A Formal Foundation for XrML*

Joseph Y. Halpern Vicky Weissman
Cornell University Cornell University
Ithaca, NY 14853 Ithaca, NY 14853
halpern@cs.cornell.edu vickyw@cs.cornell.edu
Abstract (MPEG-21 REL). (See http://www.xrml.org for more in-
formation.) It is clear that a number of industries are
XrML is becoming a popu|ar |anguage in industry for each moving towards a standard Ianguage for Writing li-
writing software licenses. The semantics for XrML is im- censes, and that many of these standard languages are
plicitly given by an algorithm that determines if a permis- likely to be based on XrML. To understand the new stan-
sion follows from a set of licenses. We focus on a repre- dards, we need to understand XrML.
sentative fragment of the language and use it to highlight XrML does not have formal semantics. Instead, the
some problematic aspects of the algorithm. We then cor- XrML specification [3] presents the semantics in two
rect the problems, introduce formal semantics, and show ways. First is an English description of the language. Sec-
that our semantics matches the (corrected) algorithm. Fi- ond is an English description of an algorithm that deter-
nally, we consider the complexity of determining if a per- mines if a permission follows from a set of licenses. Un-
mission isimplied by a set of XrML licenses. Weshow that fortunately, the two versions of the semantics do not agree.
the general problem is NP-hard, but it is polynomial-time To make matters worse, the algorithm has unintuitive con-
computable for an expressive fragment of the language. sequences that do not seem to reflect the language writers’
intent.

As a first step towards addressing these issues, we pro-
. vide a formal semantics for XrML. To the best of our knowl-
1. Introduction edge, we are the first to do this. We give the language formal

_)) semantics by providing a translation from XrML licenses to
The eXtensible rights Markup Language (XrML) is be- tqrmylas in modal first-order logic. We verify the transla-

coming an increasingly popular language in which to write tjon py proving that the algorithm included in the XrML
software licenses. When first released in 2000, XrML re- qocument, slightly modified to correct the unintuitive be-
ceived the support of many technology providers, contentpayior, matches our semantics. More precisely, the algo-

owners, distributors, and retailers, including Adobe Sys- yithm says that a permission follows from a set of licenses
tems, Hewlett-Packard Laboratories, Microsoft, Xerox i ihe translated permission is a logical consequenceef th
Corp., Barnesandnoble.com, and Time Warner Trade Pubyangjated licenses. We then consider the complexity of de-
lishing. Companies including Microsoft, OverDrive, termining if a permission is implied by a set of licenses.
and DMDsecure have publicly announced their agree-ye show that the general problem is NP-hard, but, for an
ment to build products and/or services that are XrML com- gy yressive fragment of the language, it is polynomial-time
pliant. Currently, XrML is being used by international stan computable.

dard committees as the basis for application-specific Th ¢ of th . ed as foll In th ‘
languages that are designed for use across entire in- € restotthe paperis organized as foflows. In the nex

dustries. For example, the Moving Picture Experts section we present a fragment of XrML that suffices to il-
Group .(MPEG) has s,elected XIML as the founda- 'Ustrate the key issues. In Section 3 we review XrML's al-

tion for their MPEG-21 Rights Expression Language gorithm for determining what is permitted given a set of
licenses. After considering some examples in which the al-

gorithm’s behavior is unintuitive and almost certainly
* Authors supported in part by NSF under grant CTC-0208535, by ; ; ; _
ONR under grants N0O0014-00-1-03-41 and N00014-01-10-5%1, lflnlntended' we prOpOSG- a re\,lls.ed algorlthm that we k.)e
the DoD Multidisciplinary University Research InitiatigMlURI) pro- lieve captures .the Qe3|gngrs intent. Formall semantics
gram administered by the ONR under grant N00014-01-1-0Z88, for XrML are given in Section 4, and the revised algo-
by AFOSR under grant F49620-02-1-0101. rithm is shown to be sound and complete with respect

to the semantics. In Section 5 we show that the prob-
lem of determining if a permission follows from a set of

licenses is NP-hard. We also discuss a fragment of the lan-
guage that is both tractable and relatively expressive.

For examplePerm (Bob, edit, budget report) means
Bob may edit the budget report. The conclusior(p)
meang has the propertyr. For example, the conclu-
sion Attractive(Bob) means Bob is attractive.

In Section 6 we outline how our results can be modi-
fied to apply to the entire language, including extensions
that are within the XrML framework. We conclude in Sec-

tion 7. Proofs for all of the theorems can be found at
www.cs.cornell.edu/home/halpern/papers/xrml.pdf.

We abbreviate the grantzi,...,Vz,(true — e) as
Vaq,...,Vr,e. Also, we try to consistently usé, possi-
bly subscripted, to denote generic conditions angossi-
bly subscripted, to denote generic conclusions.

Consider the following example. Suppose that Alice is-
sues the grant ‘Bob is smart’ and Amy issues the grant ‘if
Alice says that Bob is smart, then he is attractive’. We can
write the first license in our syntax dg;, Alice), where

Before we can begin our analysis of XrML, we need ¢, — Smart(Bob) (recall that this is an abbreviation for
to choose a version of the language. ContentGuard frozegrue — Smart(Bob)), and we can write the second as
the language in November 2001 [1] with the intention that (4, Amy), whereg, = Said(Alice, Smart(Bob)) —
standard committees would extend the language to suit theattractive(Bob). Becausd g, Alice) means ‘Alice says
needs of their particular constituents. However, the stan-Bob is smart’ andy, means ‘if Alice says Bob is smart,
dard committees are currently modifying the language, asthen he is attractive’, the licenses together with the grant
opposed to simply extending it. In particular, the MPEG jssued by Amy imply that Bob is attractive. Thus, the con-
committee published their version of the language [4] a few dition Said(Amy, Attractive(Bob)) holds.
weeks before the final submission of this paper. Although The sets of principaisi properties’ rights' and resources
we have not studied that release Cal‘efully, we have exam'depend on the particuiar appiication_ For exampie' a multi-
ined their March 2003 Specification [3], which is the ver- media application might have a principal for each employee
sion before the current one. In this paper we discuss thEand each customer; properties such as ‘hearing impaired’
March 2003 Specification; in the full paper we discuss the gng ‘manager’; rights such as ‘edit’ and ‘download’; and a
current version. resource for each object such as a movie. We assume the

2. Syntax

In this section we present a syntax for a representativeapplication gives us a finite sptimitivePrin of principals
fragment of XrML. (The rest of the language is discussed and a finite seprimitiveProp of properties. We then de-
in Section 6.) Although XrML is an XML-based language, fine the components in our language as follows.

our syntax does not follow the XML conventions. Instead,
we have chosen a syntax that we believe is more intuitive.
There are other differences between the two approaches;
these are discussed at the end of the section.

At the heart of XrML is the notion of dcense. A license
is a (grant; principal) pair, where the licenge p) meang
issues (i.e., sayg). For example, the license (Bob is smatrt,
Alice) means “Alice says ‘Bob is smart’”.

