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Abstract

Covert channels have traditionally been calegorized
as either storage channels or timing channels(6, 7].
This paper questions this categorization, and discusses
channels that cannot be clearly identified as either
storage or timing channels, but have aspects of both.

A new model of timing channels is presented, which
allows for channels that have characieristics of both
storage channels and timing channels, and a method is
given for constructing all channels in a computer sys-
tem that have timing channel characteristics. Since
Kemmerer’s shared resource matriz methodology[5]
has the potential to detect all channels that have stor-
age characteristics, the two methods jointly have the
capabilily to construct all channels in ¢ computer sys-
tem.

The approach to timing channels provides a justifica-
tion of specific mechanisms for reducing their band-
width which were employed in the VAX' Virtual Ma-
chine Monitor, as described in [3] and [2].

1 Introduction

Covert channels have traditionally been divided into
two classes, storage channels and timing channels.
The distinguishing feature between the two classes is
that in timing channels, information is conveyed by
the timings of events, and thus they require the re-
ceiving process to have access to an independent clock
with which these timings may be measured, whereas
storage channels are exploitable without the aid of an
external time reference.

In the covert channel analysis of VAX Virtual Machine
Monitor[4], this distinction was not found to be use-
ful. Some channels were found which, by minor varia-
tions in the channel exploitation, appeared to change
from storage channels to timing channels, and vice-
versa. Since the underlying mechanism of the channel
remained unchanged across the different exploitations,
this casts doubt on the validity of the categorization.

*This paper presents the opinions of its author, which are not
necessarily those of the Digital Equipment Corporation. Opin-
jons expressed in this paper must not be construed to imply
any product commitment on the part of the Digital E.:.:ipment
Corporation.

1VAX is a trademark of Digital Equipment Corporation

CH2986-8/91/0000/0002$01.00 © 1991 IEEE

This paper presents an example of such a channel,
and presents a modified treatment of covert chan-
nels, whereby storage nature and liming nalure are
attributes of the channel, and a given channel may
possess either or both. Channels &at possess timing
nature are examined, leading to a method whereby
they may be constructed from a knowledge of a sys-
tem’s asynchronous behavior.

2 The Disk-arm Channel

A covert channel involving the placement of the arm of
a shared disk-drive was first identified in KVM-370[1].
This variant of the channel operates as follows:

Assume that the shared disk drive contains adjacent
cylinders 51 through 59, and is shared for read-access
by two virtual machines HIGH and LOW, operating
at high and low secrecy levels respectively. When the
disk controller has multiple seek requests outstanding,
it implements an elevator algorithm to determine the
order in which to service the requests.

Initially, LOW issues a read request to cylinder 55,
waits for the request to complete, and then gives up
the CPU. HIGH now runs, and issues a request to
seek to either cylinder 53 (to send a zero bit) or 57 (to
send a one), and immediately relinquishes the CPU.
LOW then issues seek requests to both cylinders 52
and 58 and observes the order of completion of these
requests. If HIGH had issued its seek request to cylin-
der 53, the arm would have been traveling in the di-
rection of decreasing cylinder number, and would have
continued in this direction, servicing LOW’s requests
in the order 52 followed by 58. If HIGH had issued its
seek to cylinder 57, then LOW’s request would have
been serviced in the reverse order.

This channel was described as a timing channel be-
cause it relies on the relative timing of the two
seeks initiated by LOW. However, this variant of the
channel requires no external clock, the data flowing
through the channel being determined purely by the
order of two events (the completion of the seeks). The
channel would still operate if LOW issued a single
seek to cylinder 58 and measured the time taken for
this request to complete. If HIGH’s seek had been to
cylinder 57, then LOW’s seek would complete much
sooner than if HIGH had moved the arm towards
cylinder 53. Given this exploitation, the channel is
clearly a timing channel.



The channel does not strictly require the disk con-
troller to implement an elevator algorithm. Consider
the same disk, using an arbitrary algorithm to deter-
mine the direction in which to move the arm, the only
constraint being that if the arm is moved over a cylin-
der to which a seek is pending, then that seek shall
complete. Assume that HIGH issues a seek request
to either cylinder 51 (to send a zero) or to cylinder
59 (to send a one), and waits for the seek to complete
before relinquishing the CPU. LOW then issues two
seek requests to cylinders 53 and 57. The completion
order of these two seeks is completely determined by
the prior positioning of the arm by HIGH. Again, if
LOW were able to accurately measure the time taken
for the completion of a seek request, it could exploit
the channel using only a single seek.

