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Abstract
Off-policy evaluation (OPE) in contextual bandits
has seen rapid adoption in real-world systems,
since it enables offline evaluation of new policies
using only historic log data. Unfortunately, when
the number of actions is large, existing OPE es-
timators – most of which are based on inverse
propensity score weighting – degrade severely
and can suffer from extreme bias and variance.
This foils the use of OPE in many applications
from recommender systems to language models.
To overcome this issue, we propose a new OPE
estimator that leverages marginalized importance
weights when action embeddings provide struc-
ture in the action space. We characterize the bias,
variance, and mean squared error of the proposed
estimator and analyze the conditions under which
the action embedding provides statistical benefits
over conventional estimators. In addition to the
theoretical analysis, we find that the empirical
performance improvement can be substantial, en-
abling reliable OPE even when existing estimators
collapse due to a large number of actions.

1. Introduction
Many intelligent systems (e.g., recommender systems, voice
assistants, search engines) interact with the environment
through a contextual bandit process where a policy observes
a context, takes an action, and obtains a reward. Logs of
these interactions provide valuable data for off-policy evalu-
ation (OPE), which aims to accurately evaluate the perfor-
mance of new policies without ever deploying them in the
field. OPE is of great practical relevance, as it helps avoid
costly online A/B tests and can also act as subroutines for
batch policy learning (Dudı́k et al., 2014; Su et al., 2020a).
However, OPE is challenging, since the logs contain only
partial-information feedback – specifically the reward of the
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chosen action, but not the counterfactual rewards of all the
other actions a different policy might choose.

When the action space is small, recent advances in the design
of OPE estimators have led to a number of reliable methods
with good theoretical guarantees (Dudı́k et al., 2014; Swami-
nathan & Joachims, 2015a; Wang et al., 2017; Farajtabar
et al., 2018; Su et al., 2019; 2020a; Metelli et al., 2021).
Unfortunately, these estimators can degrade severely when
the number of available actions is large. Large action spaces
are prevalent in many potential applications of OPE, such as
recommender systems where policies have to handle thou-
sands or millions of items (e.g., movies, songs, products).
In such a situation, the existing estimators based on inverse
propensity score (IPS) weighting (Horvitz & Thompson,
1952) can incur high bias and variance, and as a result, be
impractical for OPE. First, a large action space makes it
challenging for the logging policy to have common support
with the target policies, and IPS is biased under support
deficiency (Sachdeva et al., 2020). Second, a large num-
ber of actions typically leads to high variance of IPS due
to large importance weights. To illustrate, we find in our
experiments that the variance and mean squared error of IPS
inflate by a factor of over 300 when the number of actions
increases from 10 to 5000 given a fixed sample size. While
doubly robust (DR) estimators can somewhat reduce the
variance by introducing a reward estimator as a control vari-
ate (Dudı́k et al., 2014), they do not address the fundamental
issues that come with large action spaces.

To overcome the limitations of the existing estimators when
the action space is large, we leverage additional informa-
tion about the actions in the form of action embeddings.
There are many cases where we have access to such prior
information. For example, movies are characterized by aux-
iliary information such as genres (e.g., adventure, science
fiction, documentary), director, or actors. We should then
be able to utilize these supplemental data to infer the value
of actions under-explored by the logging policy, potentially
achieving much more accurate policy evaluation than the
existing estimators. We first provide the conditions under
which action embeddings provide another path for unbiased
OPE, even with support deficient actions. We then propose
the Marginalized IPS (MIPS) estimator, which uses the
marginal distribution of action embeddings, rather than ac-
tual actions, to define a new type of importance weights. We
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show that MIPS is unbiased under an alternative condition,
which states that the action embeddings should mediate ev-
ery causal effect of the action on the reward. Moreover, we
show that MIPS has a lower variance than IPS, especially
when there is a large number of actions, and thus the vanilla
importance weights have a high variance. We also charac-
terize the gain in MSE provided by MIPS, which implies an
interesting bias-variance trade-off with respect to the qual-
ity of the action embeddings. Including many embedding
dimensions captures the causal effect better, leading to a
smaller bias of MIPS. In contrast, using only a subset of the
embedding dimensions reduces the variance more. We thus
propose a strategy to intentionally violate the assumption
about the action embeddings by discarding less relevant
embedding dimensions for achieving a better MSE at the
cost of introducing some bias. Comprehensive experiments
on synthetic and real-world bandit data verify the theoreti-
cal findings, indicating that MIPS can provide an effective
bias-variance trade-off in the presence of many actions.

2. Off-Policy Evaluation
We follow the general contextual bandit setup, and an ex-
tensive discussion of related work is given in Appendix A.
Let x ∈ X ⊆ Rdx be a dx-dimensional context vector
drawn i.i.d. from an unknown distribution p(x). Given
context x, a possibly stochastic policy π(a|x) chooses ac-
tion a from a finite action space denoted as A. The reward
r ∈ [0, rmax] is then sampled from an unknown conditional
distribution p(r|x, a). We measure the effectiveness of a
policy π through its value

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)],
(1)

where q(x, a) := E[r|x, a] denotes the expected reward
given context x and action a.

In OPE, we are given logged bandit data collected by a
logging policy π0. Specifically, let D := {(xi, ai, ri)}ni=1

be a sample of logged bandit data containing n independent
observations drawn from the logging policy as (x, a, r) ∼
p(x)π0(a|x)p(r|x, a). We aim to develop an estimator V̂
for the value of a target policy π (which is different from
π0) using only the logged data in D. The accuracy of V̂ is
quantified by its mean squared error (MSE)

MSE(V̂ (π)) : = ED

[(
V (π)− V̂ (π;D)

)2]
= Bias(V̂ (π))2 + VD

[
V̂ (π;D)

]
,

where ED[·] takes the expectation over the logged data and

Bias(V̂ (π)) := ED[V̂ (π;D)]− V (π),

VD
[
V̂ (π;D)

]
:= ED

[(
V̂ (π;D)− ED[V̂ (π;D)]

)2]
.

In the following theoretical analysis, we focus on the IPS
estimator, since most advanced OPE estimators are based
on IPS weighting (Dudı́k et al., 2014; Wang et al., 2017; Su
et al., 2019; 2020a; Metelli et al., 2021). IPS estimates the
value of π by re-weighting the observed rewards as follows.

V̂IPS(π;D) :=
1

n

n∑
i=1

π(ai|xi)

π0(ai|xi)
ri =

1

n

n∑
i=1

w(xi, ai)ri

where w(x, a) := π(a|x)/π0(a|x) is called the (vanilla)
importance weight.

This estimator is unbiased (i.e., ED[V̂IPS(π;D)] = V (π))
under the following common support assumption.

Assumption 2.1. (Common Support) The logging policy
π0 is said to have common support for policy π if π(a|x) >
0→ π0(a|x) > 0 for all a ∈ A and x ∈ X .

The unbiasedness of IPS is desirable, making this simple
re-weighting technique so popular. However, IPS can still
be highly biased, particularly when the action space is large.
Sachdeva et al. (2020) indicate that IPS has the following
bias when Assumption 2.1 is not true.

∣∣Bias(V̂IPS(π))
∣∣ = Ep(x)

 ∑
a∈U0(x,π0)

π(a|x)q(x, a)

 ,

where U0(x, π0) := {a ∈ A | π0(a|x) = 0} is the set
of unsupported or deficient actions for context x under π0.
Note that U0(x, π0) can be large especially when A is large.
This bias is due to the fact that the logged dataset D does
not contain any information about the unsupported actions.

Another critical issue of IPS is that its variance can be large,
which is given as follows (Dudı́k et al., 2014).

nVD
[
V̂IPS(π;D)

]
= Ep(x)π0(a|x)[w(x, a)

2σ2(x, a)]

+ Vp(x)

[
Eπ0(a|x)[w(x, a)q(x, a)]

]
+ Ep(x)

[
Vπ0(a|x)[w(x, a)q(x, a)]

]
,
(2)

where σ2(x, a) := V[r|x, a]. The variance consists of three
terms. The first term reflects the randomness in the rewards.
The second term represents the variance due to the random-
ness over the contexts. The final term is the penalty arising
from the use of IPS weighting, and it is proportional to the
weights and the true expected reward. The variance con-
tributed by the first and third terms can be extremely large
when the weights w(x, a) have a wide range, which occurs
when π assigns large probabilities to actions that have low
probability under π0. The latter can be expected when the
action space A is large and the logging policy π0 aims to
have universal support (i.e., π0(a|x) > 0 for all a and x).
Swaminathan et al. (2017) also point out that the variance
of IPS grows linearly with w(x, a), which can be Ω(|A|).
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This variance issue can be lessened by incorporating a re-
ward estimator q̂(x, a) ≈ q(x, a) as a control variate, re-
sulting in the DR estimator (Dudı́k et al., 2014). DR often
improves the MSE of IPS due to its variance reduction prop-
erty. However, DR still suffers when the number of actions
is large, and it can experience substantial performance dete-
rioration as we demonstrate in our experiments.

3. The Marginalized IPS Estimator
The following proposes a new estimator that circumvents
the challenges of IPS for large action spaces. Our approach
is to bring additional structure into the estimation problem,
providing a path forward despite the minimax optimality of
IPS and DR. In particular, IPS and DR achieve the minimax
optimal MSE of at most O(n−1(Eπ0

[w(x, a)2σ2(x, a) +
w(x, a)2r2max])), which means that they are impossible
to improve upon in the worst case beyond constant fac-
tors (Wang et al., 2017; Swaminathan et al., 2017), unless
we bring in additional structure.

Our key idea for overcoming the limits of IPS and DR is
to assume the existence of action embeddings as prior in-
formation. The intuition is that this can help the estimator
transfer information between similar actions. More formally,
suppose we are given a de-dimensional action embedding
e ∈ E ⊆ Rde for each action a, where we merely assume
that the embedding is drawn i.i.d. from some unknown dis-
tribution p(e|x, a). The simplest example is to construct
action embeddings using predefined category information
(e.g., product category). Then, the embedding distribution is
independent of the context and it is deterministic given the
action. Our framework is also applicable to the most general
case of continuous, stochastic, and context-dependent action
embeddings. For example, product prices may be generated
by a personalized pricing algorithm running behind the sys-
tem. In this case, the embedding is continuous, depends
on the user context, and can be stochastic if there is some
randomness in the pricing algorithm.

Using the action embeddings, we now refine the definition
of the policy value as:

V (π) = Ep(x)π(a|x)p(e|x,a)p(r|x,a,e)[r].

Note here that q(x, a) = Ep(e|x,a)[q(x, a, e)] where
q(x, a, e) := E[r|x, a, e], so the above refinement does not
contradict the original definition given in Eq. (1).