A grant has the form Vzy,...,Vxz,(conditon —
conclusiony, which intuitively means that the condi-
tion implies the conclusion under all appropriate substi-
tutions. Conditions and conclusions are defined as fol-
lows.

e A condition has the formSaid(pi,e1) A ... A
Said(p,, e,), wherep; is a principal and:; is a con-
clusion. We represent the empty conjunction (when
n = 0) by true. Roughly speakingSaid(p;, ;)
holds if the grants issued by the princigal along
with the set of licenses, imply;.

e A conclusion has either the forlrerm(p, r, s) or the
form Pr(p) wherePr is a propertyp is a principal,r
is aright (i.e., an action), andis a resource. The con-
clusionPerm(p, r, s) meang may exercise overs.

e The set of principals is the result of closing
primitivePrin under union. (Here and elsewhere
we identify a principalp € primitivePrin with the
singleton {p}.) Thus, every principal has the form
{p1,...,pn}, Where eachp; is a primitive princi-
pal. The interpretation of a principdlp1,...,pn}
depends on context (i.e., depends on whether the prin-
cipal appears as the first argument iz d condition,
as the first argument in a conclusion, or as the sec-
ond argumentin a license). We discuss this later in the
paper (primarily in Section 5).

e The only properties considered by XrML are those in
primitiveProp. Following XrML, we consider only
properties that take a single principal as an argument.
For exampleprimitive Prop can include the property
Employee, where Employee(x) means principal
x is an employee, but it cannot include the property
MotherOf, whereMotherOf(z, y) meanse is the
mother ofy, nor can it include the properiyehicle,
whereVehicle(xz) means resourceis a vehicle (e.g.,

a motorcycle, car, or truck). All of the results of this pa-
per would continue to hold if we extend the fragmentto
include properties that take multiple arguments of vari-

ous sorts (i.e., principals, rights, and resources). We re-
mark that in XrML the set of properties is not closed
under conjunction or negation. It is easy to show that
closing the set under conjunction adds no expressive
power to the language. Closing under negation does
add expressive power; we return to this issue in Sec-
tion 7.

e The only right isissue and the only resources are
grants. Intuitively, if a principap has the right to is-
sue a grang, andp does issug, theng is a true state-
ment.

We could takeprimitivePrin to be this set; how-
ever, our more general approach leads to a simpler
discussion. Moreover, our results do not change if
we restrict primitive principals to those of the form
KeyHolder(k).

XrML does not have conditions of the form
Said(p,e). To capture Said conditions, XrML
usesPrerequisiteRight conditions of the form
(G,e), whereG is a set of grants and is a con-
clusion. A condition Said({p1,...,pn},e) in
our syntax (where eaclp; is a primitive princi-

pal or a variable of sorPrincipal) corresponds to the
PrerequisiteRight condition ({g1,...,g.},€) in
XrML, where eachy; is VzPerm(p;, issue, z) and
x is a variable of sorRResource.

We remark that, although the gramtsPr(z) andVy Pr(y)
have the same semantic interpretation (all principles have
propertyPr), XrML treats them as distinct grants syntacti-
cally. For example, according to the XrML algorithm, if Al-
ice is permitted to issue the grat Pr(x), then she is not e XrML does not have conclusions of the forfr(p).
necessarily permitted to issig Pr(y). To capture properties, XrML uses a right called
We formally define the language’s syntax according to PossessProperty, and considers the properties
the following grammar. given by the application to be resources. The conclu-
sion Pr(p) in our grammar corresponds to the con-

license = (grant, prin) clusion Perm(p, PossessProperty, Pr) in XrML.
grant == Ywvar...Yvar(cond — conc) We have two types of conclusions because we be-
var = prinVar | rsrcVar lieve the grammar should help distinguish the concep-
cond = Said(prin, conc) | cond A cond | true tually different notions of permissions and properties,
conc = prop(prin) | Perm(prin, right, rsrc) rather than confounding them.
prop = Pr o
prin L {p} | {prinVar} | prin U prin e Instead of writing .all.Conds(cl, ceyCn)y
. . allConds(), and AllPrincipals(pi,...,pn)
right = issue ;
we use the more standard notatiens. . .. Ac,, true,
TSTC = grant | rsrcVar, .
andp; U ... U p,, respectively.
where Pr is a generic element oprimitiveProp, p is o XrML abbreviates a set of license$(g:,p;) |
a generic element oprimitivePrin, and prinVar and i < mj < m} as the single license
rsrcVar are variables ranging over primitive princi- (g1, 9}, {p1s---,Pm}). For ease of expo-

ples and resources, respectively. For the remainder of
this paper we assume that the second argument in a li-
cense is a singleton. Because the XrML document
treats the license(yg,{p1,...,pn}) a@s an abbrevia-
tion for the set of license$(g,p) | p € {p1,.--,pn}} it , L. .
is easy to modify our dissgussi)oL to Sl{Jpport all gf}the li- 3. XrML’s Authorization Algorithm
censes included in the grammar. We further restrict the lan-

guage so that all grants ackosed, that is, for each grant The XrML document includes a procedure that we call
Va1 ...Ya.(d — e), the set of free variables ih — e is Query to determine if a conclusion follows from a set of li-

contained in{z1, ..., z,}. We discuss some of the conse- C€Nses (and some additional input that is discussed below).

quences of this restriction in Section 4, and remove it in the I this section we present and analyze the parts of the algo-
full paper. rithm that pertain to our fragment.

As mentioned at the beginning of this section, the gram- Béfore describing the algorithm, we note that some as-
mar presented here is not identical to that described in theP€cts ofQuery are inefficient. This is acknowledged in the

XrML document. The differences are listed below. XrML document, which explains th&uery was designed
with clarity as the primary goal; it is the responsibilitytbe

¢ Instead of assuming that the application provides a setlanguage implementors to create efficient algorithms with
of primitive principals, XrML assumes that the appli- the same input/output behavior@sery. (In Section 5, we
cation provides a sek of cryptographic keys; the set show that it is highly unlikely that such an efficient algo-
of primitive principals is{KeyHolder(k) | k € K}. rithm exists.)

sition, we do not do this. Our discussion can be
easily extended to take the abbreviation into ac-
count.

3.1. A Description of Query such thate, impliese. In determining whether or not the
implication holds Auth makes thesubset assumption. The

The input toQuery is a closed conclusion(i.e., acon- subset assumption says that any property or permission at-
clusion with no free variables), a sétof licenses(g, p) tributed to a principap is attributed to every principal that
such thap is variable-free, and a sét of grants,Query re- includesp. In other words, ifp C 7/, then Pr(p) implies

turnstrue if e is implied by L andR. To explain the intu- Pr(p’) and Perm(p, r, s) implies Perm(p’, r, s). Thus,
ition behindL and R, we first note that the procedure treats Auth(Pr(p), 0, R) returns
a predefined set of principals as trusted. If the grai

issued by a trusted principal, thegnis in R and it is as- {d|d— Pr(py) € Randp, C p}
sumed to be true. If the licende, p) is in L, theng is is- andAuth(Perm(p, r, s), 0, R) returns

sued byp (i.e., p saysg) andp is not an implicitly trusted

principal. To clarify the inferences that are drawn frdin {d|d— Perm(py,r,s) € Randp, C p}.