These different exploitations all seem to be variations
on the same underlying channel mechanism - the prop-
erty that the time taken for a seek request to complete
depends on the position (and possibly prior direction
of motion) of the disk arm at the time the seek re-
quest is issued. Hence, it is attractive to view these
exploitations as simply variations of the same chan-
nel. However, if the distinguishing feature of timing
channels is that they require an external clock, then it
would appear that the channel variants involving two
seek operations are storage channels, while the single-
sezk versions are timing channels.

This channel (and some additional variants) were ad-
dressed in VAX Virtual Machine Monitor by the ap-
plication of a variety of techniques, the goal of which
was to make the timing of a seek operation (either as
a pure seek or as part of a read or write operation&
invisible to user-processes, both in absolute terms an
in relation to other seek operations to the same disk
device. These techniques are described in [3].

3 Clocks

Since the conventional definition of a timing channel
refers to the use of a clock, it is instructive to examine
what are the defining properties of a clock. In its
broadest sense, any method for measuring the progress
of time may be deemed a clock. We view the passage
of time as being characterized by sequences of events
which can be distinguished one from another by an

observer 2.

Given internal memory, an observer will be able to
distinguish its internal events from one another, and
will thus be able to use these events to measure the

2Whether or not a given event can be distinguished from
another may depend on the observer. For example, if an event
consists of a boolean variable changing state, then there are
only two intrinsically distinguished events (true — false) and
(false — true). However, if an observer is incrementing a count
of how many times the variable has changed state, then there
are an infinite number of possible distinguished events for that
observer, each event being the change in the value of the counter
from N to N + 1. The presence of sufficient internal memory
allows an observer to distinguish arbitrary numbers of otherwise
indistinguishable events

passage of time. All processes on a computer have
internal memory, and therefore it would appear that
all processes can act as clocks. In practice, a timing
loop may be used, each distinguished event being the
increase in value of a loop-counter.

The above argument leads to an interesting symme-
try: The passage of time is simply the occurrence
of sequences of distinguished events. One sequence
of events may be used as a measure, with which a
contemporary sequence may be compared, to deter-
mine the relative ordering of the events in the two
sequences. In other words, one sequence of events can
serve as a clock which may be used to measure the
(relative) timing of other event sequences.

The above description of a clock includes event se-
quences that are irregular. This is intentional, since
the only way to determine whether a particular event
sequence is “regular” is to measure the time between
successive events using another clock. This argues
that there is no absolute scale against which time may
be measured; rather time may only be measured in
terms of event orders.

Given the absence of an absolute time scale, the rela-
tive qualifier used above may be dropped as superflu-
ous, which results in a complete equivalence of mea-
sured property and measuring device.

Using this equivalence between a clock and an event
stream, we can re-state the timing channel definition
as a channel in which information is conveyed by the
relative timings of two clocks or event sequences visible
to the observer. The transmitter injects information
into the channel by modulating the relative frequency
or phase of the two clocks.

In many simple timing channels, a single clock is mod-
ulated by the transmitter, and the receiver compares
this clock with a reference clock to detect the modula-
tion. In more complicated channel exploitations, both
clocks are modulated (in anti-phase) by the transmit-
ter.

4 The disk channel as a pair of clocks

Re-examining the four variants of the disk arm channel
discussed above, we find that two clocks are involved
in each. A sequence of pairs of (issue-seek, complete-
seeﬁ events forms a clock, and there are two such
clocks operating simultaneously in the first and third
variants. The second and fourth variant use a single
(issue-seek, complete-seek) sequence, and require the
use of an additional clock by the receiving process to
measure the timing of this sequence. The receiving
process may make use of a timing loop to synthesize
this additional clock.

5 Dual-clock analysis

Since a timing channel exploitation requires the si-
multaneous observation of two clocks by the receiver,
a method of constructing timing channels is suggested.
The analyst first enumerates all clocks in the sys-
tem, and then examines them pair-wise to determine



whether each pair of clocks can be exploited as a chan-
nel. This approach is best visualized as the construc-
tion of a matrix, whose rows list clocks that are mod-
ulated in the channel exploitation, and whose columns
list clocks used as reference clocks in the exploitation.
Each element of the matrix then indicates a potential
channel. The analyst must determine whether each of
these N2 potential channels (where N is the number
of clocks in the system) is exploitable, and if so, what
its bandwidth is.