A logged bandit dataset now contains action embeddings for
each observation in D = {(xi, ai, ei, ri)}ni=1, where each
tuple is generated by the logging policy as (x, a, e, r) ∼
p(x)π0(a|x)p(e|x, a)p(r|x, a, e). Our strategy is to lever-
age this additional information for achieving a more accurate
OPE for large action spaces.

To motivate our approach, we introduce two properties char-

Figure 1. Causal Graph Consistent with Assumption 3.2

Note: Grey arrows indicate the existence of causal effect of the tail
variable on the head variable. The dashed red arrow is a direct causal
effect that is ruled out by Assumption 3.2.

acterizing an action embedding.

Assumption 3.1. (Common Embedding Support) The log-
ging policy π0 is said to have common embedding support
for policy π if p(e|x, π) > 0→ p(e|x, π0) > 0 for all e ∈ E
and x ∈ X , where p(e|x, π) :=

∑
a∈A p(e|x, a)π(a|x) is

the marginal distribution over the action embedding space
given context x and policy π.

Assumption 3.1 is analogous to Assumption 2.1, but re-
quires only the common support with respect to the action
embedding space, which can be substantially more com-
pact than the action space itself. Indeed, Assumption 3.1
is weaker than common support of IPS (Assumption 2.1).1

Next, we characterize the expressiveness of the embedding
in the ideal case, but we will relax this assumption later.

Assumption 3.2. (No Direct Effect) Action a has no direct
effect on the reward r, i.e., a ⊥ r | x, e.

As illustrated in Figure 1, Assumption 3.2 requires that every
possible effect of a on r be fully mediated by the observed
embedding e. For now, we rely on the validity of Assump-
tion 3.2, as it is convenient for introducing the proposed
estimator. However, we later show that it is often beneficial
to strategically discard some embedding dimensions and
violate the assumption to achieve a better MSE.

We start the derivation of our new estimator with the obser-
vation that Assumption 3.2 gives us another path to unbiased
estimation of the policy value without Assumption 2.1.

Proposition 3.3. Under Assumption 3.2, we have

V (π) = Ep(x)p(e|x,π)p(r|x,e)[r]

See Appendix B.1 for the proof.

Proposition 3.3 provides another expression of the pol-
icy value without explicitly relying on the action variable
a. This new expression naturally leads to the following
marginalized inverse propensity score (MIPS) estimator,

1First, if Assumption 2.1 is true, Assumption 3.1 is also true
because p(e|x, a) remains the same for the target and logging
policies. Table 1 will provide a counterexample for the opposite
statement (i.e., Assumption 3.1 does not imply Assumption 2.1).
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Table 1. A toy example illustrating the benefits of marginal importance weights

π0(a|x1) π(a|x1) w(x1, a)

a1 0.0 0.2 N/A
a2 0.2 0.8 4.0
a3 0.8 0.0 0.0

p(e1|a) p(e2|a) p(e3|a)
a1 0.25 0.25 0.5
a2 0.5 0.25 0.25
a3 0.25 0.5 0.25

p(e|x1, π0) p(e|x1, π) w(x1, e)

e1 0.3 0.45 1.5
e2 0.45 0.25 0.55
e3 0.25 0.3 1.2

which is our main proposal.

V̂MIPS(π;D) :=
1

n

n∑
i=1

p(ei|xi, π)

p(ei|xi, π0)
ri =

1

n

n∑
i=1

w(xi, ei)ri,

where w(x, e) := p(e|x, π)/p(e|x, π0) is the marginal im-
portance weight defined with respect to the marginal distri-
bution over the action embedding space.

To obtain an intuition for the benefits of MIPS, we provide a
toy example in Table 1 with X = {x1}, A = {a1, a2, a3},
and E = {e1, e2, e3} (a special case of our formulation with
a discrete embedding space). The left table describes the
logging and target policies with respect to A and implies
that Assumption 2.1 is violated (π0(a1|x1) = 0.0). The
middle table describes the conditional distribution of the
action embedding e given action a (e.g., probability of a
movie a belonging to a genre e). The right table describes
the marginal distributions over E , which are calculable from
the other two tables. By considering the marginal distri-
bution, Assumption 3.1 is ensured in the right table, even
if Assumption 2.1 is not true in the left table. Moreover,
the maximum importance weight is smaller for the right
table (maxe∈E w(x1, e) < maxa∈A w(x1, a)), which may
contribute to a variance reduction of the resulting estimator.

Below, we formally analyze the key statistical properties of
MIPS and compare them with those of IPS, including the
realistic case where Assumption 3.2 is violated.

3.1. Theoretical Analysis

First, the following proposition shows that MIPS is unbiased
under assumptions different from those of IPS.

Proposition 3.4. Under Assumptions 3.1 and 3.2, MIPS is
unbiased, i.e., ED[V̂MIPS(π;D)] = V (π) for any π. See
Appendix B.2 for the proof.

Proposition 3.4 states that, even when π0 fails to provide
common support over A such that IPS is biased, MIPS can
still be unbiased if π0 provides common support over E
(Assumption 3.1) and e fully captures the causal effect of a
on r (Assumption 3.2).

Having multiple estimators that enable unbiased OPE under
different assumptions is in itself desirable, as we can choose
the appropriate estimator depending on the data generating
process. However, it is also helpful to understand how vio-

lations of the assumptions influence the bias of the resulting
estimator. In particular, for MIPS, it is difficult to verify
whether Assumption 3.2 is true in practice. The following
theorem characterizes the bias of MIPS.

Theorem 3.5. (Bias of MIPS) If Assumption 3.1 is true, but
Assumption 3.2 is violated, MIPS has the following bias.

Bias(V̂MIPS(π))

= Ep(x)p(e|x,π0)

[∑
a<b

π0(a|x, e)π0(b|x, e)

× (q(x, a, e)− q(x, b, e))

× (w(x, b)− w(x, a))

]
,

where a, b ∈ A. See Appendix B.3 for the proof.

Theorem 3.5 suggests that three factors contribute to the
bias of MIPS when Assumption 3.2 is violated. The first
factor is the predictivity of the action embeddings with re-
spect to the actual actions. When action a is predictable
given context x and embedding e, π0(a|x, e) is close to zero
or one (deterministic), meaning that π0(a|x, e)π0(b|x, e) is
close to zero. This suggests that even if Assumption 3.2 is
violated, action embeddings that identify the actions well
still enable a nearly unbiased estimation of MIPS. The sec-
ond factor is the amount of direct effect of the action on the
reward, which is quantified by q(x, a, e)− q(x, b, e). When
the direct effect of a on r is small, q(x, a, e) − q(x, b, e)
also becomes small and so is the bias of MIPS. In an
ideal situation where Assumption 3.2 is satisfied, we have
q(x, a, e) = q(x, b, e) = q(x, e), thus MIPS is unbiased,
which is consistent with Proposition 3.4. Note that the
first two factors suggest that, to reduce the bias, the action
embeddings should be informative so that they are either
predictive of the actions or mediate a large amount of the
causal effect. The final factor is the similarity between log-
ging and target policies quantified by w(x, a) − w(x, b).
When Assumption 3.2 is satisfied, MIPS is unbiased for
any target policy, however, Theorem 3.5 suggests that if
the assumption is not true, MIPS produces a larger bias for
target policies dissimilar from the logging policy.2

2When π = π0, the bias is zero regardless of the other factors
as w(x, a) = w(x, b) = 1, meaning that on-policy estimation is
always unbiased, which is quite intuitive.
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Next, we analyze the variance of MIPS, which we show is
never worse than that of IPS and can be substantially lower.

Theorem 3.6. (Variance Reduction of MIPS) Under As-
sumptions 2.1, 3.1, and 3.2, we have

n
(
VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]

)
= Ep(x)p(e|x,π0)

[
Ep(r|x,e)

[
r2
]
Vπ0(a|x,e) [w(x, a)]

]
,

which is non-negative. Note that the variance reduction is
also lower bounded by zero even when Assumption 3.2 is
not true. See Appendix B.4 for the proof.

There are two factors that affect the amount of variance re-
duction. The first factor is the second moment of the reward
with respect to p(r|x, e). This term becomes large when,
for example, the reward is noisy even after conditioning
on the action embedding e. The second factor is the vari-
ance of w(x, a) with respect to the conditional distribution
π0(a|x, e), which becomes large when (i) w(x, a) has a
wide range or (ii) there remain large variations in a even
after conditioning on action embedding e so that π0(a|x, e)
remains stochastic. Therefore, MIPS becomes increasingly
favorable compared to IPS for larger action spaces where
the variance of w(x, a) becomes larger. Moreover, to obtain
a large variance reduction, the action embedding should
ideally not be unnecessarily predictive of the actions.

Finally, the next theorem describes the gain in MSE we can
obtain from MIPS when Assumption 3.2 is violated.

Theorem 3.7. (MSE Gain of MIPS) Under Assumptions 2.1
and 3.1, we have

n
(
MSE(V̂IPS(π))−MSE(V̂MIPS(π))

)
= Ex,a,e∼π0

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r

2]
]

+ 2V (π)Bias(V̂MIPS(π)) + (1− n)Bias(V̂MIPS(π))
2.

See Appendix B.5 for the proof.

Note that IPS can have some bias when Assumption 2.1 is
not true, possibly producing a greater MSE gain for MIPS.

3.2. Data-Driven Embedding Selection

The analysis in the previous section implies a clear bias-
variance trade-off with respect to the quality of the action
embeddings. Specifically, Theorem 3.5 suggests that the
action embeddings should be as informative as possible to
reduce the bias when Assumption 3.2 is violated. On the
other hand, Theorem 3.6 suggests that the action embed-
dings should be as coarse as possible to gain a greater vari-
ance reduction. Theorem 3.7 summarizes the bias-variance
trade-off in terms of MSE.

A possible criticism to MIPS is Assumption 3.2, as it is hard
to verify whether this assumption is satisfied using only the

observed logged data. However, the above discussion about
the bias-variance trade-off implies that it might be effective
to strategically violate Assumption 3.2 by discarding some
embedding dimensions. This action embedding selection
can lead to a large variance reduction at the cost of introduc-
ing some bias, possibly improving the MSE of MIPS. To
implement the action embedding selection, we can adapt the
estimator selection method called SLOPE proposed in Su
et al. (2020b) and Tucker & Lee (2021). SLOPE is based on
Lepski’s principle for bandwidth selection in nonparametric
statistics (Lepski & Spokoiny, 1997) and is used to tune the
hyperparameters of OPE estimators. A benefit of SLOPE
is that it avoids estimating the bias of the estimator, which
is as difficult as OPE. Appendix C describes how to apply
SLOPE to the action embedding selection in our setup, and
Section 4 evaluates its benefit empirically.

3.3. Estimating the Marginal Importance Weights

When using MIPS, we might have to estimate w(x, e) de-
pending on how the embeddings are given. A simple ap-
proach to this is to utilize the following transformation.

w(x, e) = Eπ0(a|x,e) [w(x, a)] . (3)

Eq. (3) implies that we need an estimate of π0(a|x, e),
which we compute by regressing a on (x, e). We can then
estimate w(x, e) as ŵ(x, e) = Eπ̂0(a|x,e) [w(x, a)].