andL, suppose that the gragtis QueenOfSiam(Alice),
which means Alice is Queen of Siam, and the grgnis
Perm(Alice, issue, g), which means Alice may issug
If ¢ € R, then we assume that Alice really is queen. If
(g, Alice) is in L, then Alice says that she is the queen,
but we cannot conclude that she is royalty from this state-
ment alone. If(g, Alice) is in L andg’ is in R, then we as-
sume that Alice has the authority to declare herself queen,
because’ € R; we assume that she exercises that author-
ity, becausdy, Alice) € L; and we conclude that Alice is
gueen, because this follows from the two assumptions.
Query begins by calling théuth algorithm.Auth takes
e, L, andR as input; it returns a sd? of closed conditions
(i.e., conditions with no free variables). Roughly spegkin
a closed conditiod is in D if d, L, andR together implye.
To determine if a condition i® holds,Query relies on the
Holdsalgorithm. The input tédoldsis a closed condition
and a sef. of licensesHolds(d, L) returns true only if the
licenses inL imply d. (Notice thatHolds does not take?
as input. We examine the consequences of this omission i

Suppose that there is at least one grant
Vry...Vo,(dy — e4) in R such thatd, — e, is
open (i.e., has free variables). Then we reduce this case
to the previous one by considering all the substitution in-
stances of grants iR. Define aclosed substitution to be a
mapping from variables to closed expressions of the appro-
priate type. Given a closed substitutierand an expression
t, let to be the expression that arises after all free vari-
ablesz in t are replaced by (z). Let Ry, = {dgo — e40 |
Vi ... Vzo,(dy — e4) € R, oisaclosed substitutign
We then defin€Query(e,), R) to beQuery(e,), Rx). As
we show in Section 3.2Rs. may be infinite, in which case
Query is not well-defined. For ease of exposition, we as-
sume thatRy; is finite for the rest of this section. In Sec-
tion 3.3 we propose a restriction on the language that
guarantees thay is finite.

Finally, suppose thatl is not necessarilyf). Then
we reduce this case to the previous one by taking
I{Auth(e, L, R) = Auth(e, 0, R"), where

Section 3.2.) IHolds(d, L) returnstrue for somed in D, R =RUR"
thenQuery returnstrue, indicating thatZ, and R imply e. R" = {g | for some principap and conditiond, (g,p) € L,
Query is summarized in Figure 1. d € Auth(Perm(p, issue, g),L — {(g,p)}, R),
andHolds(d, L) returnstrue}.
Query(e, L, R): R’ consists of the grants i® and the grants that are is-
sued by someone who has the authority to do so. Intu-
let D = Auth(e, L, R) itively, R’ is the set of grants that hold, since the grants in
for eachd € D R implicitly hold and, as discussed in Section 2, a grant
if Holds(d, L) returnstrue g holds if it is issued by a principah and p is permit-
then Returntrue ted (i.e., has authority) to issuge To determine if a prin-
Returnfalse cipal p is permitted to issue a gragtwe should be able to
callQuery(Perm(p, issue, g), L, R), which returngrue
Figure 1. The Query Algorithm if Holds(d, L) returnstrue for somed in the set returned

by Auth(Perm(p, issue, g), L, R). This is indeed how we
determine ifg € R’, with one minor change: the second ar-
We now discus#\uth andHoldsin some detail. Tode- gument toAuth is L — {(g,p)} rather thanL. We discuss
fine Auth, we first consider the case whete= () and every the consequences of this choice in Section 3.2. (As an aside,
grantinR has the formi, — e,. In this caséAuth(e, 0, R) we suspect that the design decision was made because it is
returns the seD of closed conditions such that each con- easy to see that the algorithm will not terminate if we re-
dition, together withR, impliese. More precisely, a con- placeL — {(g,p)} by L.) Pseudocode fohuth is given in
dition d is in D if thereis a grany = d — e, in R Figure 2.

Auth(e, L, R):

let D =10
ifL=10
then
% Find D, the conditions under whicR impliese
for each grantz; ...Va,(dy — e4) € R
and each closed substitutien
if e = Pr(p) andeyo = Pr(p,) or
e = Perm(p,r, s) andeyo = Perm(pgy, 1, s),
andp, C p
thenlet D = DU {d,o}

else
% Find R’
let R = R

for each(g,p) € L
let L' = L —{(g,p)}
let D = Auth(Perm(p, issue, g), L', R)
for eachd € D
if Holds(d, L) returnstrue
thenlet R = R' U {g}
% Find D, the conditions under whicR’ impliese
let D = Auth(e, (), R')
ReturnD

Holds(d, L):

if d = true then Returntrue
if d = di A d2 then ReturnHolds(dy, L) A Holds(ds, L)

if d = Said(p, e)

then
% Find R,
let R, =0

let R}, = {VxPerm(p', issue, z) | p’ € p}
for each(g,p’) € L
let L' = L —{(g,p)}
let D = Auth(Perm(p’, issue, g), L', R},)
for eachd’ € D
if Holds(d', L) returnstrue
thenlet R, = R, U {g}

% Returntrue if R, impliese
for each gran¥z; ...V, (d, — ¢,) € R, and
closed substitution such that,o = e
if Holds(d,o, L) returnstrue
Return true

Return false

Figure 2. The Auth Algorithm

We defineHolds(d, L) by induction on the structure df
If d istrue, thenHolds(d, L) returnstrue. If d = d; A ds,
thenHolds(d, L) returnstrue iff both Holds(d;, L) and
Holds(ds, L) returntrue. If d = Said(p,), thenHolds

Figure 3. The Holds Algorithm

returns true. To see this note that
Holds(Said(Amy, Attractive(Bob)), L) first de-
termines R/, ., which is {g2}. Intuitively, this in-
dicates thatg, holds, if we assume that the grants
issued by Amy hold. The algorithm then calls

setsR, to the grants issued by a principal who has the au- Holds(Said (Alice, Smart(Bob)), L) to determine if the

thority to do so, under the assumption thahay issue any

grant. That is,

R, = {g | for some licenség, p’) € L and condition

d € Auth(Perm(p’, issue, g), L — (g,p'), R}))

such thatHolds(d, L) returnstrue},
where

R, = {VaPerm(p’, issue, z) | p" € p}.

Holds(Said(p, e), L) returnstrue if there is a grany in
R, and a conditiond such thaty andd together implye
(without making use of the subset assumption). Pseudocode

for Holdsis given in Figure 3.

Example3.1: In Section 2, we argued informally that
Amy says Bob is attractive, if the set of licenseslis=
{(g1, Alice), (g2, Amy)}, whereg; = Smart(Bob) and
g2 = Said(Alice, Smart(Bob)) — Attractive(Bob).
The formal algorithm confirms this conclusion,
since Holds(Said(Amy, Attractive(Bob)), L)

condition Said(Alice; Smart(Bob)) holds. Intuitively,
this is done becausg, and Said(Alice, Smart(Bob))
together imply Said(Amy, Attractive(Bob)).
Holds(Said(Alice, Smart(Bob)), L) first calculates
"iice 10 De {g1} and then callsHolds(true, L), be-
cause g; holds if we assume that the grants issued
by Alice hold and thatg; and true together im-
ply Smart(Bob). Holds(true, L) returns true, so
Holds(Said(Alice, Smart(Bob)), L) returns true, and
then Holds(Said(Amy, Attractive(Bob)), L) does as
well.
Suppose that a trusted principal says that Amy has the
authority to issuey, (i.e., if Amy saysgs, thengs holds).
Then we can conclude that Bob really is attractive, be-
cause Query(Attractive(Bob), L, R) returns true,
where R = {Perm(Amy,issue,gs)}. Specifically,
Query begins by callingAuth(Attractive(Bob), L, R).
Auth(Attractive(Bob), L, R), in turn,
calls Auth(Attractive(Bob), 0, R'), where
R’ = {g2, Perm(Amy, issue, g2)}.