This is the approach that was taken in the VAX VMM
covert channel analysis, and it successfully exposed
many timing channels, some of which are used as ex-
amples throughout this paper. It also provides a jus-
tification for the validity of the counter-measures that
were applied to reduce the bandwidths of all timing
channels in the system (section 9 and [2]).

In a computer system, some clocks may be intrinsi-
cally impossible to modulate. Such clocks can only
be used as reference clocks, against which modulated
clocks may be measured, reducing the number of po-
tential channels that must be investigated from the
N? elements of the above matrix to N x M, where
M is the number of clocks capable of being modu-
lated. However, practical experience with VAX VMM
has shown that almost all clocks can be modulated
by a sufficiently determined attacker, as discussed in
gsection 8, and thus this approach may offer little to
simplify the analyst’s task.

Given that most clocks can be modulated, it may
be better to abandon any attempt to distinguish be-
tween modulated and reference clocks. Viewed this
way, the matrix lists potential channels (other than
than those on the leading diagonal) twice. The ana-
lyst can therefore ignore half of these channels, result-
ingin N-(N+1 f2 potential channels that must be
investigated. Each such potential channel must be ex-
amined to determine whether the modulation of either
clock is feasible.

This analysis would be of little practical value if clocks
were as difficult to locate as covert channels. Fortu-
nately, in a conventional computer system there are
only a small number of places where clocks may arise.
This can be seen to be true by recognizing that all
computer systems offer a process the ability to con-
struct a clock by executing a timing loop, using the
CPU instruction-cycle clock. All other distinct clocks
must operate asynchronously to this. Conventional
computers confine asynchronous behavior to a few
areas resulting in the following list of possible clock
sources:

e The CPU instruction-cycle clock, which allows
processes to construct accurate timing loops. Ina
multiprocessor system whose CPU’s do not oper-
ate in lock-step, there is one such clock per CPU.

e Real-time clocks or time-of-day registers, which
are provided by the hardware designers as inten-
tional software-readable clocks.

o The IO subsystem (completion interrupts, DMA
data arrival rate, etc)

e The memory subsystem (data/instruction fetch,
interlocks, etc)

Examining each of these areas uncovers several clocks,
most of which may be modulated. For example, the
memory subsystem provides a clock based on the time
take to perform a memory fetch. This time depends
on whather the target data was in the cache (and, for
a system with a multi-level cache, which cache it was
in), and on the level of traffic on the memory bus and
through the memory controller. Most of these factors
can in principal be adjusted by another process.

Many of these clocks occur in large numbers. For
example, the clock formed from the (3ssue-seek,
complete-seek) sequence can be replicated on each
disk-drive (assuming that the disk controllers have
sufficient throughput). This can be used either to
replicate entire covert channels (thus increasing the
aggregate throughput of the channels), or to simply
construct additional reference clocks.

Some of these clocks are not independent. As an ex-
ample, consider a process using DMA data arrival to
construct a clock. The process issues a disk read re-
quest into a buffer, and then polls the first byte of the
buffer. When the data in that byte changes, the pro-
cess knows the DMA transfer has started. It then polls
another location, further along in the buffer, and when
that data changes the process knows that the trans-
fer has reached that point in the buffer. This method
gives the process an accurate and adjustable clock.
However, DMA may cause a high level of memory ac-
tivity, disturbing the operation of clocks constructed
from the memory subsystem.

The VAX VMM experience has shown that it is much
easier to discover clocks than to directly discover tim-
ing channels. This DMA clock described above was
present in an early prototype of VAX VMM, but was
eliminated from the product-quality version by the
techniques described in (3].

6 Storage or timing?

Given that the defining feature of a timing channel is
that two independent clocks are required by the re-
ceiver, all four of the earlier disk-arm channel vari-
ants appear to be timing channels. This was indeed
the category into which the authors of [1] placed this
channel. However, the data is stored in the channel in
the position and direction of motion of a physical disk
arm, which can be viewed as a storage object, and this
argues that the channel is a storage channel.

