority Pointer (RFC 2915) for Uniform
Resource Names. To date, however, acceptance of these new mechanisms has been
limited.

In this paper, we describe a new information management service called Astro-
labe. Astrolabe monitors the dynamically changing state of a collection of dis-
tributed resources, reporting summaries of this information to its users. Like DNS,
Astrolabe organizes the resources into a hierarchy of domains, which we call zones
to avoid confusion, and associates attributes with each zone. Unlike DNS, zones are
not bound to specific servers, the attributes may be highly dynamic, and updates
propagate quickly; typically, in tens of seconds.

Astrolabe continuously computes summaries of the data in the system using on-
the-fly aggregation. The aggregation mechanism is controlled by SQL queries, and
can be understood as a type of data mining capability. For example, Astrolabe
aggregation can be used to monitor the status of a set of servers scattered within
the network, to locate a desired resource on the basis of its attribute values, or
to compute a summary description of loads on critical network components. As
this information changes, Astrolabe will automatically and rapidly recompute the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 3

associated aggregates and report the changes to applications that have registered
their interest.

Aggregation is intended as a summarizing mechanism.1 For example, an ag-
gregate could count the number of nodes satisfying some property, but not to
concatenate their names into a list, since that list could be of unbounded size.
(Theoretically, a number grows unbounded as well, but in practice a fixed number
of bits is used to represent the number.) The approach is intended to bound the
rate of information flow at each participating node, so that even under worst-case
conditions, it will be independent of system size. To this end, each aggregate is
restricted to some scope, within which it is computed on behalf of and visible to all
nodes. Only aggregates with high global value should have global scope. The num-
ber of aggregating queries active within any given scope is assumed to be reasonably
small, and independent of system size. To ensure that applications do not acciden-
tally violate these policies, nodes seeking to introduce a new aggregating function
must have administrative rights within the scope where it will be computed.

Initial experience with the Astrolabe aggregation mechanisms demonstrates that
the system is extremely powerful despite its limits. Managers of an application
might use the technology to monitor and control a distributed application using
aggregates that summarize the overall state within the network as a whole, and
also within the domains (scopes) of which it is composed. A new machine joining
a system could use Astrolabe to discover information about resources available in
the vicinity: by exploiting the scoping mechanisms of the aggregation facility, the
resources reported within a domain will be those of most likely value to applications
joining within that region of the network. After a failure, Astrolabe can be used
both for notification and to coordinate reconfiguration. More broadly, any form
of loosely coupled application could use Astrolabe as a platform for coordinating
distributed tasks. Indeed, Astrolabe uses its own capabilities for self-management.

It may sound as if designing an aggregate to be sufficiently concise and yet to
have high value to applications is something of an art. Yet the problem turns out to
be relatively straightforward and not unlike the design of a hierarchical database.
A relatively small number of aggregating mechanisms suffice to deal with a wide
variety of potential needs. Indeed, experience supports the hypothesis that the
forms of information needed for large-scale management, configuration and control
are generally amenable to a compact representation.

Astrolabe maintains excellent responsiveness even as the system becomes very
large, and even if it exhibits significant dynamicism. The loads associated with
the technology are small and bounded, both at the level of message rates seen by
participating machines and loads imposed on communication links. Astrolabe also
has a small “footprint” in the sense of computational and storage overheads.

The Astrolabe system looks to a user much like a database, although it is a
virtual database that does not reside on a centralized server, and does not support
atomic transactions. This database presentation extends to several aspects. Most

1Aggregation is a complex topic. We have only just begun to explore the power of Astrolabe’s

existing mechanisms, and have also considered several possible extensions. This paper limits itself
to the mechanisms implemented in the current version of Astrolabe and focuses on what we believe

will be common ways of using them.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Robbert van Renesse et al.

importantly, each zone can be viewed as a relational table containing the attributes
of its child zones, which in turn can be queried using SQL. Also, using database
integration mechanisms like ODBC [Sanders 1998] and JDBC [Reese 2000] standard
database programming tools can access and manipulate the data available through
Astrolabe.

The design of Astrolabe reflects four principles:

(1) Scalability through hierarchy: A scalable system is one that maintains con-
stant, or slowly degrading, overheads and performance as its size increases. As-
trolabe achieves scalability through its zone hierarchy. Information in zones is
summarized before being exchanged between zones, keeping wide-area storage and
communication requirements at a manageable level. Given bounds on the size of
information in a zone, the computational and communication costs of Astrolabe
are shown to grow slowly with the number of participants.

(2) Flexibility through mobile code: Different applications monitor different data,
and a single application may need different data at different times. A restricted form
of mobile code, in the form of SQL aggregation queries, allows users to customize
Astrolabe by installing new aggregation functions on the fly.

(3) Robustness through a randomized peer-to-peer protocol: Systems based on
centralized servers are vulnerable to failures, attacks, and mismanagement. In-
stead, Astrolabe uses a peer-to-peer approach by running a process on each host.2

These processes communicate through an epidemic protocol. Such protocols are
highly tolerant of many failure scenarios, easy to deploy, and efficient. They com-
municate using randomized point-to-point message exchange, an approach that
makes Astrolabe robust even in the face of localized overloads, which may briefly
shut down regions of the Internet.

(4) Security through certificates: Astrolabe uses digital signatures to identify and
reject potentially corrupted data and to control access to potentially costly opera-
tions. Zone information, update messages, configuration, and client credentials, all
are encapsulated in signed certificates. The zone tree itself forms the Public Key
Infrastructure.

This paper discusses each of these principles. In Section 2, we present an overview
of the Astrolabe service. Section 3 illustrates the use of Astrolabe in a number of
applications. Astrolabe’s implementation is described in Section 4. We describe As-
trolabe’s security mechanisms in Section 5. In Section 6, we explain how Astrolabe
leverages mobile code, while Section 7 describes performance and scalability. Here,
we show that Astrolabe could scale to thousands and perhaps millions of nodes,
with information propagation delays in the tens of seconds. Section 8 describe
various related work, from which Astrolabe borrows heavily. Section 9 concludes.

2. ASTROLABE OVERVIEW

Astrolabe gathers, disseminates and aggregates information about zones. A zone
is recursively defined to be either a host or a set of non-overlapping zones. Zones

2Processes on hosts that do not run a Astrolabe process can still access the Astrolabe service

using an RPC protocol to any remote Astrolabe process.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 5

Fig. 1. An example of a three-level Astrolabe zone tree. The top-level root zone has three child

zones. Each zone, including the leaf zones (the hosts), has an attribute list (called a MIB). Each
host runs a Astrolabe agent.

are said to be non-overlapping if they do not have any hosts in common. Thus,
the structure of Astrolabe’s zones can be viewed as a tree. The leaves of this tree
represent the hosts (see Figure 1).

Each zone (except the root) has a local zone identifier, a string name unique
within the parent zone. A zone is globally identified by its zone name, which is a
string consisting of its path of zone identifiers from the root, separated by slashes
(e.g., “/USA/Cornell/pc3”).

Each host runs an Astrolabe agent. The zone hierarchy is implicitly specified
when the system administrator initializes these agents with their names. For exam-
ple, the “/USA/Cornell/pc3” agent creates the “/”, “/USA”, and “/USA/Cornell”
zones if they did not exist already. Thus the zone hierarchy is formed in a decen-
tralized manner, but one ultimately determined by system administrators. As we
will see, representatives from within the set of agents are elected to take responsi-
bility for running the gossip protocols that maintain these internal zones; if they
fail or become unsuitable, the protocol will automatically elect others to take their
places. Associated with each zone is an attribute list which contains the informa-
tion associated with the zone. Borrowing terminology from SNMP [Stallings 1993],
this attribute list is best understood as a form of Management Information Base or
MIB, although the information is certainly not limited to traditional management
information.

Unlike SNMP, the Astrolabe attributes are not directly writable, but generated
by so-called aggregation functions. Each zone has a set of aggregation functions
that calculate the attributes for the zone’s MIB. An aggregation function for a
zone is an SQL program, which takes a list of the MIBs of the zone’s child zones
and produces a summary of their attributes.

Leaf zones form an exception. Each leaf zone has a set of virtual child zones. The
virtual child zones are local to the corresponding agent. The attributes of these
virtual zones are writable, rather than being generated by aggregation functions.
Each leaf zone has at least one virtual child zone called “system”, but the agent

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Robbert van Renesse et al.

allows new virtual child zones to be created. For example, an application on a host
may create a virtual child zone called “SNMP” and populate it with attributes
from the SNMP’s MIB. The application would then be responsible for updating
Astrolabe’s MIB whenever the SNMP attributes change.

Astrolabe is designed under the assumption that MIBs will be relatively small
objects – a few hundred or even thousand bytes, not millions. An application
dealing with larger objects would not include the object itself into the MIB, but
would instead export information about the object, such as a URL for downloading
a copy, a time stamp, a version number, or a content summary. In our examples
we will treat individual computers as the owners of leaf zones, and will assume that
the machine has a reasonably small amount of state information to report.

Astrolabe can also support systems in which individual objects are the leaf zones,
and hence could be used to track the states of very large numbers of files, database
records, or other objects. Using Astrolabe’s aggregation functions, one could then
query the states of these objects. However, keep in mind that aggregation func-
tions summarize – their outputs must be bounded in size. Thus, one might design
an aggregation function to count all pictures containing images that match some
predicate, or even to list the three pictures with the strongest such match. One
could not, in general, use aggregation to make a list of all such pictures. In fact,
by traversing the Astrolabe hierarchy it is easy to enumerate the nodes that con-
tribute to a counting aggregate, but this would be done by the application, not the
aggregation function.

We can now describe the mechanism whereby aggregation functions are used to
construct the MIB of a zone.

Aggregation functions are programmable. The code of these functions is em-
bedded in so-called aggregation function certificates (AFCs), which are signed and
timestamped certificates that are installed as attributes inside MIBs. The names
of such attributes are required to start with the reserved character ’&’.

For each zone it is in, the Astrolabe agent at each host scans the MIBs of its child
zones looking for such attributes. If it finds more than one by the same name, but
of different values, it selects the most recent one for evaluation. Each aggregation
function is then evaluated to produce the MIB of the zone. The agents learns about
the MIBs of other zones through the gossip protocol described in Section 4.1.

Thus, if one thinks of Astrolabe as a form of decentralized hierarchical database,
there will be a table (a relation) for each zone, with a row for each child zone.
Each column in a leaf zone is a value extracted from the corresponding node or
object on that node. Each column in an internal zone is a value computed by
an aggregating function to summarize its children. These columns might be very
different from those of the children zones. For example, the child zones might
report loads, numbers of files containing pictures of Elvis, etc. An internal zone
could have one column giving the mean load on its children, another counting the
total number of matching pictures reported by its children, and a third listing the
three child nodes with the strongest matches. In the latter case we would probably
also have a column giving the actual quality of those matches, so that further
aggregation can be performed at higher levels of the zone hierarchy. However, this
is not required: using Astrolabe’s scoping mechanism, we could search for those
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 7

Table I. Application Programmer Interface.

Method Description

find contacts(time, scope) search for Astrolabe agents in the given scope

set contacts(addresses) specify addresses of initial agents to connect to

get attributes(zone, event queue) report updates to attributes of zone

get children(zone, event queue) report updates to zone membership

set attribute(zone, attribute, value) update the given attribute

matching pictures only within a single zone, or within some corner of the overall
tree, or within any other well-defined scope.

In addition to code, AFCs may contain other information. Two important other
uses of AFCs are information requests and run-time configuration. An Information
Request AFC specifies what information the application wants to retrieve at each
participating host, and how to aggregate this information in the zone hierarchy.
Both are specified using SQL queries. A Configuration AFC specifies run-time
parameters that applications may use for dynamic on-line configuration. We will
present examples of these uses later in this paper.