3 This
procedure is easy to implement and tractable, even when
the embedding space is high-dimensional and continuous.
Note that, even if there are some deficient actions, we can
directly estimate w(x, e) by solving density ratio estimation
as binary classification as done in Sondhi et al. (2020).

4. Empirical Evaluation
We first evaluate MIPS on synthetic data to identify the situa-
tions where it enables a more accurate OPE. Second, we val-
idate real-world applicability on data from an online fashion
store. Our experiments are conducted using the OpenBandit-
Pipeline (OBP)4, an open-source software for OPE provided
by Saito et al. (2020). Our experiment implementation is
available at https://github.com/usaito/icml2022-mips.

4.1. Synthetic Data

For the first set of experiments, we create synthetic data to
be able to compare the estimates to the ground-truth value
of the target policies. To create the data, we sample 10-
dimensional context vectors x from the standard normal
distribution. We also sample de-dimensional categorical
action embedding e ∈ E from the following conditional

3Appendix B.7 describes the bias and variance of MIPS with
estimated marginal importance weights ŵ(x, e).

4https://github.com/st-tech/zr-obp

https://github.com/usaito/icml2022-mips
https://github.com/st-tech/zr-obp
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distribution given action a.

p(e | a) =
de∏
k=1

exp(αa,ek)∑
e′∈Ek

exp(αa,e′)
, (4)

which is independent of the context x in the synthetic experi-
ment. {αa,ek} is a set of parameters sampled independently
from the standard normal distribution. Each dimension of E
has a cardinality of 10, i.e., Ek = {1, 2, . . . , 10}. We then
synthesize the expected reward as

q(x, e) =

de∑
k=1

ηk ·
(
x⊤Mxek + θ⊤x x+ θ⊤e xek

)
, (5)

where M , θx, and θe are parameter matrices or vectors to
define the expected reward. These parameters are sampled
from a uniform distribution with range [−1, 1]. xek is a
context vector corresponding to the k-th dimension of the
action embedding, which is unobserved to the estimators. ηk
specifies the importance of the k-th dimension of the action
embedding, which is sampled from Dirichlet distribution
so that

∑de

k=1 ηk = 1. Note that if we observe all dimen-
sions of E , then q(x, e) = q(x, a, e). On the other hand,
q(x, e) ̸= q(x, a, e), if there are some missing dimensions,
which means that Assumption 3.2 is violated.

We synthesize the logging policy π0 by applying the softmax
function to q(x, a) = Ep(e|a)[q(x, e)] as

π0(a | x) =
exp(β · q(x, a))∑

a′∈A exp(β · q(x, a′))
, (6)

where β is a parameter that controls the optimality and en-
tropy of the logging policy. A large positive value of β leads
to a near-deterministic and well-performing logging policy,
while lower values make the logging policy increasingly
worse. In the main text, we use β = −1, and additional
results for other values of β can be found in Appendix D.2.

In contrast, the target policy π is defined as

π(a | x) = (1− ϵ) · I
{
a = argmax

a′∈A
q(x, a′)

}
+ ϵ/|A|,

where the noise ϵ ∈ [0, 1] controls the quality of π. In the
main text, we set ϵ = 0.05, which produces a near-optimal
and near-deterministic target policy. We share additional
results for other values of ϵ in Appendix D.2.

To summarize, we first sample context x and define the
expected reward q(x, e) as in Eq. (5). We then sample
discrete action a from π0 based on Eq. (6). Given action a,
we sample categorical action embedding e based on Eq. (4).
Finally, we sample the reward from a normal distribution
with mean q(x, e) and standard deviation σ = 2.5. Iterating
this procedure n times generates logged data D with n
independent copies of (x, a, e, r).

4.1.1. BASELINES

We compare our estimator with Direct Method (DM), IPS,
and DR.5 We use the Random Forest (Breiman, 2001) im-
plemented in scikit-learn (Pedregosa et al., 2011) along
with 2-fold cross-fitting (Newey & Robins, 2018) to obtain
q̂(x, e) for DR and DM. We use the Logistic Regression of
scikit-learn to estimate π̂0(a|x, e) for MIPS. We also report
the results of MIPS with the true importance weights as
“MIPS (true)”. MIPS (true) provides the best performance
we could achieve by improving the procedure for estimating
the importance weights of MIPS.

4.1.2. RESULTS

The following reports and discusses the MSE, squared bias,
and variance of the estimators computed over 100 different
sets of logged data replicated with different seeds.

How does MIPS perform with varying numbers of ac-
tions? First, we evaluate the estimators’ performance
when we vary the number of actions from 10 to 5000.
The sample size is fixed at n = 10000. Figure 2 shows
how the number of actions affects the estimators’ MSE
(both on linear- and log-scale). We observe that MIPS
provides substantial improvements over IPS and DR par-
ticularly for larger action sets. More specifically, when
|A| = 10, MSE(V̂IPS)

MSE(V̂MIPS)
= 1.38, while MSE(V̂IPS)

MSE(V̂MIPS)
= 12.38

for |A| = 5000, indicating a significant performance im-
provement of MIPS for larger action spaces as suggested
in Theorem 3.6. MIPS is also consistently better than DM,
which suffers from high bias. The figure also shows that
MIPS (true) is even better than MIPS in large action sets,
mostly due to the reduced bias when using the true marginal
importance weights. This observation implies that there
is room for further improvement in how to estimate the
marginal importance weights.

How does MIPS perform with varying sample sizes?
Next, we compare the estimators under varying numbers
of samples (n ∈ {800, 1600, 3200, 6400, 12800, 25600}).
The number of actions is fixed at |A| = 1000. Figure 3
reports how the estimators’ MSE changes with the size of
logged bandit data. We can see that MIPS is appealing in
particular for small sample sizes where it outperforms IPS
and DR by a larger margin than in large sample regimes

5Appendix D.2 provides more comprehensive experiment re-
sults including Switch-DR (Wang et al., 2017), DR with Optimistic
Shrinkage (DRos) (Su et al., 2020a), and DR-λ (Metelli et al.,
2021) as additional baseline estimators. The additional experimen-
tal results suggest that all of these existing estimators based on
IPS weighting experience significant accuracy deterioration with
large action spaces due to either large bias or variance. Moreover,
we observe that MIPS is more robust and outperforms all these
baselines in a range of settings.
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Figure 2. MSE (both on linear- and log-scale) with varying number of actions.

Figure 3. MSE (both on linear- and log-scale) with varying number of samples.

( MSE(V̂IPS)

MSE(V̂MIPS)
= 9.10 when n = 800, while MSE(V̂IPS)

MSE(V̂MIPS)
=

4.87 when n = 25600). With the growing sample size,
MIPS, IPS, and DR improve their MSE as their variance
decreases. In contrast, the accuracy of DM does not change
across different sample sizes, but it performs better than IPS
and DR because they converge very slowly in the presence
of many actions. In contrast, MIPS is better than DM except
for n = 800, as the bias of MIPS is much smaller than that
of DM. Moreover, MIPS becomes increasingly better than
DM with the growing sample size, as the variance of MIPS
decreases while DM remains highly biased.

How does MIPS perform with varying numbers of
deficient actions? We also compare the estimators
under varying numbers of deficient actions (|U0| ∈
{0, 100, 300, 500, 700, 900}) with a fixed action set (|A| =
1000). Figure 4 shows how the number of deficient actions
affects the estimators’ MSE, squared bias, and variance. The
results suggest that MIPS (true) is robust and not affected
by the existence of deficient actions. In addition, MIPS is
mostly better than DM, IPS, and DR even when there are
many deficient actions. However, we also observe that the
gap between MIPS and MIPS (true) increases for large num-

bers of deficient actions due to the bias in estimating the
marginal importance weights. Note that the MSE of IPS and
DR decreases with increasing number of deficient actions,
because their variance becomes smaller with a smaller num-
ber of supported actions, even though their bias increases as
suggested by Sachdeva et al. (2020).

How does MIPS perform when Assumption 3.2 is vi-
olated? Here, we evaluate the accuracy of MIPS when
Assumption 3.2 is violated. To adjust the amount of viola-
tion, we modify the action embedding space and reduce the
cardinality of each dimension of E to 2 (i.e., Ek = {0, 1}),
while we increase the number of dimensions to 20 (de = 20).
This leads to |E| = 220 = 1, 048, 576, and we can now drop
some dimensions to increase violation. In particular, when
we observe all dimensions of E , Assumption 3.2 is perfectly
satisfied. However, when we withhold {0, 2, 4, . . . , 18} em-
bedding dimensions, the assumption becomes increasingly
invalid. When many dimensions are missing, the bias of
MIPS is expected to increase as suggested in Theorem 3.5,
potentially leading to a worse MSE.

Figure 5 shows how the MSE, squared bias, and variance of
the estimators change with varying numbers of unobserved



Off-Policy Evaluation for Large Action Spaces via Embeddings

Figure 4. MSE, Squared Bias, and Variance with varying number of deficient actions.

Figure 5. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings.

Figure 6. MSE, Squared Bias, and Variance of MIPS w/ or w/o action embedding selection (SLOPE).

embedding dimensions. Somewhat surprisingly, we observe
that MIPS and MIPS (true) perform better when there are
some missing dimensions, even if it leads to the violated
assumption. Specifically, the MSE of MIPS and MIPS (true)
is minimized when there are 4 and 8 missing dimensions
(out of 20), respectively. This phenomenon is due to the
reduced variance. The third column of Figure 5 implies that
the variance of MIPS and MIPS (true) decreases substan-
tially with an increasing number of unobserved dimensions,
while the bias increases with the violated assumption as ex-
pected. These observations suggest that MIPS can be highly
effective despite the violated assumption.

How does data-driven embedding selection perform com-
bined with MIPS? The previous section showed that
there is a potential to improve the accuracy of MIPS by

selecting a subset of dimensions for estimating the marginal
importance weights. We now evaluate whether we can ef-
fectively address this embedding selection problem.

Figure 6 compares the MSE, squared bias, and variance of
MIPS and MIPS with SLOPE (MIPS w/ SLOPE) using the
same embedding space as in the previous section. Note that
we vary the sample size n and fix |A| = 1000. The results
suggest that the data-driven embedding selection provides
a substantial improvement in MSE for small sample sizes.
As shown in the second and third columns in Figure 6, the
embedding selection significantly reduces the variance at
the cost of introducing some bias by strategically violating
the assumption, which results in a better MSE.