This illustrates that in many cases there is no sharp
distinction between a storage channel and a timing
channel. In the case of the disk arm channel, the
transmitter injects data into the channel by setting
the position and direction of the disk arm, employing
it as a storage object, whereas the receiver extracts
that information by generating two clocks whose rela-
tive rates are affected by the state of the arm. If one



considers the injection of information, then the chan-
nel is a storage channel, whereas if one considers the
method used to extract information, then the channel
appears to be a timing channel. In practice, it seems
simpler to say that there is a covert channel which has
both storage and timing characteristics. This means
that the channel may be detected either by a method
that detects storage channel, or by a method that de-
tects timing channels.

Kemmerer’s shared-resource matrix methodology has
produced good results when used to detect storage
channels, and in principle allows all storage channels
in a system to be located. The method operates by
listing possible storage objects that may be shared,
and identifies operations that may inject or extract
data from these storage objects. In principal, all stor-
age channels (or all covert channels which employ a
shared storage object) may be detected. However, in
practical use, the SRM analysis is not normally ap-
plied to the entire software and hardware of a system,
and therefore some storage channels may evade detec-
tion.

The dual-clock construction allows channels which
have a timing component to be constructed, much as
the SRM analysis constructs possible storage chan-
nels. As with the SRM analysis, while theoretically
capable of producing all covert channels that have a
timing component, the fraction of channels that are
detected in practice will depend on the depth to which
the system is analyzed, in particular on the depth of
the search for clocks.

The approach outlined here was used in the timing
channel analysis in the VAX VMM. It detected many
timing channels in the prototype, many of which were
shown by subsequent testing to be exploitable at high
speed. These channels were subsequently closed or
reduced in bandwidth in the product-quality version
of the kernel.

7 Direct channels

So far, the channels described have been examples of
what we shall term process channels, where the re-
ceiver is a process executing on the system. A second
class of channels will be termed direct channels. In
these channels, the information being leaked through
the channel appears directly on an output device. As
an example, consider a variant of the above disk-arm
channel. This requires five tracks, named A through
E in order of increasing distance from the center spin-
dle. Tracks B, C and D are adjacent. To transmit
a single bit, the transmitter issues a seek to place the
arm on either track A or track E. The low secrecy pro-
cess is assumed to have write-access to the disk drive,
and issues two simultaneous write requests, one to an
area that includes a block on track B and all blocks
on track C,; and the other to an area that includes
all blocks on track C and one block on track D. The
order in which the write requests complete will be de-
termined by which of tracks A and E the transmitter
placed the arm. Assuming different data was written
by each write request, the final value stored in track

C will indicate the value of the transmitted bit. The
low secrecy process does not need to determine the
completion order in order to exploit this channel — the
information is sent directly to a disk device, where it
remains as low-secrecy data.

There are still two clocks operating in this version of
the channel, formed from (seek,write) pairs. The dif-
ference is that the clocks are constructed in such a
way that the comparison occurs inside the disk-drive,
rather than in an running program.

Another example of a direct channel uses a serial ter-
minal line, and requires a multiprocessor system. A
low-gecrecy process, LOW, initiates a large (many-
character) asynchronous write operation. It then en-
ters a loop, making memory references that avoid any
caches available to LOW. A high-secrecy process, run-
ning simultaneously on another processor, makes ei-
ther similar memory references (to send a one), or
avoids accessing the memory bus (to send a zero). The
time taken for LOW to complete its series of memory
references is thus modulated by the actions of HIGH.
LOW then issues a cancel request to the serial line.
The length of time taken for LOW to complete its
loop (and therefore the bit transmitted by HIGH) can
be inferred from the number of characters that were
sent down the serial line before the cancel aborted the
write.

The fundamental feature of channels that have timing
characteristics is that they employ two clocks, whose
relative rates may be varied by the activity of a trans-
mitting process, and which may be compared to de-
tect the variations in the rates. This treatment of
timing channels bears a close resemblance to the way
in which frequency modulated radio signals may be
demodulated, by comparing them with a locally gen-
erated signal of fixed frequency in such a way that the
difference between the information-carrying signal and
the reference signal (the information itself) is revealed.

8 Modulation Scenarios

The experience of VAX Virtual Machine Monitor in-
dicates that almost every clock can be modulated by a
sophisticated transmitter. Consider a clock provided
by the regular interrupt-stream produced by a dedi-
cated hardware clock-generator. It might be thought
that this clock could not be modulated by software.
However, the event-stream that is visible to a user of
the clock is not the stream of interrupt requests them-
selves, but instead the regular diversions of the pro-
cessor into interrupt-handling code. If a transmitter
can introduce a variable interrupt latency into the sys-
tem (for example, by performing I/O in such a way as
to generate significant device interrupt activity), then
the effect is to delay the visibility of the interrupts to
the receiving process.