Applications invoke Astrolabe interfaces through calls to a library (see Table I).
Initially, the library connects to an Astrolabe agent using TCP. The set of agents
from which the library can choose is specified using set contacts. Optionally,
eligible agents can be found automatically using find contacts. The time pa-
rameter specifies how long to search, while the scope parameter specifies how to
search (e.g., using a broadcast request on the local network). (In the simplest case,
an Astrolabe agent is run on every host, so that application processes can always
connect to the agent on the local host and need not worry about the connection
breaking.)

From then on, the library allows applications to peruse all the information in
the Astrolabe tree, setting up connections to other agents as necessary. The cre-
ation and termination of connections is transparent to application processes, so
the programmer can think of Astrolabe as one single service. Updates to the at-
tributes of zones, as well as updates to the membership of zones, are posted on
local event queues. Applications can also update the attribute of virtual zones
using set attribute.

Besides a native interface, the library has an SQL interface that allows applica-
tions to view each node in the zone tree as a relational database table, with a row
for each child zone and a column for each attribute. The programmer can then
simply invoke SQL operators to retrieve data from the tables. Using selection, join,
and union operations, the programmer can create new views of the Astrolabe data
that are independent of the physical hierarchy of the Astrolabe tree. An ODBC
driver is available for this SQL interface, so that many existing database tools can
use Astrolabe directly, and many databases can import data from Astrolabe. SQL
does not support instant notifications of attribute changes, so that applications
that need such notifications would need to obtain them using the native interface.

Astrolabe agents also act as web servers, hence information can be browsed and
changed using any standard web browser instead of going through the library.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Robbert van Renesse et al.

3. EXAMPLES

The foregoing overview describes the full feature set of the system, but may not
convey the simplicity and elegance of the programming model it enables. The ex-
amples that follow are intended to illustrate the power and flexibility that Astrolabe
brings to a distributed environment.

3.1 Example 1: Peer-to-peer Caching of Large Objects

Many distributed applications operate on one or a few large objects. It is often
infeasible to keep these objects on one central server, and copy them across the
Internet whenever a process needs a copy. The loading time would be much too
long, and the load on the network too high. A solution is for processes to find a
nearby existing copy in the Internet, and to “side-load” the object using a peer-
to-peer copying protocol. In this section we look at the use of Astrolabe to locate
nearby copies and to manage freshness.

Suppose we are trying to locate a copy of the file ‘game.db’. Assume each host
has a database ‘files’ that contains one entry per file. (We have, in fact, written an
ODBC driver that makes a host’s file system appear like a database.) To find out
if a particular host has a copy of the file, we may execute the following SQL query
on this host:

SELECT
COUNT(*) AS file_count

FROM files
WHERE name = ’game.db’

If file count > 0, the host has at least one copy of the given file. There may be
many hosts that have a copy of the file, so we also need to aggregate this information
along with the location of the files. For the purpose of this example, assume that
each host installs an attribute result containing its host name in its leaf MIB. (In
practice, this attribute would be extracted using another query on, say, the registry
of the host.) Then, the following aggregation query counts the number of copies in
each zone, and picks one host from each zone that has the file. This host name is
exported into the result attribute of each zone3:

SELECT
FIRST(1, result) AS result,
SUM(file_count) AS file_count

WHERE file_count > 0

We now simply combine both queries in an Information Request AFC (IR-AFC),
and install it. As the IR-AFC propagates through the Astrolabe hierarchy, the
necessary information is collected and aggregated.

This discussion may make it sound as if a typical application might install new
aggregation queries with fairly broad, even global, scope. As noted earlier, this
is not the case: such a pattern of use would violate the scalability of the system

3FIRST(n, attrs) is an Astrolabe SQL extension that returns the named attributes from the first
n rows. It is not necessary to specify the “FROM” clause of the SELECT statement, as there is

only one input table. “FROM” is necessary in nested statements, however.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 9

by creating zones (those near the root) with very large numbers of attributes. An
aggregate such as the one just shown should either be of global importance and
value, or limited to a smaller zone within which many programs need the result, or
used with a short lifetime (to find the file but then “terminate”). But notice, too,
that aggregation is intrinsically parallel. The aggregated value seen in a zone is a
regional value computed from that zone’s children.

In our example, if searching for ‘game.db’ is a common need, each node doing
so can use the aggregate to find a nearby copy, within the distance metric used
to define the Astrolabe hierarchy. In effect, many applications can use the same
aggregation to search for different files (albeit ones matching the same query).
This is a somewhat counter-intuitive property of aggregates and makes Astrolabe
far more powerful than would be the case if only the root aggregation value was
of interest. Indeed, for many purposes, the root aggregation is almost a helper
function, while the values at internal zones are more useful.

In particular, to find the nearest copy of the file, a process would first inspect its
most local zone for a MIB that lists a result . If not, it would simply travel up the
hierarchy until it finds a zone with a result attribute, or the root zone. If the root
zone’s result attribute is empty, there is no copy of the file.

In the example above, we did not care about the freshness of the copy retrieved.
But now suppose each file maintains a version attribute as well. Now each zone can
list the host that has the most recent version of the file as follows:

SELECT
result, version

WHERE version == (SELECT MAX(version))

Any process may determine what the most recent version number is by checking
the ’version’ attribute of the root zone. A process wishing to obtain the latest
version can simply go up the tree, starting in its leaf zone, until it finds the right
version. A process that wants to download new versions as they become available
simply has to monitor the root zone’s version number, and then find a nearby host
that has a copy.

This example illustrates the use of Astrolabe for data mining and resource dis-
covery. Before we move on to the next example, we will explore how the “raw”
information may actually be collected.

ODBC is a standard mechanism for retrieving data from a variety of sources,
including relational databases and spreadsheets from a large variety of vendors.
The language for specifying which data is to be accessed is SQL. The data itself is
represented using ODBC data structures.

We have developed another agent that can connect to ODBC data sources, re-
trieve information, and post this information in the Astrolabe zone tree. Each
host runs both an Astrolabe and an ODBC agent. The ODBC agent inspects cer-
tificates in the Astrolabe tree whose names start with the prefix &odbc:. These
certificates specify which data source to connect to, and what information to re-
trieve. The agent posts this information into the virtual system zone of the local
Astrolabe agent. The &odbc: certificates may also specify how this information is
to be aggregated by Astrolabe. Applications can update these certificates on the
fly to change the data sources, the actual information that is retrieved, or how it

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Robbert van Renesse et al.

�
�
�
�

��
��
��
��
��

��

��

�
�
�
�

���
�
�
�

�
�
�
�

��

����
��
��
��

A

C
D

E

F
B

Fig. 2. In this example of SelectCast, each zone elects two routers for forwarding messages, even

though only one is used for forwarding messages. The sender, A, sends the message to a router
of each child zone of the root zone.

is aggregated.
With this new agent, the host of an Astrolabe zone hierarchy is no longer a

true leaf node. Instead, the host can be understood as a zone whose child nodes
represent the objects (programs, files, etc) that reside on the host. Astrolabe now
becomes a representation capable of holding information about every object in a
potentially world-wide network: millions of hosts and perhaps billions of objects.

Of course, no user would actually “see” this vast collection of information at
any one place. Astrolabe is a completely decentralized technology and any given
user sees only its parent zones, and those of its children. The power of dynamic
aggregation is that even in a massive network, the parent zones can dynamically
report on the status of these vast numbers of objects. Suppose, for example, that
a virus enters the system, and is known to change a particular object. Merely by
defining the appropriate AFC, a system administrator would be able to identify
infected computers, even if their virus detection software has been disabled.

Other agents for retrieving data are possible. We have written a Windows Reg-
istry agent, which retrieves information out of the Windows Registry (including a
large collection of local performance information). A similar agent for Unix system
information is also available.

3.2 Example 2: Peer-to-peer Data Diffusion

Many distributed games and other applications require a form of multicast that
scales well, is fairly reliable, and does not put a TCP-unfriendly load on the Inter-
net. In the face of slow participants, the multicast protocol’s flow control mecha-
nism should not force the entire system to grind to a halt. This section describes
SelectCast, a multicast routing facility we have built using Astrolabe. SelectCast
uses Astrolabe for control, but sets up its own tree of TCP connections for actu-
ally transporting messages. A full-length paper is in preparation on the SelectCast
subsystem; here, we limit ourselves to a high-level summary.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 11

Each multicast group has a name, say “game”. The participants notify their
interest in receiving messages for this group by installing their TCP/IP address in
the attribute “game” of their leaf zone’s MIB. This attribute is aggregated using
the query “SELECT FIRST(2, game) AS game”. That is, each zone selects two of
its participants’ TCP/IP addresses (see Figure 2). We call these participants the
routers for their zone. Two routers allows for fast recovery in case one fails. If both
fail, recovery will also happen, as Astrolabe will automatically select new routers,
but this mechanism is relatively slow.

Participants exchange messages of the form (zone, data). A participant that
wants to initiate a multicast lists the child zones of the root zone, and, for each
child that has a non-empty “game” attribute, sends the message (child-zone, data)
to a router for that child zone (more on this selection later). Each time a participant
(router or not) receives a message (zone, data), the participant finds the child zones
of the given zone that have non-empty “game” attributes and recursively continues
the dissemination process.

This approach effectively constructs a tree of TCP connections spanning the set
of participants. Each TCP connection is cached for re-use so long as the end-points
remain active as participants. The tree is updated automatically when Astrolabe
reports zone membership changes, by terminating unneeded TCP connections and
creating new ones as appropriate.

To make sure that the dissemination latency does not suffer from slow routers
or connections in the tree, some measures must be taken. First, each participant
could post (in Astrolabe) the rate of messages that it is able to process. The aggre-
gation query can then be updated as follows to select only the highest performing
participants for routers.

SELECT
FIRST(2, game) AS game

ORDER BY rate

Senders can also monitor their outgoing TCP pipes. If one fills up, senders may
want to try another router for the corresponding zone. It is even possible to use
all routers for a zone concurrently, thus constructing a “fat tree” for dissemination,
but then care should be taken to drop duplicates and reconstruct the order of
messages. We are currently investigating this option in our implementation. These
mechanisms together effectively route messages around slow parts of the Internet,
much like Resilient Overlay Networks [Andersen et al. 2001] accomplishes for point-
to-point traffic.

SelectCast does not provide an end-to-end acknowledgement mechanism, and
thus there are scenarios in which messages may not arrive at all members (particu-
larly if the set of receivers is dynamic). Additional reliability can be implemented on
top of SelectCast. For example, Bimodal Multicast [Birman et al. 1999] combines a
message logging facility with an epidemic protocol that identifies and recovers lost
messages, thereby achieving end-to-end reliability (with high probability). Run-
ning Bimodal Multicast over SelectCast would also remove Bimodal Multicast’s
dependence on IP multicast, which is poorly supported in the Internet, and pro-
vide Bimodal Multicast with a notion of locality, which may be used to improve
the performance of message retransmission strategies.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Robbert van Renesse et al.

Notice that each distinct SelectCast instance — each data distribution pattern —
requires a separate aggregation function. As noted previously, Astrolabe can only
support bounded numbers of aggregation functions at any level of its hierarchy.
Thus, while a single Astrolabe instance could probably support as many as several
hundred SelectCast instances, the number would not be unbounded. Our third ex-
ample (in the next subsection) explores options for obtaining a more general form of
Publish/Subscribe by layering additional filtering logic over a SelectCast instance.
So doing has the potential of eliminating the restriction on numbers of simultane-
ously active queries, while still benefiting from the robustness and scalability of the
basic SelectCast data distribution tree.

Although a detailed evaluation of SelectCast is outside of the scope of this paper,
we have compared the performance of the system with that of other application-
level router architectures and with IP multicast. We find that with steady mul-
ticast rates, SelectCast imposes message loads and latencies comparable to other
application-level solutions, but that IP multicast achieves lower latencies and lower
message loads (a benefit of being implemented in the hardware routers). Our so-
lution has not yet been fully optimized but there is no reason that peak message
forwarding rates should be lower than for other application-level solutions, since the
critical path for SelectCast (when the tree is not changing) simply involves relaying
messages received on an incoming TCP connection into some number of outgoing
connections. There is an obvious tradeoff between fanout (hence, work done by the
router) and depth of the forwarding tree (hence, latency), but this is not under our
control since the topology of the tree is determined by the human administrator’s
assignment of zone names.