Auth(Attractive(Bob),{, R) returns
{Said(Alice; Smart(Bob))}. So, Bob is attractive
if the condition Said(Alice; Smart(Bob)) holds.

To determine if the condition holdsQuery calls
Holds(Said(Alice; Smart(Bob)),L). As observed
above, Holds(Said(Alice; Smart(Bob)), L) returns
true, soQuery(Attractive(Bob), L, R) does as welll

3.2. An Analysisof Query

In this section we present seven examples in which

Query gives unexpected results. Example 3.2 reveals a mis-

match betweelQuery and the informal language descrip-
tion; the discrepancy exists becadsgth makes the subset

assumption and the informal language description does not

Query begins by calling
Auth(Perm(Charlie, issue, g),0, {91, 92}),

which returns{d}. Intuitively, Charlie may issug if the
conditiond holds. The algorithm then executdslds(d, 0)
(since the set of licenses @, and this call returngalse.
Roughly speakingHolds(d, #) returns false becaused
does not follow from the (empty) set of licenses. To get the
intuitively correct answer that holds,Holds would need

to takeR into account. But it cannot possibly do this, since
R is not part ofHolds's input. Because none of the condi-
tions returned byAuth are met according tblolds, Query
returnsfalse and we (wrongly) conclude that Charlie does
not have permission to issyell

Examples 3.3 and 3.4 illustrate the consequences of not in‘Example 3.4: Let d be the condition

cluding assumptions in the input kbolds; in Example 3.3
the grants issued by implicitly trusted principals (i.egse

in R) are disregarded, and in Example 3.4 the assumptionlntuitively

thatp may issue any grant is disregarded when evaluating
Said(p,). Examples 3.5 and 3.6 show tt@atery does not
terminate on all inputs, for two quite different reasons: Ex
ample 3.5 shows that on certain inpuith returns an infi-
nite set, and Example 3.6 shows that on certain ifjoitls
makes infinitely many recursive calls. Example 3.7 demon-
strates that a licengg, p) should not be removed from the
set of licenses when determiningyifis permitted to issue

g. Finally, Example 3.8 uncovers a minor discrepancy be-
tween the description d® and its use irQuery.

Example 3.2: Suppose that Alice is quietly walking beside
her two giggling daughters, Betty and Bonnie. Are the three
of them a quiet group? Intuitively, the answer is no, since
Betty and Bonnie are giggling. According @uery, how-
ever, the answer is yes. Because Alice is quiet Anth
makes the subset assumptiddyery concludes that the
principal{ Alice, Betty, Bonnie} is quiet. That is,

Query(Quiet({ Alice, Betty, Bonnie}), 0, {Quiet(Alice)})

returnstrue, indicating that the group is quidk.

Example 3.3: Suppose that Alice may issue a grgrdand,

if it follows from Bob’s statements that Alice may issye
then Charlie may issug¢ May Charlie issug? The answer
should be yes. If Alice may issug then this right follows
from any statement (or no statement at all). However, ac-
cording to the XrML algorithm, Charlie may not issyeTo

see why, let

g1 = Perm(Alice,issue,g),
g2 = d— Perm(Charlie, issue,g), and
d = Said(Bob,Perm(Alice,issue,g)).

We are interested in

Query(Perm/(Charlie, issue, g),0,{g1,92}).

Said({Alice, Amy}, Perm(Alice, issue, Smart(Alice))).

d holds, because Alice is permitted to issue the
grant Smart(Alice), given that Amy and Alice are per-
mitted to issue every grant. Howeveétplds(d,) returns
false, becauseR,, includes only grants that are mentioned
in L, which is@ in this case.

Suppose that instead of being), L
{(q1, Alice), (g2, Amy)}, where g Smart(Alice)
and ¢ Said(Bob, Smart(Alice)) —
Perm(Alice, issue, Smart(Alice)). Now, Holds(d, L)
should returntrue for a reason quite different from that
above. To see this, notice that if Alice and Amy may is-
sue any grant, thery; and go hold. Therefore, Al-
ice is smart and, as in Example 3.3, it follows that
Said(Bob, Smart(Alice)) holds (since Alice is smart,
this fact follows from Bob’s statements). Because the con-
dition in g holds andgs holds, the conclusion ofj
holds and, thus, Alice may issue the gr&mhart(Alice).
Unfortunately, Holds(d, L) still returns false. Specif-
ically, Holds(d, L) sets R, = {gi1,92}. It then calls
Holds(Said(Bob, Smart(Alice)),L). This call re-
turns false, because it is not passed the assumption that
Alice’s statement holdd

Example 3.5: Suppose that Alice is trusted, if Amy says
that she may issue some grant (any grant at all). Is Alice
trusted? To answer this query, we must compute

Query(Trusted(Alice), 0, {Vz(d — Trusted(Alice))}),

whered = Said(Amy, Perm(Alice, issue, x)). Query
begins by calling

Auth(Trusted(Alice),, {Vx(d — Trusted(Alice))}),

whichreturngD = {Said(Amy, Perm(Alice, issue,g)) |
gisagrant. Query then calls Holds(d', L) for each
d’ € D. However, the language includes infinitely-many

grants, even if there is only one propefty and one prin-
cipal p in the language. To see this, define granis

n > 1, inductively by takingg; true — Pr(p)
and g,+1 = Said(p,Perm(p, issue,g,)) — Pr(p)
for al n > 0. Clearly each of these grants is dis-
tinct. SinceD is an infinite setQuery does not terminate.
|

Perm(Alice,issue,g)}, and ¢ = Smart(Alice).
Query(Smart(Alice), L, R) begins by calling
Auth(Smart(Alice), L, R). This algorithm checks

whether or not Alice is permitted to issug It deter-
mines that Alice may not issug because the permission
does not follow fromR and L — {(g, Alice)}. Since Al-
ice is not permitted to issug Auth setsR’ = R and re-
turns (). BecauseAuth returnsf), Query returns false.

Example 3.6: Suppose that Alice and Amy may issue any g

grant, Alice says that Bob is trustworthy if Amy says that
he is, and Amy says that Bob is trustworthy if Alice says

Example 3.8: Suppose that a trusted principal issues the

that he is. Should we conclude that Bob is trustworthy? The grant g;, where g, says ‘if Amy says that some princi-

intuitive answer is no, since neither Alice nor Amy says that
heis.

To answer this query usingQuery, let e
Trustworthy (Bob), L = {(g1, Alice), (g2, Amy)}, g1 =
Said(Amy,e) — e, g2 = Said(Alice,e) — e, andR =
{VzPerm(Alice, issue, x), VePerm(Amy, issue, x)},
where z is a variable of sortResource. We are in-
terested in Query(e,L,R). Query(e,L,R) be-
gins by calling Auth(e, L, R), which returns the set
D {Said(Amy, e), Said(Alice,e)}. Query then
calls Holds on each of the conditions inD. Dur-
ing the execution oHolds(Said(Amy, e), L), Holds sets
Ramy = {g2}, and then call$Holds(Said(Alice, e), L).
Holds(Said(Alice,e), L) setsRaice = {g1}, and then
calls Holds(Said(Amy, e), L). Notice that this is just the
original call. It is not hard to see that an infinite num-
ber of calls toHolds(Said(Amy, e), L) will be made dur-
ing the execution oHolds(Said(Amy,e), L) and, thus,
the algorithm does not terminate.