Even the clock produced by an instruction timing loop
may be modulated on most multiprocessor systems,
as discussed above in section 7. Provided that the
timing loop is implemented by instructions that ac-



cess main memory® and that a single common asyn-
chronous memory bus is used, then a process executing
on a different processor from the one which is running
the timing loop may flood the memory bus with trans-
fer requests, causing each cycle of the timing loop to
take longer due to the bus contention. An exploitation
of a channel based on this technique was demonstrated
on an early prototype of VAX VMM and found to al-
low high speed information leakage. The bandwidth
of this channel was reduced to an acceptable level in
the final version of the system through the use of tech-
1[1i]ques described briefly in section 9 and in detail in
2|.

While this exploitation takes pains to avoid cache hits
in order that the system memory bus will become a
performance bottleneck, a different modulation sce-
nario can exploit cache hits. Consider a uniprocessor
with a direct-mapped cache, running two processes
containing covert channel exploitation programs. One,
at low secrecy, reads sufficient memory locations to fill
the cache with low secrecy data, and then relinquishes
the CPU. The other process, running at a high secrecy
level, read certain memory locations, causing some
cache slots to be re-filled with high secrecy data, and
then relinquishes the CPU. Finally, the first process re-
reads the data it read earlier, but measuring the time
of each read attempt against a reference clock. Those
memory locations which correspond to cache locations
that were filled with high secrecy data will take sig-
nificantly longer to read than the locations that still
contain low secrecy data, as the displaced low-secrecy
data must be re-fetched from main memory. This ex-
ploitation allows the timing of individual instructions
to be modulated with precision. It is a direct analogue
of the Multics page-fault channel, but as it operates at
a level much closer to the hardware, it is significantly
faster.

9 Fuzzy Time

The measures described in [2], collectively known as
“fuzzy time”, may be justified from the previous dis-
cussion. Information is carried in a timing channel
in the difference in rates of two clocks. Therefore,
if all clocks were removed from a computer system,
then that computer system would exhibit no timing
channels. Such a computer would be useless, since (as
discussed above) removal of all clocks would entail re-
moval of all memory. However, if we accept that any
process may construct an accurate clock from a timing
loop, we can still eliminate timing channels by elimi-
nating all other clocks, since a timing channel requires
a pair of clocks. While it is theoretically possible to
completely remove visibility of asynchronous events
from a computer system, in practice this would result
in very poor performance. It is, however, possible to
add mechanisms which disrupt attempts to compare
clocks by introducing random variations into the vis-
ible timings of events. Simply adding random delays

3This may require careful processor-specific design in order
to avoid per-processor cache memory preventing the access from
reaching main memory.

to events is equivalent to adding noise into the system,
which is likely to severely degrade system performance
and which may be countered by appropriate encoding
techniques. The techniques used in VAX VMM ef-
fectively notify processes of asynchronous events only
at pre-computed times, such that the only informa-
tion that may be deduced from the event delivery is
that the event actually occured previously. The expe-
rience of VAX VMM has been that the impact of such
measures on system performance can be made small
in comparison with the dramatic reduction in the ex-
ploitable bandwidth of the system’s timing channels
that results from their adoption.

10 Summary

The analysis method described above is a distillation
of the informal methods used to locate timing chan-
nels in VAX VMM. Avoidance of covert channels had
been an early design goal, and this was addressed to a
large degree by eliminating dynamic resource alloca-
tion wherever possible. This technique was successful
in that the number of storage channels found in the
system was small. However, many timing channels
were found using the methodology described in this
paper; moreover, many of these resulted from oper-
ations which were outside the control of the software
portion of the TCB. These results lead to the develop-
ment and adoption of the specific bandwidth reduction
techniques described in [2] and [3].

Concentrating on identification of clocks, categorized
as asynchronous event-streams, quickly identifies the
channels and suggests their exploitations. The most
obvious clocks tend to be discovered early, and these
are usually those that are easiest to use in an exploita-
tion. This means that the channels which are easiest
to exploit are identified early in the analysis process.
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