3.3 Example 3: Publish-Subscribe

In Publish/Subscribe systems [Oki et al. 1993], receivers subscribe to certain top-
ics of interest, and publishers post messages to topics. As just noted, while the
SelectCast protocol introduced in the previous section supports a form of Pub-
lish/Subscribe (as well as the generalization that we termed selective multicast),
the mechanism can only handle limited numbers of queries. Here, we explore a
means of filtering within a SelectCast instance to obtain a form of subset delivery
in which that limitation is largely eliminated.

In the extended protocol, each message is tagged with an SQL condition, chosen
by the publisher of the message. Say that a publisher wants to send an update to
all hosts having a version of some object less than 3.1. First she would install a
SelectCast query that calculates the minimum version number of that object in each
zone, and call it, say “MIN(version)”. We call this the covering query. Next she
would attach the condition “MIN(version) < 3.1” to the message. The message
is then forwarded using SelectCast.

Recall that in SelectCast, the participants at each layer simply forward each
message to the routers, which are calculated for each zone using the SelectCast
query. In the extended protocol, the participants in the SelectCast protocol first
apply the condition as a filter (using a WHERE clause added to the SelectCast query
that calculates the set of routers), to decide to which child zones to forward the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 13

message.4 Topic-based Publish/Subscribe can then be expressed by having the
publisher specify that a message should be delivered to all subscribers to a particular
topic. Our challenge is to efficiently evaluate this query without losing scalability.
For example, while a new attribute could potentially be defined for each SQL
condition in use by the system, doing so scales poorly if there are many conditions.

A solution that scales reasonably well uses a Bloom filter to compress what
would otherwise be a single bit per query into a bit vector [Bloom 1970].5 This
solution associates a fixed-size bit map with each covering query. Assume for the
moment that our goal is simply to implement Publish/Subscribe to a potentially
large number of topics. We define a hashing function on topics, mapping each topic
to a bit value. The condition tagged to the message is “BITSET(HASH(topic))”,
and the associated attribute can be aggregated using bitwise OR. In the case of hash
collisions, this solution may lead to messages being routed to more destinations than
strictly necessary, which is safe, but inefficient. Thus the size of the bitmap and the
number of covering SelectCast queries should be adjusted, perhaps dynamically, so
that the rate of collisions will be acceptably low.

Notice that the resulting protocol needs time to react when a condition is used
for the first time, or when a new subscriber joins the system, since the aggregation
mechanism will need time to update the Bloom filter. During the period before the
filter has been updated in Astrolabe (a few tens of seconds), the new destination
process might not receive messages intended for it. However, after this warmup
period, reliability will be the same as for SelectCast, and performance limited only
by the speed at which participants forward messages. As in the case of SelectCast,
gossip-based recovery from message logs can be used to make the solution reliable.6

With a more elaborate filtering mechanism, this behavior could be extended. For
example, the Siena system provides content-based Publish/Subscribe [Carzaniga
et al. 2001]. In Siena, subscribers specify information about the content of message
they are interested in, while publishers specify information about the content of
message they send. Subscribers’ specifications are aggregated in the internal routers
of Siena, and then matched against the publishers’ specifications. By adding such
aggregation functionality to Astrolabe’s SQL engine, we could extend the above
solution to support expressions (rather than just single topic at a time matching)
or even full-fledged content addressing in the manner of Siena.

3.4 Example 4: Synchronization

Astrolabe may be used to run basic distributed programming facilities in a scalable
manner. For example, barrier synchronization may be done by having a counter
at each participating host, initially 0. Each time a host reaches the barrier, it
increments the counter, and waits until the aggregate minimum of the counters
equals the local counter.

4The result of the query is cached for a limited amount of time (currently, 10 seconds), so that

under high throughput the overhead can be amortized over many messages, assuming they often
use the same condition or small set of conditions.
5Bloom filters are also used in the directory service of the Ninja system [Gribble et al. 2001].
6At the time of this writing, an implementation of reliable Publish/Subscribe over SelectCast was

still under development, and a systematic performance evaluation had not yet been undertaken.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Robbert van Renesse et al.

Recall that Astrolabe is currently configured to impose very low background
loads at the expense of somewhat slower propagation of new data. More precisely,
although gossip rate is a parameter, most of our work uses a gossip rate of once
per five seconds.7 The delay before barrier notification occurs scales as the gossip
rate times the log of the size of the system (the logarithmic base being the size of
an average zone).

Similarly, voting can be done by having two attributes, yes and no, in addition
to the nmembers attribute, all aggregated by taking the sum. Thus, participants
have access to the total number of members, the number that have voted in favor,
and the number that have voted against. This information can be used in a variety
of distributed algorithms, such as commit protocols.

Again, the value of such a solution is that it scales extremely well (and can co-exist
with other scalable monitoring and control mechanisms). For small configurations,
Astrolabe would be a rather slow way to solve the problem. In contrast, traditional
consensus protocols are very fast in small configurations, but have costs linear in
system size (they often have a 2-phase commit or some sort of circular token-passing
protocol at the core). With as few as a few hundred participants, such a solution
would break down.

A synchronization problem that comes up with Astrolabe applications is that
AFC propagation not only takes some time, but that the amount of time is only
probabilistically bounded. How long should a process wait before it can be sure
every agent has received the AFC? This question can be answered by summing up
the number of agents that have received the AFC, as a simple aggregation query
within the AFC itself. When this sum equals the nmembers attribute of the root
zone, all agents have received the AFC.

4. IMPLEMENTATION

Each host runs an Astrolabe agent. Such an agent runs Astrolabe’s gossip protocol
with other agents, and also supports clients that want to access the Astrolabe
service. Each agent has access to (that is, keeps a local copy of) only a subset of
all the MIBs in the Astrolabe zone tree. This subset includes all the zones on the
path to the root, as well as the sibling zones of each of those. In particular, each
agent has a local copy of the root MIB,8 and the MIBs of each child of the root. As
stated before, there are no centralized servers associated with internal zones; their
MIBs are replicated on all agents within those zones.

However, this replication is not lock-step: different agents in a zone are not
guaranteed to have identical copies of MIBs even if queried at the same time,
and not all agents are guaranteed to perceive each and every update to a MIB.
Instead, the Astrolabe protocols guarantee that MIBs do not lag behind using an
old version of a MIB forever. More precisely, Astrolabe implements a probabilistic

7It is tempting to speculate about the behavior of Astrolabe with very high gossip rates, but doing
so leads to misleading conclusions. Gossip convergence times have a probabilistic distribution and

there will always be some nodes that see an event many rounds earlier than others. Thus, while
Astrolabe has rather predictable behavior in large-scale settings, the value of the system lies in

its scalability, not its speed or real-time characteristics.
8Because the root MIB is calculated locally by each agent, it never needs to be communicated

between agents.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 15

consistency model under which, if updates to the leaf MIBs cease for long enough,
an operational agent is arbitrarily likely to reflect all the updates that has been
seen by other operational agents. We call this eventual consistency and discuss the
property in Section 4.3. First we turn our attention to the implementation of the
Astrolabe protocols.

4.1 Gossip

The basic idea of gossip is simple: periodically, each agent selects some other agent
at random and exchanges state information with it. If the two agents are in the
same zone, the state exchanged relates to MIBs in that zone; if they are in different
zones, they exchange state associated with the MIBs of their least common ancestor
zone. In this manner, the states of Astrolabe agents will tend to converge as data
ages.

Conceptually, each zone periodically chooses another sibling zone at random,
and the two exchange the MIBs of all their sibling zones. After this exchange,
each adopts the most recent MIBs according to the issued timestamps. The details
of the protocol are somewhat more complicated, particularly since only leaf zones
actually correspond to individual machines, while internal zones are collections of
machines that collectively are responsible for maintaining their state and gossiping
this state to peer zones.

As elaborated in Section 4.2, Astrolabe gossips about membership information
just as it gossips about MIBs and other data. If a process fails, its MIB will
eventually expire and be deleted. If a process joins the system, its MIB will spread
through its parent zone by gossip, and as this occurs, aggregates will begin to reflect
the content of that MIB.

The remainder of this section describes Astrolabe’s protocol in more detail.
Each Astrolabe agent maintains the data structure depicted in Figure 3. For

each level in the hierarchy, the agent maintains a record with the list of child zones
(and their attributes), and which child zone represents its own zone (self). The
first (bottom) record contains the local virtual child zones, whose attributes can be
updated by writing them directly (through an RPC interface). In the remaining
records, the MIBs pointed to by self are calculated by the agent locally by applying
the aggregation functions to the child zones. The other MIBs are learned through
the gossip protocol.

The MIB of any zone is required to contain at least the following attributes:

id : the local zone identifier.
rep: the zone name of the representative agent for the zone—the agent that

generated the MIB of the zone.
issued : a timestamp for the version of the MIB, used for the replacement strat-

egy in the epidemic protocol, as well as for failure detection.
contacts: a small set of addresses for representative agents of this zone, used for

the peer-to-peer protocol that the agents run.
servers: a small set of TCP/IP addresses for (representative agents of) this zone,

used to implement the Astrolabe API in Table I.9

9Typically these refer to the same agents as contacts , but applications can choose other agents

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Robbert van Renesse et al.

Fig. 3. A simplified representation of the data
structure maintained by the agent corresponding to

/USA/Cornell/pc3.
pc1

pc2

pc3

pc4

Cornell

MIT

/USA/Cornell

/USA

self

self

self USA

Europe

Asia

/

monitor

system

/USA/Cornell/pc3

self

inventory

nmembers: the total number of hosts in the zone. The attribute is constructed by
taking the sum of the nmembers attributes of the child zones. It is used
for pacing multicast location mechanisms, as well as in the calculation
of averages.

id and rep are automatically assigned, that is, their values are not programmable.
The id attribute is set to the local identifier within the parent zone, while rep is set
to the full zone name of the agent that generated the MIB. The AFCs can provide
values for each of the other attributes. If the AFCs do not compute a value for
issued , the local wall clock time is used.

For leaf zones, the contacts attributes is filled (and updated) with the set of
local NIC addresses. For internal zones, contacts is dynamically computed using
an aggregation function, much like the routers in SelectCast (Section 3.2). In effect,
each zone elects the set of agents that gossip on behalf of that zone. The election
can be arbitrary, or based on characteristics like load or longevity of the agents.10

Note that an agent may be elected to represent more than one zone, and thus run

by installing the appropriate AFC.
10The latter may be advised if there is a high rate of agents joining and leaving the system. Many

peer-to-peer systems suffer degraded performance when network partitioning or a high rate of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 17

more than one gossip protocol, as described below. The maximum number of zones
an agent can represent is bounded by the number of levels in the Astrolabe tree.

Each agent periodically runs the gossip algorithm. First, the agent updates the
issued attribute in the MIB of its virtual system zone, and re-evaluates the AFCs
that depend on this attribute. Next, the agent has to decide at which levels (in the
zone tree) it will gossip. For this decision, the agent traverses the list of records
in Figure 3. An agent gossips on behalf of those zones for which it is a contact,
as calculated by the aggregation function for that zone. The rate of gossip at each
level can be set individually (using the &config certificate described in Section 6.2).

When it is time to gossip within some zone, the agent picks one of the child zones,
other than its own, from the list at random. Next the agent looks up the contacts
attribute for this child zone, and picks a random contact agent from the set of hosts
in this attribute. (Gossips always are between different child zones, thus if there
is only one child zone at a level, no gossip will occur.) The gossiping agent then
sends the chosen agent the id , rep, and issued attributes of all the child zones at
that level, and does the same thing for the higher levels in the tree up until the
root level. The recipient compares the information with the MIBs that it has in
its memory, and can determine which of the gossiper’s entries are out-of-date, and
which of its own entries are. It sends the updates for the first category back to the
gossiper, and requests updates for the second category.