It is tempting to conclude that a conclusian fol-
lows from a setL of licenses and a s&® of grants only
if Query(e, L, R) terminates and returnsrue. Unfortu-
nately, this might not lead to the intuitively correct answe
To see why, consider a slight modification of our pre-
vious example where we addTrustworthy(Bob)}
to the grant setR. Intuitively, this means that an im-
plicitly trusted principal says that Bob is trustworthy. It
now seems reasonable to expé€utery(e, L, R') to re-
turn true, where R’ R U {e}, ande, L, and R
are as defined in the original example. Surely the is-
sued grants imply that Bob is trustworthy, since a grant
issued by a trusted principal says just that! However, the ex
ecution ofQuery(e, L, R’) does not terminate for the same
reason thaQuery(e, L, R) does not terminatd.

Example 3.7: Suppose that Alice says that she is smart,
and if Alice says that she is smart, then she is per-
mitted to say that she is smart. Is Alice smart? In-
tuitively, the answer is yes, because Alice is per-

mitted to say that she is smart and she does so.

But consider Query(Smart(Alice), L, R), where
L = {(g, Alice)}, R = {Said(Alice, Smart(Alice)) —

pal may issugy., then Alice may issue it’. May Alice issue
g2? At first glance, the answer should be no. Alice may is-
suegs only if Amy says that some principal may issyg

we cannot conclude this from alone. Howevery; was is-
sued by a trusted principal, who we will call, p, may is-

sue any grant, and, thug,’s right to issueg, follows
from Amy’s statements, because it is true. So, the condi-
tion in g; is met and Alice may issugs. Unfortunately,
Query(Perm(Alice,issue, g2),0, R) returns false,
where R {Vx(Said(Amy, Perm(x, issue, g2)) —
Perm(Alice,issue, g2))}. Thus, Query does not al-
ways treat the grants iR as having been issued by
a trusted principal (who may issue every grant). Per-
haps a better interpretation is thQtery treats the grants

in R as being those that are accepted, without assum-
ing that they have been issued by some trusted princi-
pal. While this is a perfectly reasonable interpretatian, i
is not consistent with the discussion in the XrML docu-
mentll

3.3. A Corrected Version of Query

In this section we revisQuery and the informal lan-
guage description to avoid the problems observed in Sec-
tion 3.2. Three of the corrections are fairly straightforska

e We resolve the mismatch illustrated in Example 3.2 by
removing the subset assumption fréxath. We note
that the language is sufficiently expressive to force the
subset assumption, if desired, by including the follow-
ing grants ink:

g =Vx;...Ves(Perm(zq, issue, 22) —
Perm(z; Uxs, issue, z2))

gi = Vx1Vao(Pri(z1) — Pri(z1 Uxs)),

fori =1,...,n,

wherex, ..., x3 are variables of the appropriate sorts
andPrq, ..., Pr, are the properties in the language.

We address the problem exhibited in Example 3.3 by
modifyingQuery so thatR (the set of grants issued by
a trusted principal) is passed to and used appropriately

by Holds. In addition, we add?, to R during the eval-
uation of Said(p, e). This solves the problems high-
lighted in Example 3.4.

We do not reviseQuery in any way to respond to

the discussion in Example 3.8. Instead, we change

the intuitive meaning ofR; we assumer is the set

of grants that implicitly hold, although they are not
necessarily issued by a principal (trusted or other-
wise). We remark that we could force the algorithm
to treat a principap as trusted by including the grant
VzPerm(p, issue, z) in R, wherez is a variable of
the sortResource.

There are three remaining issues, corresponding to Exam

ples 3.5, 3.6, and 3.7. We consider each of these in turn.
We restrict the language to avoid the type of nontermi-
nation that occurs in Example 3.5. There are various restric
tions that could accomplish this. To understand ours, frecal
that Auth(e, L, R) first extendsR to R’ by adding all the

grants and licenses, we solve the problem raised in Ex-
ample 3.5. Note that, this restriction is, in a sense,
necessary to deal with the problem: ¢fis not accept-
able, then there is a variable of soRtesource in dg,
say z, that does not appear ia If we can find a sub-
stitution o such thate,o = e, then there must be in-
finitely many distinct grantd,oc — e4o whereego = e,
since there are infinitely many distinct substitutions pos-
sible forz. For example, ife = Perm(Alice, issue, g),
where g is a closed grant, then the set of substitu-
tionso such that

Perm(Alice, issue, z)oc = Perm(Alice, issue, g)

andSaid (@), Perm(Alice, issue, y))o is closed is the in-
finite set

{ly/tz/g]| tis aclosed term of soResource}.

We now consider the type of nontermination exhibited

grants that are issued by someone who has the authority tdh Example 3.6. This behavior occurs becaaeery tries

do so. Since all the grants iR’ — R are in L, the setR’
must be finite. ThenAuth creates the possibly-infinite set
Ry, consisting of all substitution instances of grantdif
andreturndd | d — e € Ryx}. (For simplicity here, we are
assuming thafuth does not use the subset assumption; this
assumption does not affect our discussion.) Skt con-
siders only the grants iRx, whose conclusion matches the
first input toAuth, we could certainly replac&s, by RY,
where
Ry = {djo —e|Va1...Va,(dy — e,) € R/,
o is a closed substitution, argo = e}.

Becausee is closed,R%; is finite if for every grantg in

R', if ¢g’s condition mentions a free variablg then ei-
ther z ranges over a finite set ar appears ing's con-
clusion. Our solution is simply to restrict the language
so that every grant has this property. Since, in our frag-
ment, there are infinitely-many resources (grants), ang onl
finitely many principles, this amounts to restricting the-la
guage so that i¥/z; ... Vz,(d, — e4) is a grant, then ev-
ery free variable of sorResource that appears i, also
appears ire,. We call a granacceptableif it has this prop-
erty; we call a licenség, p) acceptable ify is acceptable.
Thus, for exampleyzVy(Said (), Perm(z, issue,y)) —
Perm(Alice, issue,y)) is acceptable, but