Other benefits of MIPS. MIPS has additional benefits
over the conventional estimators. In fact, in addition to the



Off-Policy Evaluation for Large Action Spaces via Embeddings

Figure 7. CDF of relative squared error w.r.t IPS.

case with many actions, IPS is also vulnerable when logging
and target policies differ substantially and the reward is
noisy (see Eq. (2)). Appendix D.2 empirically investigates
the additional benefits of MIPS with varying logging/target
policies and varying noise levels with a fixed action set.
We observe that MIPS is substantially more robust to the
changes in policies and added noise than IPS or DR, which
provides further arguments for the applicability of MIPS.

4.2. Real-World Data

To assess the real-world applicability of MIPS, we now
evaluate MIPS on real-world bandit data. In particular, we
use the Open Bandit Dataset (OBD)6 (Saito et al., 2020),
a publicly available logged bandit dataset collected on a
large-scale fashion e-commerce platform. We use 100,000
observations that are randomly sub-sampled from the “ALL”
campaign of OBD. The dataset contains user contexts x,
fashion items to recommend as action a ∈ A where |A| =
240, and resulting clicks as reward r ∈ {0, 1}. OBD also
includes 4-dimensional action embedding vectors such as
hierarchical category information about the fashion items.

The dataset consists of two sets of logged bandit data
collected by two different policies (uniform random and
Thompson sampling) during an A/B test of these policies.
We regard uniform random and Thompson sampling as log-
ging and target policies, respectively, to perform an evalua-
tion of OPE estimators. Appendix D.3 describes the detailed
experimental procedure to evaluate the accuracy of the esti-
mators on real-world bandit data.

Results. We evaluate MIPS (w/o SLOPE) and MIPS (w/
SLOPE) in comparison to DM, IPS, DR, Switch-DR, More
Robust DR (Farajtabar et al., 2018), DRos, and DR-λ. We
apply SLOPE to tune the built-in hyperparameters of Switch-
DR, DRos, and DR-λ. Figure 7 compares the estimators by
drawing the cumulative distribution function (CDF) of their
squared errors estimated with 150 different bootstrapped
samples of the logged data. Note that the squared errors are

6https://research.zozo.com/data.html

normalized by that of IPS. We find that MIPS (w/ SLOPE)
outperforms IPS in about 80% of the simulation runs, while
other estimators, including MIPS (w/o SLOPE), work sim-
ilarly to IPS. This result demonstrates the real-world ap-
plicability of our estimator as well as the importance of
implementing action embedding selection in practice. We
report qualitatively similar results for other sample sizes
(from 10,000 to 500,000) in Appendix D.3.

5. Conclusion and Future Work
We explored the problem of OPE for large action spaces. In
this setting, existing estimators based on IPS suffer from
impractical variance, which limits their applicability. This
problem is highly relevant for practical applications, as
many real decision making problems such as recommender
systems have to deal with a large number of discrete actions.
To achieve an accurate OPE for large action spaces, we
propose the MIPS estimator, which builds on the marginal
importance weights computed with action embeddings. We
characterize the important statistical properties of the pro-
posed estimator and discuss when it is superior to the con-
ventional ones. Extensive experiments demonstrate that
MIPS provides a significant gain in MSE when the vanilla
importance weights become large due to large action spaces,
substantially outperforming IPS and related estimators.

Our work raises several interesting research questions. For
example, this work assumes the existence of some prede-
fined action embeddings and analyzes the resulting statis-
tical properties of MIPS. Even though we discussed how
to choose which embedding dimensions to use for OPE
(Section 3.2), it would be intriguing to develop a more prin-
cipled method to optimize or learn (possibly continuous)
action embeddings from the logged data for further improv-
ing MIPS. Developing a method for accurately estimating
the marginal importance weight would also be crucial to fill
the gap between MIPS and MIPS (true) observed in our ex-
periments. It would also be interesting to explore off-policy
learning using action embeddings and possible applications
of marginal importance weighting to other estimators that
depend on the vanilla importance weight such as DR.
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A. Related Work
Off-Policy Evaluation: Off-policy evaluation of counterfactual policies has extensively been studied in both contextual
bandits (Dudı́k et al., 2014; Wang et al., 2017; Liu et al., 2018; Farajtabar et al., 2018; Su et al., 2019; 2020a; Kallus et al.,
2021; Metelli et al., 2021) and reinforcement learning (RL) (Jiang & Li, 2016; Thomas & Brunskill, 2016; Xie et al., 2019;
Kallus & Uehara, 2020; Liu et al., 2020a). There are three main approaches in the literature. The first approach is DM, which
estimates the policy value based on the estimated reward q̂. DM has a lower variance than IPS, and is also proposed as an
approach to deal with support deficient data (Sachdeva et al., 2020) where IPS is biased. A drawback is that it is susceptible
to misspecification of the reward function. This misspecification issue is problematic, as the extent of misspecification
cannot be easily evaluated for real-world data (Farajtabar et al., 2018; Voloshin et al., 2019). The second approach is IPS,
which estimates the value of a policy by applying importance weighting to the observed reward. With some assumptions for
identification such as common support, IPS is unbiased and consistent. However, IPS can suffer from high bias and variance
when the action space is large. It can have a high bias when the logging policy fails to satisfy the common support condition,
which is likely to occur for large action spaces (Sachdeva et al., 2020). Variance is also a critical issue especially when
the action space is large, as the importance weights are likely to take larger values. The weight clipping (Swaminathan &
Joachims, 2015b; Su et al., 2019; 2020a) and normalization (Swaminathan & Joachims, 2015c) are often used to address
the variance issue, but they produce additional bias. Thus, DR has gained particular attention as the third approach. This
estimator is a hybrid of the previous two approaches, and can achieve a lower bias than DM, and a lower variance than
IPS (Dudı́k et al., 2014; Farajtabar et al., 2018). It can also achieve the lowest possible asymptotic variance, a property
known as efficiency (Narita et al., 2019). Several recent works have extended DR to improve its performance with small
samples (Wang et al., 2017; Su et al., 2020a) or under model misspecification (Farajtabar et al., 2018). Though there are a
number of extensions of DR both in bandits (as described above) and RL (Jiang & Li, 2016; Thomas & Brunskill, 2016;
Kallus & Uehara, 2020), none of them tackle the large discrete action space. Demirer et al. (2019) describe an estimator for
finitely many possible actions as a special case of their main proposal, which is for continuous action spaces. However, this
method is based on a linearity assumption of the reward function, which rarely holds in practice. Moreover, the bias arises
from violating the assumption and the variance reduction due to the additional assumption are not analyzed. Kallus & Zhou
(2018) formulate the problem of OPE for continuous action spaces and propose some estimators building on the kernel
smoothing in nonparametric statistics. Specifically, kernel functions are used to infer the rewards among similar continuous
actions where the bias-variance trade-off is controlled by a bandwidth hyperparameter. If every dimension of the action
embedding space E is continuous, the continuous-action estimators of Kallus & Zhou (2018) might be applied to our setup
under smoothness assumption. However, this naive application can suffer from the curse of dimensionality where the kernel
smoothing performs dramatically worse as the number of embedding dimensions increases. In contrast, MIPS avoids the
curse of dimensionality by estimating the marginal importance weights via supervised classification as in Section 3.3.

Note that there is an estimator called marginalized importance sampling in OPE of RL (Liu et al., 2018; Xie et al., 2019; Liu
et al., 2020b). This method estimates the state marginal distribution and applies importance weighting with respect to this
marginal distribution rather than the trajectory distribution. Although marginalization is a key trick of this estimator, it is
aimed at resolving the curse of horizon, a problem specific to RL. In contrast, our approach utilizes the marginal distribution
over action embeddings to deal with large action spaces. Applications of our estimator are not limited to RL.

Off-Policy Evaluation for Slate and Ranking Policies: Another line of work that shares the similar motivation to ours
is OPE of slate or ranking policies (Swaminathan et al., 2017; Li et al., 2018; McInerney et al., 2020; Saito, 2020; Su
et al., 2020a; Vlassis et al., 2021; Lopez et al., 2021; Kiyohara et al., 2022). In this setting, the estimators have to handle
the combinatorial action space, which could be very large even if the number of unique actions is not. Therefore, some
additional assumptions are imposed to make the combinatorial action space tractable. A primary problem setting in this
direction is OPE for slate bandit policies, where it is assumed that only a single, slate-level reward is observed for each
data. Swaminathan et al. (2017) tackle this setting by positing a linearity assumption on the reward function. The proposed
pseudoinverse (PI) estimator was shown to provide an exponential gain in the sample complexity over IPS. Following this
seminal work, Su et al. (2020a) extend their Doubly Robust with Optimistic Shrinkage, originally proposed for the general
OPE problem, to the slate action case. Vlassis et al. (2021) improve the PI estimator by optimizing a set of control variates.
Although PI is compelling, applications of this class of estimators are limited to the specific problem of slate bandits. On
the other hand, our framework is more general and applicable not only to slate bandits, but also to other problem instances
including OPE for ranking policies with observable slot-level rewards (described below) or general contextual bandits with
large action spaces. In addition, all estimators for slate bandits rely on the linearity assumption, while our MIPS builds on a
different assumption about the quality of the action embedding.
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Another similar setting is OPE for ranking policies where it is assumed that the rewards for every slot in a ranking (slot-level
rewards) are observable, a setting also known as semi-bandit feedback. PI and its variants discussed above are applicable to
this setting, but McInerney et al. (2020) empirically verify that the PI estimators do not work well, as they do not utilize
additional information about the slot-level rewards. To leverage slot-level rewards to further improve OPE, assumptions
are made to capture different types of user behaviors to control the bias-variance trade-off in OPE. For example, Li et al.
(2018) assume that users interact with items presented in different positions of a ranking totally independently. In contrast,
McInerney et al. (2020) and Kiyohara et al. (2022) assume that users go down a ranking from top to bottom. These
assumptions correspond to click models such as cascade model in information retrieval (Guo et al., 2009; Chuklin et al.,
2015) and are useful in reducing the variance. However, whether these assumptions are reasonable depends highly on a
ranking interface and real user behavior. If the assumption fails to capture real user behavior, this approach can produce
unexpected bias. For example, the cascade model is only applicable when a ranking interface is vertical, however, real-world
ranking interfaces are often more complex (Guo et al., 2020). Moreover, real-world user behaviors are often too diverse to
model with a single, universal assumption (Borisov et al., 2016). In contrast, our approach is applicable to any ranking
interfaces, once they are represented as action embeddings, without assuming any particular user behavior. Moreover, ours
is more general in that its application is not limited to information retrieval and recommender systems, but includes robotics,
education, conversational agents, or personalized medicine where click models are not applicable.