There is one important detail when deciding if one MIB is newer than another.
Originally, we simply compared the issued timestamps with one another, but found
that as we scaled up the system we could not rely on clocks being synchronized. This
lack of synchronization is the reason for the rep attribute: we now only compare the
issued timestamps of the same agent, identified by rep. For each zone, we maintain
the most recent MIB for each representative, that is, the agent that generated the
MIB. until it times out (see Section 4.2). We expose to the Astrolabe clients only
the MIB of one of these representatives. Since we cannot compare their issued
timestamps, we select the one for which we received an update most recently.

We are currently in the process of evaluating various compression schemes for re-
ducing the amount of information that has to be exchanged this way. Nevertheless,
gossip within a zone spreads quickly, with dissemination time growing O(log k),
where k is the number of child zones of the zone (see Section 7.1). Gossip is going
on continuously, its rate being independent of the rate of updates. (The sole im-
pact of a high update rate is that our compression algorithms will not perform as
well, and hence network loads may be somewhat increased.) These properties are
important to the scalability of Astrolabe, as we will discuss in Section 7.

4.2 Membership

Up until now we have tacitly assumed that the set of machines is fixed. In a large
distributed application, chances are that machines will be joining and leaving at
a high rate. The overall frequency of crashes rises linearly with the number of
machines. Keeping track of membership in a large distributed system is no easy
matter [Van Renesse et al. 1998]. In Astrolabe, membership is simpler, because

churn occurs. We are currently focused on using Astrolabe in comparatively stable settings, but

see this topic as an interesting one deserving further study.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Robbert van Renesse et al.

each agent only has to know a small set of agents for each level in the hierarchy.
There are two aspects to membership: removing members that have failed or are

disconnected, and integrating members that have just started up or were previously
partitioned away.

The mechanism used for failure detection in Astrolabe is fairly simple. As de-
scribed above, each MIB has a rep attribute that contains the name of the repre-
sentative agent that generated the MIB, and an issued attribute that contains the
time at which the agent last updated the MIB. Agents keep track, for each zone
and for each representative agent of the zone, the last MIBs from those represen-
tative agents. When an agent has not seen an update for a zone from a particular
representative agent for that zone for some time Tfail , the agent removes the corre-
sponding MIB. When the last MIB of a zone is removed, the zone itself is removed
from the agent’s list of zones. Tfail should grow logarithmically with membership
size (see [Van Renesse et al. 1998]), which in turn can be determined from the
nmembers attribute.

The other part of membership is integration. Either because of true network par-
titions, or because of setting Tfail too aggressively, it is possible that the Astrolabe
tree splits up into two or more independent pieces. New machines, and machines
recovering from crashes, also form independent, degenerate, Astrolabe trees (where
each parent has exactly one child). We need a way to glue the pieces together.

Astrolabe relies on IP multicast to set up the initial contact between trees. Each
tree multicasts a gossip message at a fixed rate ρ which is typically on the order of ten
seconds. The collective members of the tree are responsible for this multicasting,
and they do so by each tossing a coin every ρ seconds that is weighted by the
nmembers attribute of the root zone. Thus each member multicasts at an average
rate of ρ/nmembers.

The current implementation of Astrolabe also occasionally broadcasts gossips on
the local LAN in order to integrate machines that do not support IP multicast. In
addition, Astrolabe agents can be configured with a set of so-called relatives, which
are addresses of agents that should occasionally be contacted using point-to-point
messages. This strategy allows the integration of Astrolabe trees that cannot reach
each other by any form of multicast. These mechanisms are described in more
detail in [Van Renesse and Dumitriu 2002].

Astrolabe assumes that the administrators responsible for configuring the system
will assign zone names in a manner consistent with physical topology of the network.
In particular, for good performance, it is desirable that the siblings of a leaf node be
reasonably close (in the network). Since zones typically contain 32 to 64 members,
the vast majority of messages are exchanged between sibling leaf nodes. Thus, if this
rather trivial placement property holds, Astrolabe will not overload long-distance
network links.

4.3 Eventual Consistency

Astrolabe takes snapshots of the distributed state, and provides aggregated infor-
mation to its users. The aggregated information is replicated among all the agents
that were involved in taking the snapshot. The set of agents is dynamic. This
raises many questions about consistency. For example, when retrieving an aggre-
gate value, does it incorporate all the latest changes to the distributed state? When
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 19

two users retrieve the same attribute at the same time, do they obtain the same
result? Do snapshots reflect a single instance in time? When looking at snapshot
1, and then later at snapshot 2, is it guaranteed that snapshot 2 was taken after
snapshot 1?

The answer to all these questions is no. For the sake of scalability, robustness, and
rapid dissemination of updates, a weak notion of consistency has been adopted for
Astrolabe. Given an aggregate attribute X that depends on some other attribute
Y , Astrolabe guarantees with probability 1 that when an update u is made to Y ,
either u itself, or an update to Y made after u, is eventually reflected in X. We
call this eventual consistency, because if updates cease, replicated aggregate results
will eventually be the same.

Aggregate attributes are updated frequently, but their progress may not be mono-
tonic. This is because the issued time in a MIB is the time when the aggregation
was calculated, but ignores the times at which the leaf attributes that are used in
the calculation were updated. Thus it is possible that a new aggregation, calculated
by a different agent, is based on some attributes that are older than a previously
reported aggregated value.

For example, perhaps agent a computes the mean load within some zone as 6.0 by
averaging the loads for MIBs in the child zones known at a. Now agent b computes
the mean load as 5.0. The design of Astrolabe is such that these computations could
occur concurrently and might be based on temporarily incomparable attribute sets:
a might have more recent data for child zone x and yet b might have more recent
data for child zone y.

This phenomenon could cause computed attributes to jump around in time, an
effect that would be confusing. To avoid the problem, Astrolabe can track the
(min, max) interval for the issued attribute associated with the inputs to any AFC.
Here, min is the issued time of the earliest updated input attribute, and max the
issued time of the most recently updated input attribute. An update with such an
interval is not accepted unless the minimum issued time of the new MIB is at least
as large as the maximum issued time of the current one. This way we can guarantee
monotonicity, in that all attributes that were used in the aggregation are strictly
newer than those of the old aggregated value.

Rather than seeing an update to an aggregate result after each received gossip,
an update will only be generated after a completely new set of input attributes
has had a chance to propagate. As we will see later, this propagation may take
many rounds of gossip (5 — 35 rounds for typical Astrolabe hierarchies). The user
thus sees fewer updates, but the values represent a sensible progression in time.
Another disadvantage is that this strategy does rely on clocks being approximately
synchronized. The trade-off can be made by the applications.

4.4 Communication

We have tacitly assumed that Astrolabe agents have a simple way to address each
other and exchange gossip messages. Unfortunately, in this age of firewalls, Network
Address Translation (NAT), and DHCP, many hosts have no way of addressing each
other, and even if they do, firewalls often stand in the way of establishing contact.
One solution would have been to e-mail gossip messages between hosts, but we
rejected this solution, among others, for efficiency considerations. We also realized

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Robbert van Renesse et al.

ALG

(1)

(3) (4)

(2)

Core Internet FirewallFirewall

������

Fig. 4. Application Level Gateway. (1) Receiver sends a RECEIVE request using an HTTP POST
request; (2) Sender sends the message using a SEND request using an HTTP POST request; (3)

ALG forwards the message to the receiver using an HTTP 200 response; (4) ALG sends an empty
HTTP 200 response back to the sender.

that IPv6 may still be a long time in coming, and that IT managers are very
reluctant to create holes in firewalls.

We currently offer two solutions to this problem. Both solutions involve HTTP
as the communication protocol underlying gossip, and rely on the ability of most
firewalls and NAT boxes to set up HTTP connections from within a firewall to an
HTTP server outside the firewall, possibly through an HTTP proxy server. One
solution deploys Astrolabe agents on the core Internet (reachable by HTTP from
anywhere), while the other is based on Application Level Gateways (ALGs) such as
used by AOL Instant Messenger (www.aol.com/aim)and Groove (www.groove.net).
The solutions can both be used simultaneously.

In the solution based on ALGs, a host wishing to receive a message sends an
HTTP POST request to an ALG (see Figure 4). The ALG does not respond until
a message is available. A host wishing to send a message sends an HTTP POST
request with a message in the body to the ALG. The ALG forwards the message
to the appropriate receiver, if available, as a response, to the receiver’s POST
request. The ALG has limited capacity to buffer messages that arrive between
receiver’s POST requests. When using persistent HTTP connections, the efficiency
is reasonable if the ALG is close to its connected receivers. (It turns out that no
special encoding is necessary for the messages.)

The ALGs can either be deployed stand-alone on the core Internet, or as servlets
within existing enterprise web servers. For efficiency and scalability reasons, hosts
preferably receive through a nearby ALG, which requires that a sufficient number
of servers be deployed across the Internet. Note also that machines that are already
directly connected to the core Internet do not have to receive messages through an
ALG, but can receive them directly.

This solution even works for mobile machines, but for efficiency we have included
a redirection mechanism inspired by the one used in cellular phone networks. A
mobile machine, when connecting in a new part of the Internet, has to set up a
redirection address for a nearby ALG with its “home” ALG. When a sender tries
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 21

Source

Destination

ALG Server 1

ALG Server 2

Site 1 Core Internet Site 2

Fig. 5. The many ways gossip can travel from a source host in Site 1 to a destination
host in Site 2. Each site has four hosts, two of which are representative agents for
their associated sites, behind a firewall. The representatives of Site 2 connect to
two different ALG servers to receive messages from outside their firewall.

to connect to the (home) ALG of the mobile host, the sender is informed of the
ALG closer to the mobile host.

Another solution is to deploy, instead of ALGs, ordinary Astrolabe agents in the
core Internet. Astrolabe agents can gossip both over UDP and HTTP. One minor
problem is that gossip cannot be initiated from outside a firewall to the inside,
but updates will still spread rapidly because once a gossip is initiated from inside a
firewall to the outside, the response causes updates to spread in the other direction.
A larger problem is that the Astrolabe hierarchy has to be carefully configured so
that each zone that is located behind a firewall, but has attributes that should be
visible outside the firewall, has at least one sibling zone that is outside the firewall.

To increase scalability and efficiency, we designed a new way of addressing end-
points. In particular, we would like to have machines that can communicate directly
through UDP or some other efficient mechanism to do so, instead of going through
HTTP.

We define a realm to be a set of peers that can communicate with each other
using a single communication protocol. For example, the peers within a corporate
network typically form a realm. In fact, there are two realms: a UDP and an
HTTP realm. Peers that use the ALG also form a realm. The peers with static IP
addresses on the core Internet that are not behind firewalls also form a UDP and
an HTTP realm. Thus, a peer may be in multiple realms. In each realm, it has a
local address. Two peers may have more than one realm in common.

We assign to each realm a globally unique identifier called Realm ID. The ALG
realm is called “internet/HTTP”. A corporate network realm may be identified by
the IP address of its firewall, plus a “UDP” or “HTTP” qualifier (viz “a.b.c.d/UDP”
resp. “a.b.c.d/HTTP”).

We define for each peer its Address Set to be a set of triples of the form (Realm
ID, Address, Preference), where

—Realm ID is the globally unique identifier of the realm the peer is in,

—Address is the address within the realm (and is only locally unique),

—Preference indicates a preference sorting order on the corresponding communica-
ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Robbert van Renesse et al.

tion protocols. Currently, UDP is preferred over HTTP.

A peer may have multiple triples in the same realm with different addresses (“multi-
homing”), typically for fault-tolerance reasons, as well as, the same address in
distinct realms. For fault-tolerance purposes, a receiver registers with multiple
ALGs, and thus has multiple addresses in the Chat realm (see Figure 5).

When peer X wants to send a message to peer Y , X first determines the common
realms. Next, it will typically use a weighted preference (based on both X and
Y ’s preferences) to decide which address to send the message to. Astrolabe agents
randomize this choice in order to deal with permanent network failures in particular
realms, while also keeping track of successful gossip exchanges in order to weigh
the random choices. More detail on these and other issues in wide-area networking
in Astrolabe is described in [Van Renesse and Dumitriu 2002].