VyVz(Said((), Perm(Alice, issue,y)) —
Perm(Alice, issue, 2))

is not. It is not hard to see that if a grant
g = Vzi...Vz,(dy — e4) is acceptable, then for
any closed conclusion there are at mogtgllprimitivePrin|
grants of the forml,oc — e4o such that is a closed sub-
stitution ande,o = e. Thus, by restricting to acceptable

to verify that aSaid conditiond holds by checking ifd
holds. We see this in Example 3.6 when the algorithm tries
to verify that the conditiotdolds(Said(Amy, e), L) holds
by repeatedly callingdolds(Said(Amy, e), L). To correct
the problem, we modifyHolds so that no call is evaluated
twice. Specifically, the revisedolds takes a fourth argu-
mentS that is the set o8aid conditions that have been the
first argument to a previous catfolds(d, L, R, S) returns
false if d € S. In addition,Holds setsS to () if grants are
added toR, because no condition has been evaluated un-
der the new set of assumptions. Becahis#ds? calls the
other algorithms, they also take the additional argument.
Finally, we resolve the problem illustrated in Ex-
ample 3.7. As we hinted in Section 3.1, the prob-
lem lies in the definition ofR’. Recall that we define
Auth(e, L, R) Auth(e, 0, R’). Roughly speakingR’
should consist of the set of grantsfihtogether with those
issued by someone who has the authority to do so. In other
words, R’ should beR U {g | foraprincipalp, (¢,p) €
L andQuery(Perm(p, issue, g), L, R) returnstrue}.
However, when computinQuery(Perm(p, issue, g), L, R),
Auth is given the argument — {(g,p)} rather thanL.
Our solution is to do the “right” thing here, and com-
pute Query(Perm(p, issue, g), L, R). But now we have
to deal with the problem of termination, since a conse-
quence of our change is th&uery(e, L, R) terminates
only if the setL = (. To ensure termination, we mod-
ify Auth so that it does not call itself to evaluate a con-
clusion that has already been considered. We remark that
this is essentially the same approach that we take to ensur-
ing thatHolds terminates.
Pseudocode for the modifigQuery? is given in Fig-
ure 4.Query?2 callsAuth2 andHolds2, which are the mod-
ified versions ofAuth andHolds, respectively. Pseudocode

for Auth2 is given in Figure 5 and pseudocode fdolds2
is given in Figure 6.

To summarize, the main differences betweguery?2,
Auth2, andHolds2 and their analogues as defined in the
XrML document are:

e Auth2 does not make use of the subset assumption.
e Holds2's output depends ori2, which is the set of
grants that implicitly hold.

e Holds2(Said(p,e), L, R, S, E) returnstrue if e fol-
lows from L, R, andR;,, which says that every princi-
pal inp may issue every grant.

e For anySaid conditiond, Holds2(d, L, R, S, E) re-
turnsfalse if d € S.

e Auth2 does not removéy, p) from the set of licenses
when determining ip may issug.

e For any conclusiore, Auth2(e, L, R, S, E) returns
falseif e € E.

Query2(e, L, R, S, E):

let D = Auth2(e, L, R, S, E)

for eachd € D
if Holds2(d, L, R, S, E) returnstrue
then Returntrue

Returnfalse

Figure 4. The Query2 Algorithm

Auth2(e, L, R, S.E):

ifeec F
then Return@
else
let B/ = EU{e}
let R =R
for each(g,p) € L
if Query2(Perm(p, issue,g),L, R, S, E’)

returnstrue
then let R’ = R' U {g}
let D=

for each gran¥z; ...V, (d; — ¢,) € R and
closed substitution such that,o = e
let D=DU{d4o}

ReturnD

Figure 5. The Auth2 Algorithm

Holds2(d, L, R, S, E):

if d = true then Returntrue
ifd=d; Ndy
then Return/\i:m Holds2(d;, L, R, S, E)
if d = Said(p,e)
then
ifde S
then returnfalse
else
let S’ = SU{d}
let R = RU{VzPerm(p’,issue,z) | p’ € p}
if " =R
returnQuery2(e, L, R, S', E)
else
% ResetS’ and E; they might follow fromR’.
returnQuery2(e, L, R', 0, 0)

Figure 6. The Holds2 Algorithm

We observe thaQuery2 terminates on all input that
is in our restricted language. Recall that a grgnt=
Vi ...Vo,(dy — e4) is acceptable if every free variable
of sort Resource that is mentioned i, is also mentioned
in eq; the licensgg, p) is acceptable if is acceptable.

Theorem 3.9: Supposethat e isa closed conclusion, L isa
set of acceptable licenses, R is a set of acceptable grants,
S isaset of Said conditions, and E' is a set of conclusions.
Then Query2(e, L, R, S, E) terminates.

Query2 has the intuitively correct input/output be-
havior for the examples in Section 3.2. In Exam-

ple 3.2, Query2(Quiet(p’),0, Quiet(p),0,0) re-
turns false, when p’ = {Alice, Betty, Bonnie}
and p = Alice, because Auth2 does not rely
on the subset assumption. In Example 3.3,

Query2(Perm(Charlie, issue, g),0,{g1, 92}, 0,0)

returns true, because Holds2 correctly handles
the set R of grants that implicitly hold. In Exam-
ple 3.4, Holds2(d,0,0,0,0) and Holds2(d, L, ®,®,0)
both return the intuitively correct answetrue.
We avoid the problem in Example 3.5, since the
grant Va(Said(Amy, Perm(Alice, issue, z))
Trusted(Alice)) is not acceptable. In Example 3.6,
Query2(Trustworthy (Bob), L, R,), () returns
false and Query2(Trustworthy(Bob),L, R’ (,0)

—

returns true, as it should. In Example 3.7,
Auth2(Smart(Alice), L, R,0,0) returns the intu-
itively correct answer, namelytrue, because Al-

ice’s issuance ofg is taken into account when de-
termining if Alice may issueg. Finally, in Exam-
ple 3.8, Query2(Perm(Alice,issue,g2),0, R,0,0)

returns false, where R = modelm if ¢ is true in all acceptable models. If a formya
{Vz(Said(Amy, Perm(z, issue, ¢2)) — is true in all acceptable models, then we sais valid and
Perm(Alice,issue, g2))}. This is the intuitively cor- write = . Thus,Val(y) is true in an acceptable model iff
rect answer, because we no longer assume that some prir= ¢.
cipals are implicitly trusted. The translation takes a sebf licenses, a sek of grants,

We have discussed the examples in Section 3.2 withand a sefS of Said conditions as parameters. Intuitively,
members of the MPEG-21 working group that are develop- is the set of licenses that have been issueds the set of
ing XrML. They agreed with our observations and have ap- grants that are assumed to be true, &rid the set oSaid
parently dealt with many of them in the final version of the conditions that have been considered when determining if a
specification. Based on these discussions, we believe thatondition holds. (The role o should become clearer in the
the technical results in the rest of the paper should applycourse of defining the translation.) Finally, we assume that

with very little change to the final XrML specification. if (g,p) € L thenp is variable-free. (We do this because
the assumption is built intQuery.) The translation is de-
4. Formal Semantics fined below, where™ 5 is the translation of the string

given inputL, R, andS.
In this section we provide a formal semantics for the

L,R,S _ :
XrML fragment described in the previous section, by trans- ° It (g.p) € L. (9,p) Perm(p, issue, ;) =

L,R,S

lating licenses in the grammar to formulas in a modal many- 9 .
sorted first-order logic. The logic has three soRsincipal, o If (9,p) € L, (9,p)"™° = true.
Right, and Resource. The vocabulary includes the follow- o Va,...Vo,(d —)PS5 = va, .. Vo, (d"F5 =
ing symbols: el RS,
e a constanp of sort Principal for every principal € o true’ ™S = true.

primitive Prin;
e aconstantssue of sort Right;
e aternary predicatPerm that takes arguments of sort

e If Said(p,e) € S, thenSaid(p, e)L-9 = false.
o If Said(p,e) & S, thenSaid(p, ¢) 75 =