Reinforcement Learning for Large Action Spaces: Although we focus on OPE, there have been several attempts to
enable high-performance policy learning for large action spaces. A typical approach is to factorize the action space into
binary sub-spaces (Pazis & Parr, 2011; Dulac-Arnold et al., 2012). For example, Pazis & Parr (2011) represent each
action with a binary format and train a value function for each bit. On the other hand, Van Hasselt & Wiering (2009) and
Dulac-Arnold et al. (2015) assume the existence of continuous representations of discrete actions as prior knowledge. They
perform policy gradients with the continuous actions and search the nearest discrete action. Similar to these works, we
assume the existence of some predefined action embeddings and propose to use that prior information to enable an accurate
OPE for large action spaces. We also analyze the bias-variance trade-off of the resulting estimator and relate it to the quality
of the action embeddings. Some recent works also tackle how to learn useful action representations from only available
data. Tennenholtz & Mannor (2019) achieve this by leveraging expert demonstrations, while Chandak et al. (2019) perform
supervised learning to predict the state transitions and obtain action representations with no prior knowledge. Following
these works, it may be valuable to develop an algorithm to optimize or learn (possibly continuous) action embeddings from
the data to further improve OPE for large action spaces.

Multi-Armed Bandits with Side Information: There are two prominent approaches to deal with large or infinite action
spaces in the online bandit literature (Krishnamurthy et al., 2019; Slivkins, 2019). The first one is the parametric approach
such as linear or combinatorial bandits, which assumes that the expected reward can be represented as a parametric function
of the action such as a linear function (Chu et al., 2011; Agrawal & Goyal, 2013). There is also a nonparametric approach,
which typically makes much weaker assumptions about the rewards, e.g., Lipschitz assumptions. Lipschitz bandits have
been studied to address large, structured action spaces such as the [0, 1] interval, where the applications range from dynamic
pricing to ad auction. A basic idea in this literature is that similar arms should have similar quality, as per Lipschitz-continuity
or some corresponding assumptions on the structure of the action space. The Lipschitz assumption was introduced by
Agrawal (1995) to the bandit setting. Kleinberg (2004) optimally solve this problem in the worst case. Kleinberg et al.
(2019) and Bubeck et al. (2011) rely on the zooming algorithms, which gradually zoom in to the more promising regions of
the action space to achieve data-dependent regret bounds. Further works extend this direction by relaxing the assumptions
with various local definitions, as well as incorporating contexts into account, as surveyed in Section 4 of Slivkins (2019).

Causal Inference with Surrogates: From a statistical standpoint, causal inference with surrogates is also related (Athey
et al., 2019; 2020; Kallus & Mao, 2020; Chen & Ritzwoller, 2021). Its aim is to identify and estimate the causal effect of
some treatments (e.g., job training) on a primary outcome, which is unobservable without waiting for decades (e.g., lifetime
earnings) (Athey et al., 2019). Instead of waiting for a long period to collect the data, these works assume the availability of
surrogate outcomes such as test scores and college attendance rates, which could be observed in a much shorter period. In
particular, Athey et al. (2019) build on what is called the surrogacy condition to identify the average treatment effect of
treatments on the primary outcome. The surrogacy condition is analogous to Assumption 3.2 and states that there should
not be any direct effect of treatments on the primary outcome. Although our formulation and assumptions share a similar
structure, we would argue that our motivation is to enable an accurate OPE of decision making policies for large action
spaces, which is quite different from identifying the average causal effect of binary treatments on a long-term outcome.
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B. Proofs, Derivations, and Additional Analysis
B.1. Proof of Proposition 3.3

Proof.

V (π) = Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]

= Ep(x)π(a|x)p(e|x,a)[q(x, e)] (7)

= Ep(x)

[∑
a∈A

π(a|x)
∑
e∈E

p(e|x, a) · q(x, e)

]

= Ep(x)

[∑
e∈E

q(x, e) ·

(∑
a∈A

π(a|x) · p(e|x, a)

)]
(8)

= Ep(x)

[∑
e∈E

p(e|x, π) · q(x, e)

]
= Ep(x)p(e|x,π)[q(x, e)]

= Ep(x)p(e|x,π)p(r|x,e)[r]

where we use Assumption 3.2 in Eq. (7) and p(e|x, π) =
∑

a∈A π(a|x)p(e|x, a) in Eq. (8).

B.2. Proof of Proposition 3.4

Proof. From the linearity of expectation, we have ED[V̂MIPS(π;D)] = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]. Thus, we
calculate only the expectation of w(x, e)r (RHS of the equation) below.

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, a, e)]
= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, e)] (9)

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a) p(e|x, π)
p(e|x, π0)

q(x, e)

]

= Ep(x)

[∑
e∈E

p(e|x, π)
p(e|x, π0)

· q(x, e) ·

(∑
a∈A

p(e|x, a) · π0(a|x)

)]

= Ep(x)

[∑
e∈E

p(e|x, π)
p(e|x, π0)

· p(e|x, π0) · q(x, e)

]
= Ep(x)p(e|x,π)[q(x, e)] (10)
= Ep(x)p(e|x,π)p(r|x,e)[r]

= V (π)

where we use Assumption 3.2 in Eq. (9) and p(e|x, π0) =
∑

a∈A π0(a|x)p(e|x, a) in Eq. (10).

B.3. Proof of Theorem 3.5

To prove Theorem 3.5, we first state a lemma.

Lemma B.1. For real-valued, bounded functions f : N→ R, g : N→ R, h : N→ R where
∑

a∈[m] g(a) = 1, we have

∑
a∈[m]

f(a)g(a)
(
h(a)−

∑
b∈[m]

g(b)h(b)
)
=

∑
a<b≤m

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) (11)
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Proof. We prove this lemma via induction. First, we show the m = 2 case below.

f(1)g(1) (h(1)− (g(1)h(1) + g(2)h(2))) + f(2)g(2) (h(2)− (g(1)h(1) + g(2)h(2)))

= f(1)g(1)h(1)− f(1)g(1)(g(1)h(1) + g(2)h(2)) + f(2)g(2)h(2)− f(2)g(2)(g(1)h(1) + g(2)h(2))

= f(1)g(1)h(1)− f(1)g(1)((1− g(2))h(1) + g(2)h(2)) + f(2)g(2)h(2)− f(2)g(2)(g(1)h(1) + (1− g(1))h(2))

= −f(1)g(1)(−g(2)h(1) + g(2)h(2))− f(2)g(2)(g(1)h(1)− g(1)h(2))

= −f(1)g(1)g(2)(h(2)− h(1)) + f(2)g(1)g(2)(h(2)− h(1))

= g(1)g(2)(h(2)− h(1))(f(2)− f(1))

Note that g(1) + g(2) = 1 from the statement.

Next, we assume Eq. (11) is true for the m = k − 1 case and show that it is also true for the m = k case. First, note that∑
a<b≤k

g(a)g(b)(h(a)− h(b))(f(a)− f(b))

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) +
∑

a∈[k−1]

g(a)g(k)(h(a)− h(k))(f(a)− f(k))

Then, we have∑
a∈[k]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)
+ f(k)g(k)

(
h(k)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a∈[k−1]

f(a)g(a)

(h(a)− ∑
b∈[k−1]

g(b)h(b)
)
− g(k)h(k)

+ f(k)g(k)h(k)− f(k)g(k)
∑
a∈[k]

g(a)h(a)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k−1]

g(b)h(b)
)
− g(k)h(k)

∑
a∈[k−1]

f(a)g(a) + f(k)g(k)h(k)− f(k)g(k)
∑
a∈[k]

g(a)h(a)

=
∑

a∈[k−1]

f(a)g(a)
(
h(a)−

∑
b∈[k−1]

g(b)h(b)
)

− g(k)h(k)
∑

a∈[k−1]

f(a)g(a) + f(k)h(k)g(k)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a)− f(k)g(k)g(k)h(k)

=
(
1− g(k)

) ∑
a∈[k−1]

f(a)g̃(a)

(1− g(k)
)(

h(a)−
∑

b∈[k−1]

g̃(b)h(b)
)
+ g(k)h(a)


− g(k)h(k)

∑
a∈[k−1]

f(a)g(a) + f(k)h(k)g(k)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a)− f(k)g(k)h(k)

1−
∑

a∈[k−1]

g(a)


=
(
1− g(k)

)2 ∑
a∈[k−1]

f(a)g̃(a)
(
h(a)−

∑
b∈[k−1]

g̃(b)h(b)
)

+ g(k)
∑

a∈[k−1]

f(a)g(a)h(a)− g(k)h(k)
∑

a∈[k−1]

f(a)g(a)− f(k)g(k)
∑

a∈[k−1]

g(a)h(a) + f(k)g(k)h(k)
∑

a∈[k−1]

g(a)

(12)

where we use g(k) = 1−
∑

a∈[k−1] g(a) and define g̃(a) := g(a)/(
∑

a∈[k−1] g(a)) = g(a)/(1− g(k)).
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The first term of Eq. (12) is the m = k − 1 case, so we have the following from the assumption of induction.(
1− g(k)

)2 ∑
a∈[k−1]

f(a)g̃(a)
(
h(a)−

∑
b∈[k−1]

g̃(b)h(b)
)
=
(
1− g(k)

)2 ∑
a<b≤k−1

g̃(a)g̃(b)(h(a)− h(b))(f(a)− f(b))

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b))

Note that
∑

a∈[k−1] g̃(a) = 1. Rearranging the remaining terms of Eq. (12) yields∑
a∈[k]

f(a)g(a)
(
h(a)−

∑
b∈[k]

g(b)h(b)
)

=
∑

a<b≤k−1

g(a)g(b)(h(a)− h(b))(f(a)− f(b)) +
∑

a∈[k−1]

g(a)g(k)(h(a)− h(k))(f(a)− f(k))

Implying that the m = k case is true if the m = k − 1 case is true.

We then use the above Lemma to prove Theorem 3.5.

Proof.

Bias(V̂MIPS(π)) = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]− V (π)

= Ep(x)π0(a|x)p(e|x,a)[w(x, e) · q(x, a, e)]− Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]

= Ep(x)π0(a|x)

[∑
e∈E

p(e|x, a) · w(x, e) · q(x, a, e)

]
− Ep(x)π(a|x)

[∑
e∈E

p(e|x, a) · q(x, a, e)

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· w(x, e) · q(x, a, e)

]

− Ep(x)

[∑
a∈A

π(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· q(x, a, e)

]
(13)

= Ep(x)

[∑
e∈E

p(e|x, π0) · w(x, e)
∑
a∈A

π0(a|x, e) · q(x, a, e)

]

− Ep(x)

[∑
e∈E

p(e|x, π0)
∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]

= Ep(x)p(e|x,π0)

[
w(x, e)

∑
a∈A

π0(a|x, e) · q(x, a, e)

]

− Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]

= Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e)
∑
b∈A

π0(b|x, e) · q(x, b, c)

]

− Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) · q(x, a, e)

]
(14)

= Ep(x)p(e|x,π0)

[∑
a∈A

w(x, a) · π0(a|x, e) ·

((∑
b∈A

π0(b|x, e) · q(x, b, c)
)
− q(x, a, e)

)]

where we use p(e|x, a) = p(e|x,π0)π0(a|x,e)
π0(a|x) in Eq. (13) and w(x, e) = Eπ0(a|x,e)[w(x, a)] in Eq. (14).