4.5 Fragmentation

Messages in Astrolabe grow in size approximately as a function of the branching
factor used in the hierarchy. The larger the branching factor, the more zones that
need to be gossiped about, and the larger the gossip messages. For this reason,
the branching factor should be limited. In practice, we have found that Astrolabe
requires about 200 to 300 bytes per (compressed) MIB in a gossip message. The
concern is that UDP messages are typically limited to approximately 8 Kbytes,
which can therefore just contain about 25 - 40 MIBs in a message. This limit is
reached very easily, and therefore Astrolabe has to be able to fragment its gossip
messages sent across UDP.

The Astrolabe agents use a simple protocol for fragmentation. Rather than
including all updated MIBs in a gossip message, an agent will just include as many
as will fit. In order to compensate for lost time, the agent speeds up the rate of
gossip accordingly. For example, if on average only half of the updated MIBs fit
in a gossip message, the agent will gossip twice as fast. It turns out that a good
strategy for choosing which MIBs to include in a message is random selection, as
described in Section 7.4.

5. SECURITY

Each Astrolabe zone is a separate unit of management, each with its own set of
policy rules. Such policies govern child zone creation, gossip rate, failure detection
time-outs, introducing new AFCs, etc. These policies are under the secure control
of an administrator. That is, although the administration of Astrolabe as a whole
is decentralized, each zone is centrally administered in a fully secure fashion. Each
zone may have its own administrator, even if one zone is nested within another.

We believe that an important principle of achieving scale in a hierarchical system
is that children should have a way to override policies enforced by their parents.
This principle is perhaps unintuitive, since it means that managers of zones with
only a few machines have more control (over those machines) than managers of
larger encapsulating zones. This creates an interesting tension: managers of large
zones control more machines, but have less control over each machine than managers
of small zones. Astrolabe is designed to conform to this principle, which guarantees
that its own management is decentralized and scalable.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 23

Security in Astrolabe is currently only concerned with integrity and write ac-
cess control, not confidentiality (secrecy).11 We wish to prevent adversaries from
corrupting information, or introducing non-existent zones.

Individual zones in Astrolabe can each decide whether they want to use public
key cryptography, shared key cryptography, and no cryptography, in decreasing
order of security and overhead. For simplicity of exposition, in what follows we will
present just the public key mechanisms, although experience with the real system
suggests that the shared key cryptography option often represents the best trade-off
between security and overhead.

5.1 Certificates

Each zone in Astrolabe has a corresponding Certification Authority (CA) that issues
certificates. (In practice, a single server process is often responsible for several such
CAs.) Each Astrolabe agent has to know and trust the public keys of the CAs of its
ancestor zones. Certificates can also be issued by other principals, and Astrolabe
agents can autonomously decide to trust or not trust such principals.

An Astrolabe certificate is a signed attribute list. It has at least the following
two attributes:

id : the issuer of the certificate.
issued : the time at which the certificate was issued. Astrolabe uses this attribute

to distinguish between old and new versions of a certificate.

Optionally, a certificate can have an attribute expires, which specifies the time at
which the certificate will be no longer valid. (For this mechanism to work well, all
agent’s clocks should be approximately synchronized with real time.)

Each zone in Astrolabe has two public/private key pairs associated with it: the
CA keys (the private key of which is kept only by the corresponding CA), and the
zone keys. These are used to create four kinds of certificates:

(1) a zone certificate binds the id of a zone to its public zone key. It is signed
using the private CA key of its parent zone. Note that the root zone cannot have
(and will turn out not to need) a zone certificate. Zone certificates contain two
attributes in addition to id and issued: name, which is the zone name, and pubkey,
which is the public zone key. As only the parent CA has the private CA key to sign
such certificates, adversaries cannot introduce arbitrary child zones.

(2) a MIB certificate is a MIB, signed by the private zone key of the corre-
sponding zone. These are gossiped along with their corresponding zone certificates
between hosts to propagate updates. The signature prevents the introduction of
“false gossip” about the zone.

(3) an aggregation function certificate (AFC) contains the code and other infor-
mation about an aggregation function. An agent will only install those AFCs that
are issued directly by one of its ancestor zones (as specified by the id attribute), or
by one of their clients (see next bullet).

11The problem of confidentiality is significantly harder, as it would involve replicating the decryp-

tion key on a large number of agents, an inherently insecure solution.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Robbert van Renesse et al.

(4) a client certificate is used to authenticate clients to Astrolabe agents. A client
is defined to be a user of the Astrolabe service. The agents do not maintain a client
database, but if the certificate is signed correctly by a CA key of one of the ancestor
zones of the agent (specified by the id attribute), the connection is accepted. Client
certificates can also specify certain restrictions on interactions between client and
agent, such as which attributes the client may inspect. As such, client certificates
are not unlike capabilities. A client certificate may contain a public key. The
corresponding private key is used to sign AFCs created by the client.

In order to function correctly, each agent needs to be configured with its zone
name (or “path”), and the public CA keys of each zone it is in. (It is important
that agents do not have access to private CA keys.) As we saw when discussing the
network protocols (Section 4.1), some agents in each zone (except the root zone)
need the private zone keys and corresponding zone certificates of those zones for
which they are allowed to post updates. In particular, each host needs the private
key of its leaf zone.

The root zone is an exception: since it does not have sibling zones, it never gossips
updates and therefore only needs CA keys, which it uses when signing certificates
on behalf of top-level child zones. There is the common issue of the trade-off
between fault-tolerance and security: the more hosts that have the private key for
a zone, the more fault-tolerant the system, but also the more likely the key will get
compromised. (Potentially this problem can be fixed using a threshold scheme; we
have not yet investigated this option.)

Note that zone certificates are not chained. Although each is signed by the private
CA key of the parent zone, the agents are configured with the public CA key of each
ancestor zone, so that no recursive checking is necessary. Chaining would imply
transitive trust, which does not scale and violates Astrolabe’s governing principle
of zones being more powerful than their ancestor zones.

The CA of a zone, and only that CA, can create new child zones by generating
a new zone certificate and a corresponding private key, and thus preventing imper-
sonation attacks. The private key is used to sign MIB certificates (updates of the
MIB of the new zone), which will only be accepted if the zone certificate’s signature
checks using the public CA key, and the MIB certificate’s signature checks using
the public key in the zone certificate. Similarly, a zone CA has control over what
AFC code is installed within that zone. This is described in more detail in the
next section, which treats the question of which clients are allowed which types of
access.

5.2 Client Access

As mentioned above, Astrolabe agents do not maintain information about clients.
The CA of a zone may choose to keep such information, but it is not accessible
to the Astrolabe agents themselves, as we do not believe this solution would scale
(eventually there would be too many clients to track). Instead, Astrolabe provides
a mechanism that has features of both capabilities and access control lists.

A client that wants to use Astrolabe has to obtain a client certificate from a CA.
The client will only be able to access Astrolabe within the zone of the CA. When
the client contacts one of the agents in the CA, the agent will use the id attribute
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 25

in the certificate to determine the zone, and if the agent is in fact in this zone, will
have the public key of the zone. The agent uses the public key to check that the
certificate is signed correctly before allowing any access. Thus, in some sense, the
client certificate is a capability for the zone of the CA that signed the certificate.

Additional fine-grained control over clients is exercised in (at least) two ways:

(1) the client certificate can specify certain constraints on the holder’s access. For
example, it may specify which attributes the client is allowed to read or update.

(2) each zone can specify (and update at run-time) certain constraints on access
by holders of client certificates signed by any of its ancestor zones.

That is, the client is constrained by the union of the security restrictions specified
in its certificate, and the restrictions specified by all zones on the path from the
leaf zone of the agent it is connected to, to the zone that signed its certificate.

In general, client certificates issued by larger zones have different security rules
than client certificates issued by its child zones. The former will have more power
in the larger zones, while the latter will have more power in the smaller zones. For
this reason, users may require a set of client certificates.

Security will not scale if policies cannot be changed on the fly. The zone re-
strictions can be changed at run-time by installing an “&config” AFC for the zone
(see Section 6.2). But client certificates share a disadvantage with capabilities and
certificates in general: they cannot be easily revoked until they expire. We are
considering two possible solutions. One is to have client certificates with short ex-
piration times. The other is to use Certification Revocation Lists (CRLs). Both
have scaling problems.

The mechanisms discussed so far take care of authentication and authorization
issues. They prevent impersonation and spoofing attacks, but they do not prevent
authorized agents and clients from lying about their attributes. Such lies could
have significant impact on calculated aggregates. Take, for example, the simple
program:

SELECT MIN(load) AS load;

This function exports the minimum of the load attributes of the children of
some zone to the zone’s attribute by the same name. The intention is that the
root zone’s load attribute will contain the global minimum load. Both clients
and agents, when holding valid certificates, can do substantial damage to such
aggregated data. Clients can lie about load by installing an unrealistically low
load in a leaf zone’s MIB, while an agent that holds a private key of a zone can
gossip a value different from the computed minimum of its child zones’ loads. To
make an application robust against such attacks, we recommend removing outliers
as much as possible. Unfortunately, standard SQL does not provide support for
removing outliers. We are planning to extend Astrolabe’s SQL engine with such
support. More problematically, when applied recursively, the result of aggregation
after removing outliers may have unclear semantics. It may be possible to use a
form of voting to avoid such failures, but at present, this is simply a known security
deficiency of the initial system.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Robbert van Renesse et al.

Table II. Extended SQL aggregation functions. The optional weight corrects for imbalance

in the hierarchy, and is usually set to nmembers.

Function Description

MIN(attribute) Find the minimum attribute

MAX(attribute) Find the maximum attribute

SUM(attribute) Sum the attributes

AVG(attribute [, weight]) Calculate the weighted average

OR(attribute) Bitwise OR of a bit map

AND(attribute) Bitwise AND of a bit map

FIRST(n, attribute) Return a set with the first n attributes

RANDOM(n, attribute [, weight]) Return a set with n randomly selected attributes

6. AGGREGATION FUNCTIONS

The aggregation function of a zone reads the list of MIBs belonging to its child zones,
and produces a MIB for its zone as output. The code for an AFC is provided in
attributes of its child zone MIBs whose name starts with the character ’&’. AFCs
themselves are attribute lists. An AFC has at least the following attributes in
addition to the standard certificate attributes:

lang : specifies the language in which the program is coded. Currently, only
SQL is supported.

code: contains the (SQL) code itself.
deps: contains the input attributes on which the output of the function de-

pends. Astrolabe reduces overhead by only re-evaluating those AFCs
for which the input has changed. For SQL, this can be left unspecified,
as the Astrolabe SQL engine does data flow analysis to determine the
dependencies automatically.

category : specifies the attribute in which the AFC is to be installed, as determined
by the CA that signs the AFC.

As described later, an AFC may also have the following attributes:

copy : a Boolean that specifies if the AFC can be “adopted.” Adoption controls
propagation of AFCs into sibling zones.

level : an AFC is either “weak” or “strong.” Strong AFCs cannot be replaced
by ancestor zones, but weak AFCs can if they have more recent issued
attributes.

client : in case of an AFC issued by a client, this attribute contains the entire client
certificate of the client. The client certificate may be checked with the CA
key of the issuer, while the AFC may be checked using the public key in the
client certificate.

In this section, we will discuss how AFCs are programmed, and the propagation
rules of AFCs.

6.1 Programming

We have extended SQL with a set of new aggregation functions that we found
helpful in the applications that we have pursued. A complete table of the current
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 27

set of functions appears in Table II.
The following aggregation query is installed by Astrolabe per default (but may

be changed at run-time):

SELECT
SUM(nmembers) AS nmembers,
MAX(depth) + 1 AS depth,
FIRST(3, contacts) AS contacts,
FIRST(3, servers) AS servers

Here, nmembers is the total number of hosts in the zone, depth is the nesting
level of the zone, contacts are the first three “representative” gossip addresses in
the zone, and servers the first three TCP/IP addresses, used by clients to interact
with this zone. nmembers is often used to weigh the values when calculating the
average of a value, so that the actual average is calculated (rather than the average
of averages).