Principal, Right, and Resource; Val(/\ LRSS A /\ gLJ?/,S/ - 6L7R/7S/)’
e a unary predicaté’r that takes an argument of sort teL geER’
Principal for each propertyPr € primitiveProp; .
mncz;.)a propertyPr € primitiveProp where &' _ S U {Said(p,e)} and
e afunctionU : Principal x Principal — Principal,; R = R U {VaPerm(p, issue,z) | p €
e a constant, of sort Resource for each grany in the p andz is a variable of sorResource}.
language. o (dy A do)RoS :df,R,S/\dg,R,S.
e a m(;dal operatoYal that takes a formula as an argu- e Perm(p, 7, s)“R5 = Perm(p, r, s*), wheres* — s
ment. if s is a variable of sorRResource ands* = ¢, if sis a
Intuitively, Pr(p) means principap has propertyPr, and grant.
Val(¢) means formulg is valid. Notice that every princi- LRS _
. : e Pr(p)~'> = Pr(p).
pal in the grammar corresponds to a term in the language,
because’ is a function symbol. The following theorem shows that our semantics match

The semantics of our language is just the standard sethe procedure given in the XrML document (corrected as
mantics for first-order logic, extended to deal withl. We described in Section 3).
restrict attention to models for whichsatisfies the follow- thegrem 4.1: For every closed concluson e, set

ing properties: L of acceptable licenses, and set R of accept-

Ul. Vz((z Ux) = x) able grants, Query2(e,L,R,0,0) returns true iff
L.R,0 L,R,0 L,R,0

U2. Va1V (21 U zg) = (22 Uxy)) = Avert A /\geRg = e :

U3. Va1 VaoVas(z1 U (32 Uzs)) = (21 U 22) U z3)) Before leaving this section, we remark that, in the trans-

lation of Perm(p, issue, g), we can replace by the con-

U4. vz ((z U0) = 2) stantc, because of our assumption thatis closed. If

In addition, we are interested only in Herbrand models, we had allowedg to be open (i.e., to include free vari-
where the only elements of soRrincipal, Right, and ables), then we would need to translate every conclusion
Resource are interpretations of syntatic terms. We call such Perm(p, issue, g) as Perm(p, issue, fy(21,...,25)),
modelsacceptable models. Val(y) is true in an acceptable wheref, is a function symbol and, ..., z, are the free

variables ing. Although this extension is straightforward, which does not affect the complexity.) Determining if a lit-
it might have a substantial impact on tractability; see Sec- eral follows from a set of function-free negation-free Horn

tion 6.

5. Complexity

In this section, we examine the complexity of deciding if

the revisedQuery2 returnstrue on a given input. As we

clauses is a well-known polynomial time problem [5]. Us-
ing the same techniques, we can answer our queries in poly-
nomial time.

Theorem 5.2: The problem of deciding whether
Query2(e, L, R, 0, 0) returnstrue, where e isa closed con-
clusion, L is a set of acceptable licenses, and R is a set of

now show, the problem is NP hard. The real problem turns gcceptable grants, and U does not appear in e, L, or R, is

out to be that, if there are primitive principals, we can con-
struct2™ principals using the) operator.

Theorem 5.1: Deciding if Query2(e, L, R,0,0) returns
true, where e is a closed conclusion, L is a set of ac-

in polynomial time.

How serious a restriction is it to disallow theoperator?
Principals appear as the second argument in a license, the
firstargumentin 8aid condition, and the first argument in

ceptable licenses, and R is a set of acceptable grants, is
NP-hard.

Proof: (Sketch:) We show that we can reduce the Hamil-
tonian path problem to the problem of determining
whetherQuery2(e, L, R, 0, 0) returnstrue. Given a graph
G(V,E), whereV = {vq,...,v,}, we takevy,...,v,

to be primitive principles. We also assume that the lan-
guage has primitive properti®ode, Edge, andPath. For
each node € V, we consider a grant, = Node(v) (re-
call that this is an abbreviation fatrue — Node(v));

for each edgee = (v,v') € E, we consider the
grant g, .,y = Edge({v,v'}). (We are taking advan-
tage of the fact here th&t, v’} is a principal if v and

v’ are primitive principals.) Finally, ley be the grant
Yoy ... Voo (di Ade — Path({zy,...,2z,})), where

di = Aj<ic,Said(Alice, Node(z;)) and
dy = Algign_lSaid(Alice,Edge({a:i,a:l-H})).

LetR={g, |veV}U{ge | e€ E}U{g}.Itisnot hard
to show thatQuery2(Path({v,...,v,}),0, R,0,0) re-
turns true iff G has a Hamiltonian path. To see this,
observe that Auth2(Path({vi,...,v,}),0,R,0,0)
returns {dioc A deoc | o(z;) = wv:(i),i =
1,...,n, wherer is some permutation dfl, ..., n}}.

The conditiondzo holds iff there is a patlryo, ..., z,0.
Thus, Query2(Path({vi,...,v,}),0,R,0,0) returns
true iff there is a Hamiltonian path itv. Il

Theorem 5.1 shows that deciding the consequences of
even simple grants can be hard. The real culprit here, as we
hinted before, is the ability to form more complex princi-
pals from primitive principals by taking union. If we pro-
hibit the use of the union operator (so that the only princi-
pals that can appear in grants are primitive principals, and
variables of sortPrincipal are taken to range over prim-
itive principals), then the problem becomes tractable. The
key insight is that, without union, the fragment is quite sim
ilar to function-free negation-free Horn clauses. (Theyonl
difference is that our translation includes ti&l operator,

a conclusion.
e According to the XrML documentation, the license

(9,{p1,-..,pn}) is an abbreviation for the set of li-
censeg(g,p) | p € {p1,-..,pn}} It follows that we
can restrict the second argument of licenses to prim-
itive principals and variables without sacrificing any
expressive power. (In fact, we can restrict the second
argument of licenses to only primitive principals, be-
causeQuery assumes that ifg, p) is a license inL,
thenp is variable-free.)

As for the Said condition, if we disallowu, then

we do lose some expressive power. However, the
loss is not as serious as it may appear. We can re-
place all grants of the forn8aid({p1,...,pn},€),
where py,...,p, are primitive principals, by a
grant Said({p1,...,pn}",¢), where {p1,...,pn}*

is a new primitive principal, and then expand
the setL of issued licenses by adding a new li-
cense(g, {p1,...,pn}*) for every license(g,p) al-
ready inL, wherep € {p1,...,p,}. It is not hard

to show that this results in at most a quadratic in-
crease in the number of grants. Thus, as long as the
first argument toSaid is variable-free, we can ex-
press it without using). However, it seems that we do
lose some expressive power in not being able to ex-
pressSaid conditions where the first argumentis a set
that involves a variable.

To understand the impact of our restriction on con-
clusions, we need to consider the meaning of
statements such asTrust({Alice, Bob}) and
Perm({Alice, Bob},issue,g). According to the
XrML documentTrust({ Alice, Bob}) means Al-
ice and Bob together (i.e., when viewed as a sin-
gle entity) is trustedPerm({ Alice, Bob},issue, g)
means Alice and Bob is permitted to issyeHow-
ever, the XrML document does not explain pre-
cisely what it means for Alice and Bob to be viewed
as a single entity Indeed, it seems to treat this no-
tion somewhat inconsistently (recall the inconsistent

use of the subset assumption). There are other diffi-
culties with sets. Notice that if Alice, Bob} is per-
mitted to issue a grant, then presumaphholds if
{Alice, Bob} issuesg. However, according to the
XrML documentation, the licenséy, { Alice, Bob})

is simply an abbreviation for the set of licenses
{(g,{Alice}), (g, {Bob})}. So, it is unclear whether
a principal that is not a singleton can issue a li-
cense. Furthermore, if principals that are not single-
tons can issue grants arfdllice, Bob} is permitted

to issue a grang, then it seems reasonable to con-
clude thaty holds if g is issued by both Alice and Bob,
but it is not clear whether or nat holds if it is is-
sued by only Alice (or by only Bob).