By applying Lemma A.1 to the last line (setting f(a) = w(·, a), g(a) = π0(a|·, ·), h(a) = q(·, a, ·)), we get the final
expression of the bias.
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B.4. Proof of Theorem 3.6

Proof. Under Assumptions 2.1, 3.1, and 3.2, IPS and MIPS are both unbiased. Thus, the difference in their variance is
attributed to the difference in their second moment, which is calculated below.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r]− Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)
2 · r2]− Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)

2 · r2]
= Ep(x)π0(a|x)p(e|x,a)

[
w(x, a)2 · Ep(r|x,a,e)[r

2]
]
− Ep(x)π0(a|x)p(e|x,a)

[
w(x, e)2 · Ep(r|x,a,e)[r

2]
]

= Ep(x)π0(a|x)p(e|x,a)
[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r

2]
]

(15)

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a) ·
(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r

2]

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

·
(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,e)[r

2]

]
(16)

= Ep(x)

[∑
e∈E

p(e|x, π0) · Ep(r|x,e)[r
2]
∑
a∈A

π0(a|x, e) ·
(
w(x, a)2 − w(x, e)2

)]

= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r

2] ·

((∑
a∈A

π0(a|x, e) · w(x, a)2
)
− w(x, e)2

)]

where we use Assumption 3.2 in Eq. (15), p(e|x, a) = p(e|x,π0)π0(a|x,e)
π0(a|x) in Eq. (16). Here, we have

(∑
a∈A

π0(a|x, e) · w(x, a)2
)
− w(x, e)2 =

(∑
a∈A

π0(a|x, e) · w(x, a)2
)
−

(∑
a∈A

π0(a|x, e) · w(x, a)

)2

= Eπ0(a|x,e)
[
w(x, a)2

]
−
(
Eπ0(a|x,e) [w(x, a)]

)2
= Vπ0(a|x,e) [w(x, a)]

where w(x, e) = Eπ0(a|x,e)[w(x, a)].

Therefore,

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)
2 · r2]− Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)

2 · r2]

= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r

2] ·

((∑
a∈A

π0(a|x, e) · w(x, a)2
)
− w(x, e)2

)]
= Ep(x)p(e|x,π0)

[
Ep(r|x,e)[r

2] · Vπ0(a|x,e) [w(x, a)]
]

Finally, as samples are independent, nVD[V̂IPS(π;D)] = Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r] and nVD[V̂MIPS(π;D)] =
Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r] .

B.5. Proof of Theorem 3.7

Proof. First, we express the MSE gain of MIPS over the vanilla IPS with their bias and variance as follows.

MSE
(
V̂IPS(π)

)
−MSE

(
V̂MIPS(π)

)
= VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]− Bias(V̂MIPS(π))

2

Since the samples are assumed to be independent, we can simply rescale the MSE gain as follows.

n
(
MSE

(
V̂IPS(π)

)
−MSE

(
V̂MIPS(π)

))
= Vx,a,r[w(x, a)r]− Vx,e,r[w(x, e)r]− nBias(V̂MIPS(π))

2
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Below, we calculate the difference in variance.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)r]− Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, a)
2 · r2]− V (π)2

−
(
Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)

2 · r2]−
(
V (π) + Bias(V̂MIPS(π))

)2)
= Ep(x)π0(a|x)p(e|x,a)

[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r

2]
]
− V (π)2

+
(
V (π)2 + 2V (π)Bias(V̂MIPS(π)) + Bias(V̂MIPS(π))

2
)

= Ep(x)π0(a|x)p(e|x,a)
[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r

2]
]
+ 2V (π)Bias(V̂MIPS(π)) + Bias(V̂MIPS(π))

2

Thus, we have

n
(
VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]− Bias(V̂MIPS(π))

2
)

= Ep(x)π0(a|x)p(e|x,a)
[(
w(x, a)2 − w(x, e)2

)
· Ep(r|x,a,e)[r

2]
]
+ 2V (π)Bias(V̂MIPS(π)) + (1− n)Bias(V̂MIPS(π))

2

The first term becomes large when the scale of the marginal importance weights is smaller than that of the vanilla importance
weights. The second term becomes large when the value of π is large and MIPS overestimates it by a large margin. The
third term can take a large negative value when the sample size is large and the bias of MIPS is large. This summarizes the
bias-variance trade-off between the vanilla IPS and MIPS. When the sample size is small, the first and second terms in the
MSE gain are dominant, and MIPS is more appealing due to its variance reduction property. However, as the sample size
gets larger, the bias becomes dominant, and IPS is expected to overtake MIPS at some point. We would argue that, when the
action space is large, the variance reduction of MIPS often provides the gain in MSE, as the variance components are more
dominant, which is supported by our experiment.

B.6. Derivation of Eq. (3) in Section 3.3

w(x, e) =
p(e|x, π)
p(e|x, π0)

=

∑
a∈A p(e|x, a) · π(a|x)

p(e|x, π0)

=
p(e|x, π0)

∑
a∈A(π0(a|x, e)/π0(a|x)) · π(a|x)

p(e|x, π0)
(17)

=
∑
a∈A

π0(a|x, e)
π(a|x)
π0(a|x)

= Eπ0(a|x,e) [w(x, a)]

where we use p(e|x, a) = p(e|x,π0)π0(a|x,e)
π0(a|x) in Eq. (17).

B.7. Bias and Variance of MIPS with Estimated Marginal Importance Weights

Theorem B.2. (Bias of MIPS with Estimated Marginal Importance Weights) If Assumption 3.1 is true, but Assumption 3.2 is
violated, MIPS with the estimated marginal importance weight ŵ(x, e) has the following bias.

Bias(V̂MIPS(π; ŵ)) = Bias(V̂MIPS(π))− Ep(x)p(e|x,π) [δ(x, e)q(x, π0, e)] ,

where V̂MIPS(π; ŵ) := n−1
∑n

i=1 ŵ(xi, ei)ri, δ(x, e) := 1 − (ŵ(x, e)/w(x, e)), and q(x, π0, e) :=
∑

a∈A π0(a|x, e) ·
q(x, a, e).
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Proof.

Bias(V̂MIPS(π; ŵ)) = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[ŵ(x, e)r]− V (π) (18)

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)
[
(ŵ(x, e)− w(x, e)) · r

]
+Bias(V̂MIPS(π)) (19)

where we use ED[V̂MIPS(π;D, ŵ)] = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[ŵ(x, e)r] (as samples are assumed to be independent)
in Eq. (18) and decompose the bias into the bias of MIPS with the true w(x, e) and bias due to the estimation error of
ŵ(x, e) in Eq. (19). We know the bias of MIPS with the true weight from Theorem 3.5, so we calculate only the bias due to
estimating the weight.

Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[(ŵ(x, e)− w(x, e)) · r]
= Ep(x)π0(a|x)p(e|x,a)[(ŵ(x, e)− w(x, e)) · q(x, a, e)]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, a) · (ŵ(x, e)− w(x, e)) · q(x, a, e)

]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
e∈E

p(e|x, π0) · π0(a|x, e)
π0(a|x)

· (ŵ(x, e)− w(x, e)) · q(x, a, e)

]
(20)

= Ep(x)

[∑
e∈E

p(e|x, π0) · (ŵ(x, e)− w(x, e))
∑
a∈A

π0(a|x, e) · q(x, a, e)

]

= −Ep(x)

[∑
e∈E

p(e|x, π) · δ(x, e) · q(x, π0, e)

]
(21)

= −Ep(x)p(e|x,π) [δ(x, e) · q(x, π0, e)]

where we use p(e|x, a) = p(e|x,π0)π0(a|x,e)
π0(a|x) in Eq. (20) and q(x, π0, e) =

∑
a∈A π0(a|x, e)q(x, a, e) in Eq. (21).

Theorem B.3. (Variance of MIPS with Estimated Marginal Importance Weights) Under Assumptions 3.1 and 3.2, we have

nVD(V̂MIPS(π;D, ŵ)) = Ep(x)p(e|x,π)
[
(1− δ(x, e))2w(x, e)σ2(x, π0, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e)q(x, a, e)]

]
+ Vp(x)

[
Ep(e|x,π) [(1− δ(x, e))q(x, π0, e)]

]
where δ(x, e) := 1−(ŵ(x, e)/w(x, e)), q(x, π0, e) :=

∑
a∈A π0(a|x, e)·q(x, a, e), and σ2(x, π0, e) :=

∑
a∈A π0(a|x, e)·

σ2(x, a, e).

Proof. Since the samples are assumed to be independent, we have

nVD(V̂MIPS(π;D, ŵ)) = Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e) [ŵ(x, e)r] .

Below we apply the law of total variance twice to the RHS of the above equation.

Vp(x)π0(a|x)p(e|x,a)p(r|x,a,e) [ŵ(x, e)r] = Ep(x)π0(a|x)p(e|x,a)
[
ŵ(x, e)2 · Vp(r|x,a,e)[r]

]
+ Vp(x)π0(a|x)p(e|x,a)

[
ŵ(x, e) · Ep(r|x,a,e)[r]

]
= Ep(x)π0(a|x)p(e|x,a)

[
ŵ(x, e)2 · σ2(x, a, e)

]
+ Vp(x)π0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

= Ep(x)π0(a|x)p(e|x,a)
[
ŵ(x, e)2 · σ2(x, a, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
+ Vp(x)

[
Eπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
= Ep(x)p(e|x,π)

[
(1− δ(x, e))2 · w(x, e) · σ2(x, π0, e)

]
+ Ep(x)

[
Vπ0(a|x)p(e|x,a) [ŵ(x, e) · q(x, a, e)]

]
+ Vp(x)

[
Ep(e|x,π) [(1− δ(x, e)) · q(x, π0, e)]

]
(22)
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where we use Eπ0(a|x)p(e|x,a)[ŵ(x, e)
2σ2(x, a, e)] = Ep(e|x,π)[(1 − δ(x, e))2w(x, e)σ2(x, π0, e)] and

Eπ0(a|x)p(e|x,a)[ŵ(x, e)q(x, a, e)] = Ep(e|x,π)[(1− δ(x, e))q(x, π0, e)] in Eq. (22)

B.8. Bias of MIPS with Deficient Embedding Support

Theorem B.4. (Bias of MIPS with Deficient Embedding Support) If Assumption 3.2 is true, but Assumption 3.1 is violated,
MIPS has the following bias.

∣∣Bias(V̂MIPS(π))
∣∣ = Ep(x)

 ∑
e∈Ue

0 (x,π0)

p(e|x, π)q(x, e)

 ,

where Ue
0 (x, π0) := {e ∈ E | p(e|x, π0) = 0} is the space of unsupported embeddings for context x under π0.

Proof. We follow Proposition 1 of Sachdeva et al. (2020) to derive the bias under deficient embedding support.