Astrolabe’s SQL engine also has a simple exception handling mechanism that
produces descriptive error messages in a standard output attribute.

6.2 Propagation

An application introduces a new AFC by writing the certificate into an attribute
of a virtual child zone at some Astrolabe agent. This Astrolabe agent will now
automatically start evaluating this AFC. The Astrolabe architecture includes two
mechanisms whereby an AFC can propagate through the system. First, the AFC
can include another AFC (usually, a copy of itself) as part of its output. When
this propagation mechanism is employed, the output AFC will be copied into the
appropriate parent MIB and hence will be evaluated when the MIB is computed
for the parent. This approach causes the aggregation process to recursively repeat
itself until the root MIB is reached.

Because of the gossip protocol, these AFCs will automatically propagate to the
other agents just like normal attributes do. However, since the other agents only
share ancestor zones, we need a second mechanism to propagate these AFCs down
into the leaf MIBs. This second mechanism, called adoption, works as follows. Each
Astrolabe agent scans its ancestor zones for new AFC attributes. If it detects a
new one, the agent will automatically copy the AFC into its virtual “system” MIB
(described above in Section 2). This way, an introduced AFC will propagate to all
agents within the entire Astrolabe tree.

Jointly, these two AFC propagation mechanisms permit an application to intro-
duce a new AFC dynamically into the entire system. The AFC will rapidly spread
to the appropriate nodes, and, typically within tens of seconds, the new MIB at-
tributes will have been computed. For purposes of garbage collection, the creator
of an AFC can specify an expiration time; unless the expiration time is periodically
advanced (by introducing an AFC with a new issued and expiration time), the
aggregation function will eventually expire and the computed attributes will then
vanish from the system.

It is clear that a secure mechanism is necessary to prevent clients from spreading
code around that can change attributes arbitrarily. The first security rule is that
certificates are only considered for propagation if

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Robbert van Renesse et al.

—the AFC is correctly signed by an ancestor zone or a client of one, preventing
“outsiders” from installing AFCs. In case of an AFC signed by a client, the client
has to be granted such propagation in its client certificate.

—the AFC has not expired.
—the category attribute of the AFC is the same as the name of the attribute in

which it is installed. Without this provision, a rogue client could install an AFC
into an attribute it was not intended for, possibly invalidating the AFC that was
previously installed in that attribute.

We call such AFCs valid.
It is possible, and in fact common, for an AFC to be installed only in a subtree of

Astrolabe. Doing so requires only that the corresponding zone sign the certificate,
which signature is easier to obtain than the CA-signature of the root zone.

The adoption mechanism allows certificates to propagate “down” the Astrolabe
tree. Each agent continuously inspects its zones, scanning them for new certificates,
and installs one in its own MIB if the AFC satisfies the following conditions:

—if another AFC of the same category is already installed, the new one is preferable.
—its copy attribute is not set to “no” (such AFCs have to be installed in each zone

where they are to be used).

“Preferable” is a partial order relation between certificates in the same category:
x > y means that certificate x is preferable to certificate y. x > y iff

—x is valid, and y is not, or
—x and y are both valid, the level of x is strong, and x.id is a child zone of y.id, or
—x and y are both valid, x is not stronger than y, and x.issued > y.issued.

Note that these rules of propagation allow the CAs to exercise significant control
over where certificates are installed.

This controlled propagation can be exploited to do run-time configuration. As-
trolabe configures itself this way. The &config certificate contains attributes that
control the run-time behavior of Astrolabe agents. Using this certificate, the gossip
rate and security policies can be controlled at every zone in the Astrolabe tree.

7. PERFORMANCE

In this section, we present simulation results that support our scalability claims,
and experimental measurements to verify the accuracy of our simulations.

7.1 Latency

Since sibling zones exchange gossip messages, the zone hierarchy has to be based
on the network topology so that load on network links and routers remains within
reason. As a rule of thumb, if a collection of machines can be divided into two groups
separated by a single router, these groups should be in disjoint zones. On the other
hand, as we will see, the smaller the branching factor of the zone tree, the slower
the dissemination. So some care should be taken not to make the zones too small in
terms of number of child zones. With present day network packet sizes, CPU speeds,
and memory sizes, the number of child zones should be approximately between 5 to
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 29

50. (In the near future, we hope that through improving our compression techniques
we can support higher branching factors.)

As the membership grows, it may be necessary to create more zones. Initially,
new machines can be added simply to leaf zones, but at some point it becomes
necessary to divide the leaf zones into smaller zones. Note that this re-configuration
only involves the machines in that leaf zone. Other parts of Astrolabe do not need
to know about the re-configuration, and this is extremely important for scaling and
deploying Astrolabe.

We know that the time for gossip to disseminate in a “flat” (non-hierarchical)
population grows logarithmically with the size of the population, even in the face
of network links and participants failing with a certain probability [Demers et al.
1987]. The question is, is this slow growth in latency also true in Astrolabe, which
uses a hierarchical protocol? The answer appears to be yes, albeit that the latency
grows somewhat faster. To demonstrate this, we conducted a number of simulated
experiments.12

In the experiments, we varied the branching factor of the tree, and the number
of representatives in a zone, the probability of message loss, and the ratio of failed
hosts. In all experiments, we used a balanced tree with a fixed branching factor. We
simulated up to 58 (390,625) members. In the simulation, gossip occurred in rounds,
with all members gossiping at the same time.13 We assumed that successful gossip
exchanges complete within a round. (Typically, Astrolabe agents are configured to
gossip once every two to five seconds, so this assumption seems reasonable.) Each
experiment was conducted at least ten times. (For small numbers of members much
more often than that.) In all experiments, the variance observed was low.

In the first experiment, we varied the branching factor. We used branching
factors 5, 25, and 125 (that is, 51, 52, and 53). In this experiment there was just
one representative per zone, and there were no failures. We measured the average
number of rounds necessary to disseminate information from one node to all other
nodes.14 We show the results in Figure 6 (on a log scale), and compare these with
flat (non-hierarchical) gossip. Flat gossip would be impractical in a real system,
as the required memory grows linearly, and network load quadratically with the
membership [Van Renesse et al. 1998], but it provides a useful baseline.

Flat gossip provides the lowest dissemination latency. The corresponding line in
the graph is slightly curved, because Astrolabe agents never gossip to themselves,
which significantly improves performance if the number of members is small. Hier-
archical gossip also scales well, but is significantly slower than flat gossip. Latency
improves when the branching factor is increased, but doing so also increases over-
head.

For example, at 390,625 members and branching factor 5, there are 8 levels in
the tree. Thus each member has to maintain and gossip only 8 × 5 = 40 MIBs.

12Although Astrolabe has been deployed on up to 200 machines, this is not a sufficiently large
system to evaluate its scalability.
13In more detailed discrete event simulations, in which the members did not gossip in rounds
but in a more randomized fashion, we found that gossip propagates faster, and thus that the

round-based gossip provides useful “worst-case” results.
14We used a non-representative node as the source of information. Representatives have an

advantage, and their information disseminates significantly faster.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Robbert van Renesse et al.

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

ex
pe

ct
ed

 #
ro

un
ds

#members

bf = 5
bf = 25

bf = 125
flat

Fig. 6. The average number of rounds necessary to infect all participants, using different branching
factors. In all these measurements, the number of representatives is 1, and there are no failures.

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

ex
pe

ct
ed

 #
ro

un
ds

#members

nrep = 1
nrep = 2
nrep = 3

flat

Fig. 7. The average number of rounds necessary to infect all participants, using a different number
of representatives. In all these measurements, the branching factor is 25, and there are no failures.

(Actually, since gossip messages do not include the MIBs of the destination agent,
the gossip message only contains 32 MIBs.) With a branching factor of 25, each
member maintains and gossips 4 × 25 = 100 MIBs. In the limit (flat gossip), each
member would maintain and gossip an impractical 390, 625 MIBs.

With only one representative per zone, Astrolabe is highly sensitive to host
crashes. The protocols still work, as faulty representatives are detected and re-
placed automatically, but this detection and replacement takes time and leads to
significant delays in dissemination. Astrolabe is preferably configured with more
than one representative in each non-leaf zone. In Figure 7, we show the average
number of rounds necessary to infect all participants in an Astrolabe tree with
branching factor 25. In the experiments that produced these numbers, we varied
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 31

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

ex
pe

ct
ed

 #
ro

un
ds

#members

loss = .00
loss = .05
loss = .10
loss = .15

Fig. 8. The average number of rounds necessary to infect all participants, using different message
loss probabilities. In all these measurements, the branching factor is 25, and the number of

representatives is three.

the number of representatives from one to three. Besides increasing fault-tolerance,
more representatives also decrease the time to disseminate new information. But
three times as many representatives also leads to three times as much load on the
routers, so the advantages come at some cost.

In the next experiment, we determined the influence of message loss on the dis-
semination latency. In this experiment we used, again, a branching factor of 25, but
this time we fixed the number of representatives at three. Gossip exchanges were
allowed to fail with a certain independent probability loss, which we varied from 0
to .15 (15%). As can be seen from the results in Figure 8, loss does lead to slower
dissemination, but, as in flat gossip [Van Renesse et al. 1998], the amount of delay
is surprisingly low. In a practical setting, we would probably observe dependent
message loss due to faulty or overloaded routers and/or network links, with more
devastating effects. Nevertheless, because of the randomized nature of the gossip
protocol, updates can often propagate around faulty components in the system. An
example of such dependent message loss is the presence of crashed hosts.

In this final simulated experiment, we stopped certain agents from gossiping
in order to investigate the effect of host crashes on Astrolabe. Again we used
a branching factor of 25, and three representatives. Message loss did not occur
this time, but each host was down with a probability that we varied from 0 to
.08 (8%). (With large numbers of members, doing so made the probability that
all representatives for some zone are down rather high. Astrolabe’s aggregation
functions will automatically assign new representatives in such cases.) As with
message loss, the effect of crashed hosts on latency is quite low (see Figure 9).

If we configure Astrolabe so that agents gossip once every two to five seconds, as
we normally do, we can see that updates propagate with latencies on the order of
tens of seconds.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Robbert van Renesse et al.

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

ex
pe

ct
ed

 #
ro

un
ds

#members

down = .00
down = .02
down = .04
down = .06
down = .08

Fig. 9. The average number of rounds necessary to infect all participants, using different probabil-
ities of a host being down. In all these measurements, the branching factor is 25, and the number

of representatives is three.

7.2 Load

We were also interested in the load on Astrolabe agents. We consider two kinds
of load: the number of received messages per round, and the number of signature
checks that an agent has to perform per round. The average message reception
load is easily determined: on average, each agent receives one message per round
for each zone it represents. Thus, if there are k levels, an agent that represents
zones on each level with have the worst average load of k messages per second.
Obviously, this load grows O(logn).

Due to randomization, it is possible that an agent receives more than one message
per round and per level. The variance of message load on an agent is expected to
grow O(logn): if a process is involved in k epidemics with iid distributions, where
each epidemic involves the same number of participants (the branching factor of
the Astrolabe tree), then the variance is simply k times the variance of the load of
each individual epidemic.

In order to evaluate the load on Astrolabe agents experimentally, we used three
representatives per zone, but eliminated host and message omission failures (as
these only serve to reduce load). We ran a simulation for 180 rounds (fifteen
minutes in case each round is five seconds), and measured the maximum number of
message received per round across all agents. The results are shown in Figure 10.
This figure perhaps reflects best the trade-off between choosing small and large
branching factors mentioned earlier.

If we simply checked all signatures in all messages that arrived, the overhead of
checking could become enormous. As the number of MIBs in a message grows as
O(logn), the computational load would grow as O(log2 n). The larger the branching
factor, the higher this load, as larger branching factors result in more MIBs per
message, and can easily run in the thousands of signature checks per round even
for moderately sized populations.