There may well be applications where there is an
obvious and clear semantics for these notions. But we
suspect that, in these applications, there are typically
only relatively few groups of interest. In that case, it
may be possible to simply take these groups to be new
primitive principals, and express the relationship be-
tween the group and its elements in the language. (This
approach has the added advantage of forcing license
writers to be clear about the semantics of groups.)

In short, we are optimistic that many applications do not
need the union function.

6. TheEntire XrML Language

XrML has several components that are not in our frag-
ment. Most have been excluded simply for ease of exposi-
tion. In this section we list the main omissions, briefly dis-
cussing each one.

e XrML supports patterns, where a pattern restricts
the terms over which a variable ranges. For ex-
ample, if the variabler is restricted to the pat-
tern ‘ends in Simpson’, them ranges over the terms
that meet this syntactic constraint (e.g., ranges
over{ HomerSimpson, MargeSimpson, . ..}). Pat-
terns in XrML correspond to properties in our frag-
ment. We could represent the example in our frag-
ment by having the propert§impson in the lan-
guage and having the set of grants determine which
terms have the property. XrML also allows a pat-
tern to be a set of patterns. We can express a set of
patterns as a conjunction of patterns. Since we can ex-
press conjunctions of properties in our fragment, we
can also capture sets of patterns.

e XrML supportsdelegable grants. A delegable grang

ical file and she may also give the right to view the
file to her colleague, Doctor Bob’ can be viewed as the
conjunction of the grant ‘Doctor Alice may view Char-
lie’s medical file’ and the grant ‘Alice is permitted to
issue the grant ‘Doctor Bob may view Charlie’s medi-
cal file”. Thus, we can express delegable grants in our
framework.

e XrML supportsgrantGroups, where a grantGroup is

a set of grants. We can extend our syntax to support
grantGroups by closing the set of grants (as currently
defined) under the union operator. Note that our pro-
posed treatment of grantGroups is quite similar to our
current treatment of principals.

e XrML supports additional types of rights, resources,

and conditions, beyond what we have in our frag-
ment. There seems to be no difficulty in extending our
translation to handle these new features, and prov-
ing an analogue of Theorem 4.1. However, full XrML
allows resource terms to be formed by applying func-
tions other tharu. For example, the Standard Exten-
sion [3] refers to acontainer resource that is a se-
guence of resources. This naturally translates to a func-
tion containerResource x Resource — Resource,

so that the containers, s, s3) is translated as
containefsy, containefss, s3)). Allowing such func-
tions makes the problem of deciding if a conclusion
follows from a set of XrML licenses and grants un-
decidable, for much the same reason that the validity
problem for negation-free Datalog with function sym-
bols is undecidable [5].

e XrML allows an application to define additional prin-

cipals, rights, resources, and conditions within
the XrML framework. Obviously, we cannot ana-
lyze terms that have yet to be defined; however, we do
not anticipate any difficulty in extending the transla-
tion to deal with these terms and getting an analogue
of Theorem 4.1.

e XrML allows a grantg to include free variables if

appears in the scope of a closed grant. As we men-
tion in Section 4, there is no problem dealing with
this extra expressive power semantically; we simply
replace each constanj by a functionf,. However,
there might be a problem with the extended language’s
tractability. As we have just shown, adding function
symbols in general leads to undecidability. We are cur-
rently investigating whether adding the symbols in this
particular way has similar consequences.

can be viewed as a conjunction of a grgnhtin our
fragment and a sef’ of grants that, essentially, al-
low other principals to issug’. For example, the del-
egable grant ‘Doctor Alice may view Charlie’s med-

XrML has three parts: the core language that we discuss eeien-
sions to the core that are provided by the XrML language dpesk,
which includes the Standard Extension; and extensions rpcg-
plications to suit their particular needs.

e XrML allows licenses to be encrypted and supports ab- meaning of various XrML components.

breviations via thénventory component. However, the
XrML procedure for determining if a permission fol-
lows from a set of licenses assumes that all licenses are
unencrypted and all abbreviations have been replaced1]
by the statements for which they stood. In other words,
these features are engineering conveniences that aré?]
not part of understanding or reasoning about licenses.

7. Concluding Remarks [3]

We have examined XrML carefully, showing that the [4]
XrML algorithm does not seem to capture the designers’
intentions in a number of ways. Since no formal semantics
for XrML is given in the XrML documentation, we can-
not argue that the XrML algorithm is incorrect, although its
behavior does not always seem reasonable. To address the
problem, we provided formal semantics for XrML in a way
that we believe captures the designers’ intent, modified the
algorithm, and showed that the modified algorithm corre-
sponds to our semantics in a precise sense. Our work em-
phasizes the need for license languages to have formal se-
mantics. Without formal semantics, even carefully crafted
languages are prone to ambiguities and inconsistencies.

We have examined only a fragment of XrML. A key rea-
son for XrML's popularity is that the framework is exten-
sible; applications can define new components (i.e., prin-
cipals, rights, resources, and conditions) to suit theddse
We do not believe there should be any difficulty in giving se-
mantics to the extended language. The real question of in-
terest though is whether we can find usefattable exten-
sions. As we have already seen, although functions pose no
semantic difficulties, adding them makes determining what
follows from XrML licenses and grants undecidable. An-
other obvious and desirable feature to add is negation. Cur-
rently, XrML does not support negation in either the condi-
tion or conclusion of grants. This is a significant expressiv
weakness. Without negation, policy makers cannot distin-
guish actions they would like to forbid from the actions that
they do not care to regulate. This makes merging two sets
of policies essentially impossible; the merger will be in€o
sistent unless the polices are identical.

While it is easy to extend XrML to support negation, do-
ing so without placing further restrictions on the language
quickly leads to intractability. We believe that, usingade
from our earlier work [2], we will be able to identify useful
tractable fragments of XrML extended with negation. How-
ever, we leave this to future work.

Acknowledgements

Many thanks to Xin Wang (an editor for the XrML doc-
ument), who answered our questions about the intended

References

ContentGuard. XrML: The digital rights language forgted
content and services. http://www.xrml.org/, 2001.

J. Halpern and V. Weissman. Using first-order logic tcsmra
about policies. IrProc. 16th |IEEE Computer Security Foun-
dations Workshop, pages 187-201, 2003.

MPEG. MPEG-21 rights expression language FCD.
http://www.chiariglione.org/mpeg/workindocuments.htm,
2003.

MPEG. Information technology—Multimedia framework
(MPEG-21) — Part 5: Rights expression language (ISO/IEC
21000-5:2004). http://lwww.iso.ch/iso/en/, 2004.

[5] A. Nerode and R. ShoreLogic for Applications. Springer-

Verlag, New York, 2nd edition, 1997.