Bias(V̂MIPS(π)) = Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, e)r]− V (π)

= Ep(x)

 ∑
e∈(Ue

0 (x,π0))c

w(x, e)q(x, e)
∑
a∈A

π0(a|x)p(e|x, a)

− Ep(x)p(e|x,π)[q(x, e)] (23)

= Ep(x)

 ∑
e∈(Ue

0 (x,π0))c

p(e|x, π)q(x, e)−
∑
e∈E

p(e|x, π)q(x, e)

 (24)

= −Ep(x)

 ∑
e∈Ue

0 (x,π0)

p(e|x, π)q(x, e)


where Eq. (23) is due to Assumption 3.2 and Eq. (24) is from p(e|x, a) = p(e|x,π0)π0(a|x,e)

π0(a|x) .

C. Data-Driven Action Feature Selection Based on Tucker & Lee (2021) and Su et al. (2020b)
Wang et al. (2017) and Su et al. (2020a) describe a procedure for data-driven estimator selection, which is used to tune the
built-in hyperparameters of their own estimators. However, their methods need to estimate the bias (or its loose upper bound
as a proxy) of the estimator as a subroutine, which is as difficult as OPE itself. Su et al. (2020b) develop a generic data-driven
method for estimator selection for OPE called SLOPE, which is based on Lepski’s principle (Lepski & Spokoiny, 1997) and
does not need a bias estimator. Tucker & Lee (2021) improve the theoretical analysis of Su et al. (2020b), resulting in a
refined procedure called SLOPE++.

Given a finite set of estimators {V̂m}Mm=1, which is often constructed by varying the value of hyperparameters, the estimator
selection problem aims at identifying the estimator that minimizes some notion of estimation error such as the following
absolute error with respect to a given target policy π.

m∗ := argmin
m∈[M ]

∣∣∣V (π)− V̂m(π;D)
∣∣∣ ,

where D is a given logged bandit dataset.

For solving this selection problem, SLOPE++ requires the following monotonicity assumption (SLOPE requires a slightly
stronger assumption).

Assumption C.1. (Monotonicity)

1. Bias(V̂m) ≤ Bias(V̂m+1), ∀m ∈ [M ]

2. CNF(V̂m+1) ≤ CNF(V̂m), ∀m ∈ [M ]
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where CNF(V̂ ) is a high probability bound on the deviation of V̂ , which requires that the following holds with a probability
at least 1− δ. ∣∣∣ED

[
V̂ (π;D)

]
− V̂ (π;D)

∣∣∣ ≤ CNF(V̂ ),

which we can generally bound with high confidence using techniques such as concentration inequalities.

Based on this assumption, Tucker & Lee (2021) derive the following universal bound.

Theorem C.2. (Theorem 1 of Tucker & Lee (2021)) Given δ > 0, high confidence bound CNF(V̂m) on the deviations, and
that we have ordered the candidate estimators such that CNF(V̂m+1) ≤ CNF(V̂m). Selecting the estimator as

m̂ := max
{
m :

∣∣V̂m − V̂j

∣∣ ≤ CNF(m) + (
√
6− 1)CNF(j), j < m

}
(25)

ensures that with probability at least 1− δ,∣∣∣V̂m̂ − V̂m∗

∣∣∣ ≤ (
√
6 + 3)min

m

(
max
j≤m

Bias(j) + CNF(m)

)
.

Under Assumption C.1, the bound simplifies to∣∣∣V̂m̂ − V̂m∗

∣∣∣ ≤ (
√
6 + 3)min

m
(Bias(m) + CNF(m)) .

In contrast, when the set of estimators is not ordered with respect to CNF(·), we have a looser bound as below.∣∣∣V̂m̂ − V̂m∗

∣∣∣ ≤ (
√
6 + 3)min

m

(
max
j≤m

Bias(j) + max
k≤m

CNF(k)

)
.

Note that Tucker & Lee (2021) also provide the corresponding universal upper bound with respect to MSE in their Corollary
1.1.

We build on the selection procedure given in Eq. (25) to implement data-driven action feature selection. Specifically, in our
case, the task is to identify which dimensions of the action embedding e we should use to minimize the MSE of the resulting
MIPS as follows.

min
E⊆V

Bias
(
V̂MIPS (π; E)

)2
+ VD

[
V̂MIPS

(
π;D, E

)]
where V := {E1, E2, . . . , Ek} is a set of available action features. Note that we make the dependence of MIPS on the action
embedding space E explicit in the above formulation.

As described in Theorems 3.5, 3.6, and 3.7, we should use as many dimensions as possible to reduce the bias, while we
should use as coarse information as possible to gain a large variance reduction. For identifying useful features to compute
the marginal importance weights, we construct a set of estimators {V̂MIPS (π;D, E)}E⊆V and simply apply Eq. (25). Note
that when the number of embedding dimensions is not small, the brute-force search over all possible combinations of
the embedding dimensions is not tractable. Thus, we sometime define the action embedding search space V via a greedy
procedure to make the embedding selection tractable. In our experiments, we perform action embedding selection based
on the greedy version of SLOPE++, and we estimate a high probability bound on the deviation (CNF(V̂ )) based on the
Student’s t distribution as done in Thomas et al. (2015). The MIPS estimator along with the exact and greedy versions of
embedding dimension selection is now implemented in the OBP package.7.

D. Experiment Details and Additional Results
D.1. Baseline Estimators

Below, we define and describe the baseline estimators in detail.
7https://github.com/st-tech/zr-obp

https://github.com/st-tech/zr-obp
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Direct Method (DM) DM is defined as follows.

V̂DM(π;D, q̂) := 1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] =
1

n

n∑
i=1

∑
a∈A

π(a|xi)q̂(xi, a),

where q̂(x, a) estimates q(x, a) based on logged bandit data. The accuracy of DM depends on the quality of q̂(x, a). If
q̂(x, a) is accurate, so is DM. However, if q̂(x, a) fails to estimate the expected reward accurately, the final estimator is no
longer consistent. As discussed in Appendix A, the misspecification issue is challenging, as it cannot be easily detected from
available data (Farajtabar et al., 2018; Voloshin et al., 2019). This is why DM is often described as a high bias estimator.

Doubly Robust (DR) (Dudı́k et al., 2014) DR is defined as follows.

V̂DR(π;D, q̂) :=
1

n

n∑
i=1

{
Eπ(a|xi)[q̂(xi, a)] + w(xi, ai)(ri − q̂(xi, ai))

}
,

which combines DM and IPS in a way to reduce the variance. More specifically, DR utilizes q̂ as a control variate. If
the expected reward is correctly specified, DR is semiparametric efficient meaning that it achieves the minimum possible
asymptotic variance among regular estimators (Narita et al., 2019). A problem is that, if the expected reward is misspecified,
this estimator can have a larger asymptotic MSE compared to IPS.

Switch Doubly Robust (Switch-DR) (Wang et al., 2017) Although DR generally reduces the variance of IPS and is also
minimax optimal (Wang et al., 2017), it can still suffer from the variance issue in practice, particularly when the importance
weights are large due to a weak overlap between target and logging policies. Switch-DR is introduced to further deal with
the variance issue and is defined as follows.

V̂SwitchDR(π;D, q̂, λ) :=
1

n

n∑
i=1

{
Eπ(a|xi)[q̂(xi, a)] + w(xi, ai)I{w(xi, ai) ≤ λ}(ri − q̂(xi, ai))

}
,

where I{·} is the indicator function and λ ≥ 0 is a hyperparameter. When λ = 0, Switch-DR becomes DM, while λ→∞
leads to DR. Switch-DR is also minimax optimal when λ is appropriately set (Wang et al., 2017).

More Robust Doubly Robust (Farajtabar et al., 2018) MRDR uses an expected reward estimator (q̂MRDR) derived
by minimizing the variance of the resulting DR estimator. This estimator is defined as V̂MRDR(π;D, q̂MRDR) :=
V̂DR(π;D, q̂MRDR), where q̂MRDR is derived by minimizing the (empirical) variance objective: q̂MRDR ∈
argminq̂∈Q Vn(V̂DR(π;D, q̂)), where Q is a function class for q̂. When Q is well-specified, then q̂MRDR = q. The
main point is that, even if Q is misspecified, MRDR is still expected to perform reasonably well, as the target function is the
resulting variance. To implement MRDR, we follow Farajtabar et al. (2018) and Su et al. (2020a), and derive q̂MRDR by
minimizing the weighted squared loss with respect to the reward prediction on the logged data.

Doubly Robust with Optimistic Shrinkage (Su et al., 2020a) DRos is defined via minimizing an upper bound of the
MSE and is defined as follows.

V̂DRos(π;D, q̂, λ) :=
1

n

n∑
i=1

{
Eπ(a|xi)[q̂(xi, a)] +

λw(xi, ai)

w(xi, ai)2 + λ
(ri − q̂(xi, ai))

}
,

where λ ≥ 0 is a hyperparameter. When λ = 0, DRos is equal to DM, while λ→∞ makes DRos identical to DR. DRos is
aimed at improving the small sample performance of DR, but is indeed biased due to the weight shrinkage.

DR-λ (Metelli et al., 2021) DR-λ is a recent estimator building on a “smooth shrinkage” of the importance weights to
mitigate the heavy-tailed behavior of the previous estimators. This estimator is defined as follows.

V̂DR−λ(π;D, q̂, λ) :=
1

n

n∑
i=1

{
Eπ(a|xi)[q̂(xi, a)] +

w(xi, ai)

1− λ+ λw(xi, ai)
(ri − q̂(xi, ai))

}
,

where λ ∈ [0, 1] is a hyperparameter. Note that Metelli et al. (2021) define a more general weight, ((1− λ)w(x, a)s + λ)
1
s ,

with an additional hyperparameter s. The above instance is a special case with s = 1, which is the main proposal of Metelli
et al. (2021).
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D.2. Additional Results on Synthetic Bandit Data

In this section, we explore two additional research questions regarding the estimators’ performance for different logging/target
policies and different levels of noise on the rewards. We demonstrate that MIPS works particularly better than other baselines
when the target and logging policies differ greatly and the reward is noisy. After discussing the two research questions, we
report detailed experimental results regarding the research questions addressed in the main text with additional baselines.

How does MIPS perform with varying logging and target policies? We compare the MSE, squared bias, and variance
of the estimators (DM, IPS, DR, MIPS, and MIPS with the true weights) with varying logging and target policies. We can
do this by varying the values of β and ϵ as described in Section 4. Note that we set β = −1 and ϵ = 0.05 for all synthetic
results in the main text.

First, Figure 8 reports the results with varying logging policies (β ∈ {−3,−2,−1, 0, 1, 2, 3}) and with a near-optimal/near-
deterministic target policy defined by ϵ = 0.05 (fixed). A large negative value of β leads to a worse logging policy, meaning
that it creates a large discrepancy between logging and target policies in this setup. The left column of Figure 8 demonstrates
that the MSEs of the estimators generally become larger for larger negative values of β as expected. Most notably, the MSEs
of IPS and DR blow up for β = −3,−2 due to their inflated variance as suggested in the right column of the same figure.
On the other hand, MIPS and MIPS (true) work robustly for a range of logging policies, suggesting the strong variance
reduction for the case with a large discrepancy between policies. DM also suffers from a larger discrepancy between logging
and target policies due to its increased bias caused by the extrapolation error issue.