Rather than checking all signatures each time a message arrives, the agent buffers
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 33

0

10

20

30

40

50

60

1 10 100 1000 10000 100000

m
ax

 #
 m

es
sa

ge
s

/ s
ec

on
d

members

bf = 5
bf = 25

bf = 125

Fig. 10. The maximum load in terms of number of messages per round as a function of number
of participants and branching factor.

P

Q

R

Fig. 11. The experimental topology, con-
sisting of 63 hosts, eight 10 Mbps LANs,

and three routers connectedby a 100 Mbps
backbone link.

all arriving MIBs without processing them until the start of a new round of gossip.
(Actually, only those MIBs that are new with respect to what the agent already
knows are buffered.) For each zone, the agent first checks the signature on the
most recent MIB, then on the second most recent MIB, etc., until it finds a correct
signature (usually the first time). The other versions of the same MIB are then
ignored. Thus we have artificially limited the computational load to O(logn) with-
out affecting the speed of gossip dissemination. In fact, the maximum number of
checks per round is at most k × (bf − 1), where k is the number of levels and bf
the branching factor. Moreover, the computational load is approximately the same
on all agents, that is, not worse on those agents that represent many zones.

Another approach to limit computational overhead is based on a Byzantine voting
approach. It removes almost all need for signature checking [Minsky 2002].

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Robbert van Renesse et al.

Table III. Hierarchies used in each experiment.

Experiment # agents agents/host Description

1 48 1 (8 8 8 8 8 8)

2 48 1 ((8 8) (8 8) (8 8))

3 63 1 (8 8 8 7 8 8 8 8)

4 63 1 ((8 8) (8 7 8) (8 8 8))

5 96 2 (16 16 16 16 16 16)

6 96 2 ((16 16) (16 16) (16 16))

7 126 2 (16 16 16 14 16 16 16 16)

8 126 2 ((16 16) (16 14 16) (16 16 16))

7.3 Validating the Simulations

In order to verify the accuracy of our simulator, we performed experiments with
up to 126 Astrolabe agents on 63 hosts. For these experiments, we created the
topology of Figure 11 in the Emulab network testbed [White et al. 2002]. The
set-up consists of six LANs, each consisting of eight Compaq DNARD Sharks (233
MHz StrongARM processor, 32 MB RAM, 10 Mbps Ethernet interface, running
NetBSD) connected to an Asante 8+2 10/100 Ethernet switch. (As indicated in
the figure, one of the Sharks was broken.) The set-up also includes three routers,
consisting of 600 MHz Intel Pentium III “Coppermine” processors, each with 256
MB RAM and 4 10/100 Mbps Ethernet interfaces, and running FreeBSD 4.0. All
the routers’ Ethernet interfaces, as well as the Asante switches, are connected to a
Cisco 6509 switch, and then configured as depicted in Figure 11.

On this hardware, we created eight different Astrolabe hierarchies (see Table III)
with the obvious mappings to the hardware topology. For example, in Experiment
8 we created a three-level hierarchy. The top-level zone consisted of a child zone per
router. Each child zone in turn had a grandchild zone per LAN. In Experiments 1,
3, 5, and 7 we did not reflect the presence of the routers in the Astrolabe hierarchy,
but simply created a child zone per LAN. Experiments 1, 2, 5, and 6 did not use
the 4th and 7th LAN. In the last four experiments, we ran two agents per host.
Here, the agents were configured to gossip once every five seconds over UDP, and
the (maximum) number of representatives per zone was configured to be three.

In each experiment, we measured how long it took for a value, updated at one
agent, to disseminate to all agents. To accomplish this dissemination, we installed
a simple aggregation function ’SELECT SUM(test) AS test’. All agents monitored
the attribute test in the top-level zone, and noted the time at which this attribute
was updated. We updated the test attribute in the virtual system zone of the “right-
most” agent (the one in the bottom-right of the topology), since this agent has
the longest gossiping distance to the other agents. Each experiment was executed
at least 100 times. In Figure 12(a) we report the measured average, minimum,
maximum, and 95% confidence intervals for each experiment.

Figure 12(b) reports the simulation results of the same experiments. In the simu-
lations, we assumed no message loss, as we had no easy way of modeling the actual
behavior of loss on the Emulab testbed. The simulations, therefore, show more regu-
lar behavior than the experiments. They give sometimes slightly pessimistic results,
as in the simulations the agents gossip in synchronous rounds (non-synchronized
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 35

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

la
te

nc
y

experiment

(a)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

la
te

nc
y

experiment

(b)

Fig. 12. Results of (a) the experimental measurements and (b) the corresponding simulations.
The x-axes indicate the experiment number in Table III. The error bars indicate the averages and

the 95% confidence intervals.

gossip disseminates somewhat faster). Nevertheless, the results of the simulations
correspond well to the results of the experiments, giving us confidence that the
simulations predict the actual behavior in large networks well. The experimental
results show the presence of some outliers in the latencies (although never more
than two rounds of gossip), which could be explained by occasional message loss.

We plan to present comprehensive experimental data for Astrolabe in some other
forum. At present, our experiments are continuing with an emphasis on understand-
ing how the system behaves on larger configurations, under stress, or when the rate
of updates is much higher.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Robbert van Renesse et al.

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16

ro

un
ds

entries in gossip message

random
round robin

random + self
round robin + self

Fig. 13. Cost of fragmentation.

7.4 Fragmentation

As described in Section 4.5, the underlying network may enforce a maximum trans-
mission unit size. In order to deal with this limitation, we reduce the number of
MIBs in a message, and speed up the gossip rate accordingly. In order to decide
which is a good method for choosing MIBs to include in messages, we simulated
two basic strategies, with a variant for each. The two basic strategies are round
robin and random. In the first, the agent fills up gossip messages in a round robin
manner, while in the second the agent picks random (but different) MIBs. The
variant strategy for each is that the agent’s own MIB is forced to be included as
exactly one of the entries.

In Figure 13 we show the results when the number of hosts here is 16, and the
hierarchy is flat. Round robin performs better than random, and including the
local MIB of the sending agent is a good idea. The current implementation of the
Astrolabe agent actually uses random filling, but also includes the local MIB. The
reason for not using round robin is that, in a hierarchical epidemic, round robin
can cause the MIBs of entire zones to be excluded from a message.

8. RELATED WORK

8.1 Directory Services

Much work has been done in the area of scalable mapping of names of objects
(often machines) onto meta-information of the objects. The best known examples
are the DNS [Mockapetris 1984] and X.500 [Radicati 1994], and LDAP (RFC 1777)
standards. Similar to DNS, and particularly influential to the design of Astrolabe
is the Clearinghouse directory service [Demers et al. 1987]. Clearinghouse was an
early alternative to DNS, used internally for the Xerox Corporate Internet. Like
DNS, it maps hierarchical names onto meta-information. Unlike DNS, it does not
centralize the authority of parts of the names space to any particular servers. In-
stead, the top two levels of the name space are fully replicated and kept eventually
consistent using a gossip algorithm much like Astrolabe’s. Unlike Astrolabe, Clear-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 37

inghouse does not apply aggregation functions or hierarchical gossiping, and thus
its scalability is inherently limited. The amount of storage grows O(n), while the
total bandwidth taken up by gossip grows O(n2) (because the size of gossip mes-
sages grows linearly with the number of members). Clearinghouse has never been
scaled to more than a few hundred servers. (Neither has Astrolabe at this time, but
analysis and simulation indicate that Astrolabe could potentially scale to millions.)

More recent work applies variants of the Clearinghouse protocol to databases
(e.g., Bayou’s anti-entropy protocol [Petersen et al. 1997] and Golding’s time-
stamped anti-entropy protocol [Golding 1992]). These systems suffer from the same
scalability problems, limiting scale to perhaps a few thousands of participants.

Also influential to the design of Astrolabe is Butler Lampson’s paper on the
design of a global name service [Lampson 1986], based on experience with Grapevine
[Birrell et al. 1982] and Clearinghouse. This paper enumerates the requirements
of a name service, which include large size, high availability, fault isolation, and
tolerance of mistrust, all of which we believe Astrolabe supports. The paper’s
design does not include aggregation, but otherwise shares many of the advantages
of Astrolabe over DNS.

In the Intentional Naming System [Adjie-Winoto et al. 1999], names of objects are
based on properties rather than location. A self-organizing resolver maps names
onto locations, and can route messages to objects, even in an environment with
mobile hosts. A recent extension to INS, Twine allows for partial matching of
properties based on a peer-to-peer protocol [Balazinska et al. 2002].

The Globe system [Van Steen et al. 1998] is an example of a very scalable directory
service that maps arbitrary object names onto object identifiers, and then onto
location. Globe also supports locating objects that move around.

8.2 Network Monitoring

Network monitors collect runtime information from various sources in the network.
A standard for such retrieval is the SNMP protocol (RFC 1156, 1157). A large
variety of commercial and academic network monitors exist. Many of these systems
provide tools for collecting monitoring data in a centralized place, and visualizing
the data. However, these systems provide little or no support for dissemination
to a large number of interested parties, aggregation of monitored data, or security.
The scale of these systems is often intended for, and limited to, clusters of up to
a few hundred machines. Of these, Argent’s Guardian (www.argent.com) is closest
to Astrolabe, in that it uses regional agents to collect information in a hierarchical
fashion (although it does not install agents on the monitored systems themselves).
Monitoring information is reported to a single site, or at most a few sites, and
Guardian does not support aggregation.

Note that Astrolabe does not actually retrieve monitoring information; it just
provides the ability to disseminate and aggregate such data. Neither does Astrolabe
provide visualization. The monitoring agents and visualization tools provided by
these products, together with Astrolabe, could form an interesting marriage.

8.3 Event Notification

Event Notification or Publish/Subscribe services allow applications to subscribe to
certain classes of events of interest, and systems to post events. Examples are ISIS

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Robbert van Renesse et al.

[Birman and Joseph 1987], TIB/RendezVoustm[Oki et al. 1993], Gryphon [Aguil-
era et al. 1999], and Siena [Carzaniga et al. 2001]. Note that although Astrolabe
processes events, it does not route them to subscribers, but processes them to
determine some aggregate state “snapshot” of a distributed system. However, a
Publish/Subscribe system has been built on top of Astrolabe and is described in
Section 3.3.

XMLBlaster (www.xmlblaster.com) and a system built at MIT [Snoeren et al.
2001] encode events in XML format, and allow routing based on queries over the
XML content in the messages. The latter system’s protocol for this routing is similar
to SelectCast (Section 3.3), although our protocol can do routing not only based
on the content of the messages, but also on the aggregate state of the environment
in which the messages are routed.

Although many of these systems support both scale and security, the events are
either very low-level, or generated from aggregating low-level event histories. In
order to monitor the collective state of a distributed system, a process would have
to subscribe to many event sources, and do the entire event processing internally.
This strategy does not scale. Event notification and Publish/Subscribe services are
intended to disseminate information from few sources to many subscribers, rather
than integrating information from many sources.

8.4 Sensor Networks

In a sensor network, a large number of sensors monitor a distributed system. The
problem is detecting certain conditions and querying the state of the network. There
are many projects in this area. A couple that relate closely to our work are Cougar
[Bonnet et al. 2001] and an unnamed project described in [Heidemann et al. 2001].

In Cougar, a user can express a long-running SQL query, as in Astrolabe. A
centralized server breaks the query into components that it spreads among the
various devices. The devices then report back to the server, which combines the
results and reports the result to the user. Although much of the processing is in the
network, Cougar’s centralized server may prevent adequate scaling and robustness.

In [Heidemann et al. 2001], a sensor network for a wireless system is described. As
in Active Networks [Tennenhouse et al. 1997], code is dynamically installed in the
network that routes and filters events. Using a routing mechanism called “Directed
Diffusion,” events are routed towards areas of interest. The event matching is
specified using a low-level language that supports binary comparison operators on
attributes. The system also allows application-specific filters to be installed in the
network that can aggregate events.

We have studied various epidemic protocols, including the ones that are used by
Astrolabe, for use in power-constraint wireless sensor networks [Van Renesse 2002].
What is clear from this study is that the hierarchical epidemics used in Astrolabe
cannot be used as is in such networks, as the protocol does send messages across
large distances, albeit occasionally.

8.5 Cluster Management

As made clear above, directory services and network monitoring tools do not sup-
port dynamic distributed configuration. There are a number of cluster manage-
ment tools available that take care of configuration, for example, Wolfpack, Be-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 39

owulf, NUCM, and the “Distributed Configuration Platform” of EKS. Unlike As-
trolabe, they do not scale beyond a few dozen machines, but they do provide various
problem-specific functionality for the management of distributed system. Astrolabe
is not such a shrink-wrapped application, but could be incorporated into a cluster
management system to support scalability.

8.6 Peer-to-Peer Routing

A peer-to-peer routing protocol (P2PRP) routes messages to locations, each deter-
mined by a location-independent key included in the corresponding message. Such
a protocol may be used to build a so-called Distributed Hash Table, simply by
having each location provide a way to map the key to a value. Well-known exam-
ples of P2PRPs include Chord [Stoica et al. 1995], Pastry [Rowstron and Druschel
2001], and Tapestry [Zhao et al. 2001] These protocols have been used to implement
distributed file systems and application-level multicast protocols.

As in Astrolabe, each location runs an agent. When receiving a message, the
agent inspects the key and, unless it is responsible for the key itself, forwards the
message to an agent that knows more about the key. The number of hops grows
O(logn) for each of the P2PRPs named above, as does the size of the routing tables
maintained by the agents.

The functionalities of a P2PRP and Astrolabe are orthogonal, yet, a comparison
proves interesting. Although sometimes called location protocols, P2PRPs cannot
find an object—they can only place the object in a location where they will be able
to retrieve the object later. Astrolabe, on the other hand, is able to find object
based on attributes of the object. However, Astrolabe is quite limited in how many
objects it can find in a short period of time, while P2PRPs can potentially handle
high loads.

In their implementations, there are some interesting differences between a P2P
routing protocol and Astrolabe. While Astrolabe exploits locality heavily in its
implementation, P2PRPs only try to optimize the length of hops chosen when
routing (so-called proximity routing). At each hop in the routing path, the number
of eligible next hops is small, and thus the effectiveness of this approach may be
variable. Worse, as agents join and leave the system (so-called churn), objects have
to be moved around potentially across very large distances). The P2PRP protocols
also employ ping-based failure detection across these large distances.

Whereas P2PRPs treat agents as identical, Astrolabe is able to select agents
as representatives or routers based on various attributes such as load, operating
system type, or longevity.

8.7 Epidemic Protocols

The earliest epidemic protocol that we are aware of is the NetNews protocol, the
predecessor of today’s NNTP (RFC 977, February 1986), which gossiped news over
UUCP connections starting as early as 1979 at Duke University. Although epidemic
in nature, the connections were not intentionally randomized, so that a stochastic
analysis would have been impossible. The first system that used such randomization
on purpose was the previously described Clearinghouse directory service [Demers
et al. 1987], to solve the scaling problems that the designers were facing in 1987
(initially with much success). More recently, the REFDBMS bibliographic database

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Robbert van Renesse et al.

system [Golding et al. 1994] uses a gossip-based replication strategy for reference
databases, while Bimodal Multicast [Birman et al. 1999] (see also Section 3.2) is
also based on gossip.

9. CONCLUSIONS AND FUTURE WORK

Astrolabe is a DNS-like distributed management service, but differs from DNS in
some important ways. First, in Astrolabe, updates propagate in seconds or tens of
seconds, rather than tens of minutes at best (and days more commonly) in DNS.
Second, Astrolabe users can introduce new attributes easily. Third, Astrolabe
supports on the fly aggregation of attributes, making it possible, for example, to
find resources based on attributes rather than by name. A restricted form of mobile
code, in the form of SQL SELECT statements, makes it possible to change the
way attributes are aggregated rapidly. This, and other aspects of our database-
like presentation, builds on the existing knowledge base and tool set for database
application development, making it easy to integrate the technology into existing
settings. Finally, Astrolabe uses a peer-to-peer architecture that is easy to deploy,
and its gossip protocol is highly scalable, fault tolerant, and secure.

These properties enable new distributed applications, such as scalable system
management, resource location services, sensor networks, and application-level rout-
ing in peer-to-peer services.

We are currently pursuing several improvements to Astrolabe. Currently, the
amount of information maintained by the attributes of a Astrolabe zone cannot
grow beyond about a kilobyte. By sending deltas rather than entire new versions,
we believe we can significantly compress the amount of information send in the
gossip protocol and increase the size or number of the attributes significantly. Al-
ternatively or additionally, the set reconciliation techniques of [Minsky 2002] can
be used.

Also aimed at increasing scale, we are also looking at ways to direct the flow of
information towards the nodes requesting aggregation. Although, using the copy
attribute of AFCs a certain level of control over the flow is already possible, we are
looking at additional ways that would allow us to increase the number of concur-
rently installed aggregations considerably.

ACKNOWLEDGMENTS

We would like to thank the following people for various contributions to the Astro-
labe design and this paper: Tim Clark, Al Demers, Dan Dumitriu, Terrin Eager,
Johannes Gehrke, Barry Gleeson, Indranil Gupta, Kate Jenkins, Anh Look, Yaron
Minsky, Andrew Myers, Venu Ramasubramanian, Richard Shoenhair, Emin Gun
Sirer, Werner Vogels, Lidong Zhou, and the anonymous reviewers.

REFERENCES

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and Lilley, J. 1999. The design and im-

plementation of an Intentional Naming System. In Proc. of the 17th ACM Symp. on Operating
Systems Principles. ACM Press, Kiawah Island, SC.

Aguilera, M., Strom, R., Sturman, D., Astley, M., and Chandra, T. 1999. Matching events
in a content-based subscription system. In Proc. of the 18th ACM Symp. on Principles of

Distributed Computing. Atlanta, GA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Astrolabe: A Robust and Scalable Technology · 41

Andersen, D., Balakrishnan, H., Kaashoek, M., and Morris, R. 2001. Resilient overlay
networks. In Proc. of the 18th ACM Symp. on Operating Systems Principles. Banff, Canada,

131–145.

Balazinska, M., Balakrishnan, H., and Karger, D. 2002. INS/Twine: A scalable peer-to-peer

architecture for intentional resource discovery. In Proc. of the 1st Int. Conf. on Pervasive
Computing (Pervasive 2002), F. Mattern and M. Naghshineh, Eds. Lecture Notes in Computer

Science, vol. 2414. Springer, Zürich, Switzerland, 195–210.

Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. 1999. Bimodal

Multicast. ACM Transactions on Computer Systems 17, 2 (May), 41–88.

Birman, K. P. and Joseph, T. A. 1987. Exploiting virtual synchrony in distributed systems. In

Proc. of the 11th ACM Symp. on Operating Systems Principles. Austin, TX, 123–138.

Birrell, A., Levin, R., Needham, R., and Schroeder, M. 1982. Grapevine: an exercise in

distributed computing. CACM 25, 4 (Apr.), 260–274.

Bloom, B. 1970. Space/time tradeoffs in hash coding with allowable errors. CACM 13, 7 (July),

422–426.

Bonnet, P., Gehrke, J., and Seshadri, P. 2001. Towards sensor database systems. In Proc. of
the 2nd Int. Conf. on Mobile Data Management. Hong Kong.

Carzaniga, A., Rosenblum, D., and A.L., W. 2001. Design and evaluation of a wide-area event
notification service. ACM Trans. Comput. Syst. 19, 3 (Aug.), 332–383.

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swine-

hart, D., and Terry, D. 1987. Epidemic algorithms for replicated database maintenance. In

Proc. of the 6th ACM Symp. on Principles of Distributed Computing. Vancouver, BC, 1–12.

Golding, R. 1992. A weak-consistency architecture for distributed information services. Com-

puting Systems 5, 4 (Fall), 379–405.

Golding, R., Long, D., and Wilkes, J. 1994. The REFDBMS distributed bibliographic database

system. In Proc. of Usenix’94. Santa Fe, NM, 47–62.

Gribble, S., Welsh, M., Von Behren, R., Brewer, E., Culler, D., Borisov, N., Czerwinski,

S., Gummadi, R., Hill, J., Joseph, A., Katz, R., Mao, Z., Ross, S., and Zhao, B. 2001. The
Ninja architecture for robust Internet-scale systems and services. Computer Networks, Special

Issue of Computer Networks on Pervasive Computing 35, 4, 473–497.

Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., and Ganesan, D.

2001. Building efficient wireless sensor networks with low-level naming. In Proc. of the 18th
ACM Symp. on Operating Systems Principles. Banff, Canada, 146–159.

Lampson, B. 1986. Designing a global name service. In Proc. of the 5th ACM Symp. on Principles
of Distributed Computing. Calgary, Alberta.

Minsky, Y. 2002. Spreading rumors cheaply, quickly, and reliably. Ph.D. thesis, Department of
Computer Science, Cornell University, Ithaca, NY.

Mockapetris, P. 1984. The Domain Name System. In Proc. of the IFIP 6.5 Int. Symp. on
Computer Messaging. Nottingham, UK.

Oki, B. M., Pfluegl, M., Siegel, A., and Skeen, D. 1993. The InformationBus—an architecture

for extensible distributed systems. In Proc. of the 14th ACM Symp. on Operating Systems
Principles. Asheville, NC, 58–68.

Petersen, K., Spreitzer, M., Terry, D., Theimer, M., and Demers, A. 1997. Flexible update
propagation for weakly consistent replication. In Proc. of the 16th ACM Symp. on Operating

Systems Principles. Saint-Malo, France, 288–301.

Radicati, S. 1994. X.500 Directory Services: Technology and Deployment. International Thom-

son Computer Press, London, UK.

Reese, G. 2000. Database Programming with JDBC and Java, 2nd Edition. O’Reilly.

Rowstron, A. and Druschel, P. 2001. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In Proc. of Middleware 2001. Heidelberg, Germany.

Sanders, R. 1998. ODBC 3.5 Developer’s Guide. M&T Books.

Snoeren, A., Conley, K., and Gifford, D. 2001. Mesh-based content routing using XML. In

Proc. of the 18th ACM Symp. on Operating Systems Principles. Banff, Canada, 160–173.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Robbert van Renesse et al.

Stallings, W. 1993. SNMP, SNMPv2, and CMIP. Addison-Wesley.

Stoica, I., Morris, R., Karger, D., and Kaashoek, M. 1995. Chord: A scalable peer-to-

peer lookup service for Internet applications. In Proc. of the ’95 Symp. on Communications
Architectures & Protocols. ACM SIGCOMM, Cambridge, MA.

Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., and Minden, G. 1997. A survey

of active network research. IEEE Communications Magazine 35, 1 (Jan.), 80–86.

Van Renesse, R. 2002. Power-aware epidemics. In Proc. of the 21st Symp. on Reliable Distributed

Systems. Osaka, Japan.

Van Renesse, R. and Dumitriu, D. 2002. Collaborative networking in an uncooperative Internet.

In Proc. of the 21st Symp. on Reliable Distributed Systems. Osaka, Japan.

Van Renesse, R., Minsky, Y., and Hayden, M. 1998. A gossip-style failure detection service.
In Proc. of Middleware’98. IFIP, The Lake District, UK, 55–70.

Van Steen, M., Hauck, F., Homburg, P., and Tanenbaum, A. 1998. Locating objects in wide-
area systems. IEEE Communications Magazine 36, 1 (Jan.), 104–109.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M.,
Bard, C., and Joglekar, A. 2002. An integrated experimental environment for distributed

systems and networks. In USENIX OSDI’02. Boston, MA.

Zhao, B., Kubiatowicz, J., and Joseph, A. 2001. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Tech. Rep. UCB/CSD-01-1141, University of California, Berke-

ley, Computer Science Department.

Received July 2001; revised September 2002; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