Next, Figure 9 shows the results with varying target policies (ϵ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}) and with a logging policy
slightly worse than uniform random defined by β = −1 (fixed). A larger value of ϵ introduces a larger entropy for the target
policy, making it closer to the logging policy in this setup (an extreme case with ϵ = 1.0 produces a uniform random target
policy). On the other hand, ϵ = 0 produces the optimal, deterministic target policy, which makes OPE harder given β = −1.
The left column of Figure 9 suggests that all estimators perform worse for smaller values of ϵ as expected. IPS and DR
perform worse as their variance increases with decreasing ϵ, while DM performs worse as it produces larger bias. The
variance of MIPS also increases with decreasing ϵ, but it is often much smaller and robust than those of IPS and DR. Note
that, for the uniform random target policy (ϵ = 1.0), all estimators are very accurate and there is no significant difference
among the estimators.

How does MIPS perform with varying noise levels? Next, we explore how the level of noise on the rewards affects
the comparison of the estimators. To this end, we vary the noise level σ ∈ {0.5, 1.0, 1.5, . . . , 4.0} where σ is the standard
deviation of the Gaussian noise, i.e., r ∼ N (q(x, a), σ2). As stated in the main text, the variance of IPS grows when the
reward is noisy. Theorem 3.6 also implies that the variance reduction of MIPS becomes more appealing with the noisy
rewards. Figure 10 empirically supports these claims. Specifically, IPS significantly exacerbates its MSE from 0.55 (when
σ = 0.5) to 3.22 (when σ = 4.0). MIPS also struggles with noisy rewards, but the improvement of MIPS compared
to IPS/DR becomes larger with the added noise. When the noise level is small (σ = 0.5), MSE(V̂IPS)

MSE(V̂MIPS)
= 2.97, while

MSE(V̂IPS)

MSE(V̂MIPS)
= 14.98 when the noise is large (σ = 4.0). Different from IPS, DR, and MIPS, DM is not affected so much by

the noise level and becomes increasingly better than IPS and DR in noisy environments. Nontheless, MIPS achieves much
smaller MSE than DM even with noisy rewards.

Comparison with additional baselines across additional experimental conditions. We include additional baselines
(Switch-DR, DRos, and DR-λ) described in Appendix D.1 to the empirical evaluations. Their built-in hyperparameters are
tuned with SLOPE++ proposed by Tucker & Lee (2021), which slightly improves the original SLOPE of Su et al. (2020b).
We use implementations of these advanced estimators provided by OBP (version 0.5.5). We evaluate the four research
questions addressed in the main text with six different pairs of (β, ϵ). Figures 11-14 report the results with β = −1 and
ϵ = 0.05. Figures 15-18 report the results with β = −1 and ϵ = 0.8. Figures 19-22 report the results with β = 0 and
ϵ = 0.05. Figures 23-26 report the results with β = 0 and ϵ = 0.8. Figures 27-30 report the results with β = 1 and ϵ = 0.05.
Figures 31-34 report the results with β = 1 and ϵ = 0.8.

In general, we observe results similar to those reported in the main text. Specifically, MIPS works better than all existing
estimators, including the advanced ones, in a range of situations, in particular for small data and large action spaces. This
result suggests that even the recent state-of-the-art estimators fail to deal with large action spaces. Regarding the additional
baselines, Switch-DR, DRos, and DR-λ work similarly to DM. These estimators fail to improve their variance with the
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growing sample sizes and become worse than IPS and DR in large sample regimes. This observation suggests that SLOPE++
avoids huge importance weights and favors low variance, but highly biased estimators in our setup. We indeed also tested
the More Robust Doubly Robust (MRDR) estimator (Farajtabar et al., 2018), but find that MRDR suffers from its growing
variance with a growing number of actions and works similarly to IPS and DR.
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Figure 8. MSE, Squared Bias, and Variance with varying logging policies (β)

Figure 9. MSE, Squared Bias, and Variance with varying target policies (ϵ)

Figure 10. MSE, Squared Bias, and Variance with varying noise levels (σ)

Note: We set n = 10, 000 and |A| = 1, 000. For Figure 8, we fix ϵ = 0.05, σ = 2.5, for Figure 9, we fix β = −1, σ = 2.5, and for
Figure 10, we fix ϵ = 0.05, β = −1. The results are averaged over 100 different sets of synthetic logged data replicated with different
random seeds. The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap.
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MSE Squared Bias Variance

Figure 11. MSE, Squared Bias, and Variance with varying number of actions

Figure 12. MSE, Squared Bias, and Variance with varying sample size

Figure 13. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 14. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = −1 and ϵ = 0.05, which produce logging policy slightly worse than uniform random and
near-optimal/near-deterministic target policy. The results are averaged over 100 different sets of synthetic logged data replicated with
different random seeds. The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis
of MSE and Variance plots (the left and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 15. MSE, Squared Bias, and Variance with varying number of actions

Figure 16. MSE, Squared Bias, and Variance with varying sample size

Figure 17. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 18. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = −1 and ϵ = 0.8, which produce logging policy slightly worse than uniform random and near-uniform target
policy. The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded
regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left
and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 19. MSE, Squared Bias, and Variance with varying number of actions

Figure 20. MSE, Squared Bias, and Variance with varying sample size

Figure 21. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 22. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = 0 and ϵ = 0.05, which produce uniform random logging policy and near-optimal/near-deterministic target policy.
The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left and right
columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 23. MSE, Squared Bias, and Variance with varying number of actions

Figure 24. MSE, Squared Bias, and Variance with varying sample size

Figure 25. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 26. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = 0 and ϵ = 0.8, which produce uniform random logging policy and near-uniform target policy. The results are
averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the MSE plots
represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left and right columns) is
reported on log-scale.
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MSE Squared Bias Variance

Figure 27. MSE, Squared Bias, and Variance with varying number of actions

Figure 28. MSE, Squared Bias, and Variance with varying sample size

Figure 29. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 30. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = 1 and ϵ = 0.05, which produce logging policy slightly better than uniform random and
near-optimal/near-deterministic target policy. The results are averaged over 100 different sets of synthetic logged data replicated with
different random seeds. The shaded regions in the MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis
of MSE and Variance plots (the left and right columns) is reported on log-scale.
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MSE Squared Bias Variance

Figure 31. MSE, Squared Bias, and Variance with varying number of actions

Figure 32. MSE, Squared Bias, and Variance with varying sample size

Figure 33. MSE, Squared Bias, and Variance with varying number of deficient actions

Figure 34. MSE, Squared Bias, and Variance with varying number of unobserved dimensions in action embeddings

Note: We set β = 1 and ϵ = 0.8, which produce logging policy slightly better than uniform random and near-uniform target policy.
The results are averaged over 100 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap. The y-axis of MSE and Variance plots (the left and right
columns) is reported on log-scale.
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Algorithm 1 An Experimental Procedure to Evaluate an OPE Estimator with Real-World Bandit Data

Require: an estimator to be evaluated V̂ , target policy and corresponding logged bandit data (π,D), logging policy and
corresponding logged bandit data (π0,D0), sample size in OPE n, number of random seeds T

Ensure: empirical CDF of the squared error (F̂Z)
1: Z ← ∅ (initialize set of results)
2: for t = 1, 2, . . . , T do
3: D∗

0,t ← Bootstrap(D0;n) // randomly sample size n of bootstrapped samples

4: z′ ←
(
Von(π;D)− V̂ (π;D∗

0,t)
)2
/
(
Von(π;D)− V̂IPS(π;D∗

0,t)
)2

// calculate the relative SE of V̂ w.r.t IPS

5: Z ← Z ∪ {z′} // store the result

6: end for
7: Estimate CDF of relative SE (FZ) based on Z (Eq. 26)

Figure 35. CDF of squared errors relative to IPS with different sample sizes (From left to right, n = 10000, 50000, 500000). CDFs are
estimated with 150 different sets of bootstrapped logged bandit data. Note that the x-axis is reported on a log-scale.

D.3. Experimental Procedure to Evaluate OPE Estimators on Real-World Bandit Data

Following Saito et al. (2020; 2021), we empirically evaluate the accuracy of the estimators by leveraging two sources of
logged bandit data collected by running two different policies denoted as π (regarded as target policy) and π0 (regarded as
logging policy). We let D denote a logged bandit dataset collected by π and D0 denote that collected by π0. We then apply
the following procedure to evaluate the accuracy of an OPE estimator V̂ .

1. Perform bootstrap sampling on D0 and construct D∗
0 := {(x∗

i , a
∗
i , r

∗
i )}ni=1, which consists of size n of independently

resampled data with replacement.

2. Estimate the policy value of π usingD∗
0 and OPE estimator V̂ . We represent a policy value estimated by V̂ as V̂ (π;D∗

0).

3. Evaluate the estimation accuracy of V̂ with the following relative squared error w.r.t IPS (rel-SE):

rel-SE(V̂ ;D∗
0) :=

(
Von(π;D)− V̂ (π;D∗

0)
)2
/
(
Von(π;D)− V̂IPS(π;D∗

0)
)2
,

where V̂on(π;D) := |D|−1
∑

(·,·,rj)∈D rj is the Monte-Carlo estimate of V (π) based on on-policy data D.

4. Repeat the above process T times with different random seeds, and estimate the CDF of the relative SE as follows.

F̂Z(z) :=
1

T

T∑
t=1

I
{

rel-SEt(V̂ ;D∗
0,t) ≤ z

}
, (26)

where rel-SE(V̂ ;D∗
0,t) is the relative SE of V̂ computed with the t-th bootstrapped samples D∗

0,t.

Algorithm 1 describes this experimental protocol for evaluating OPE estimators in detail. Figure 35 reports the results with
real bandit data for varying numbers of logged data (n = 10000, 50000, 500000). Note that we use the Random Forest
implemented in scikit-learn along with 2-fold cross-fitting (Newey & Robins, 2018) to obtain q̂(x, e) for the model-dependent
estimators. We also use the Categorical Naive Bayes8 to estimate π̂0(a|x, e) for MIPS.

8https://scikit-learn.org/stable/modules/generated/sklearn.naive bayes.CategoricalNB.html

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html


Off-Policy Evaluation for Large Action Spaces via Embeddings

Note that we use OBD’s “ALL” campaign, because it has the largest number of actions among three available campaigns.
We also regard the same action presented at a different position in a recommendation interface as different actions. As OBD
has 80 unique actions and 3 different positions in its recommendation interface, the resulting action space has the cardinality
of 80× 3 = 240.


