
Evaluating the Robustness of Learning from Implicit Feedback

Filip Radlinski filip@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Thorsten Joachims tj@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

This paper evaluates the robustness of learn-
ing from implicit feedback in web search. In
particular, we create a model of user behavior
by drawing upon user studies in laboratory
and real-world settings. The model is used
to understand the effect of user behavior on
the performance of a learning algorithm for
ranked retrieval. We explore a wide range of
possible user behaviors and find that learning
from implicit feedback can be surprisingly ro-
bust. This complements previous results that
demonstrated our algorithm’s effectiveness in
a real-world search engine application.

1. Introduction

The task of learning ranked retrieval functions has
recently received significant interest in the machine
learning community (Bartell & Cottrell, 1995; Freund
et al., 1998; Joachims, 2002; Kemp & Ramamoha-
narao, 2003). This is largely motivated by a goal of
learning improved retrieval functions for web search.

The two standard approaches for collecting training
data in this setting use explicit and implicit feedback.
Explicit feedback involves actively soliciting relevance
feedback by recording user queries and then explic-
itly judging the relevance of the results (Crammer &
Singer, 2001; Herbrich et al., 2000; Rajaram et al.,
2003). Acquiring explicit relevance judgments is time
consuming and tedious, making large amounts of such
data impractical to obtain. The alternative is to ex-
tract implicit relevance feedback from search engine
log files (Kelly & Teevan, 2003; Cohen et al., 1999;
Joachims, 2002; Kemp & Ramamohanarao, 2003).
This allows virtually unlimited data to be collected

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

at very low cost, but this data tends to be noisy and
biased (Joachims et al., 2005; Radlinski & Joachims,
2005). In this paper, we consider a method for learning
from implicit feedback and use modeling to understand
when it is effective.

In contrast to typical learning problems where we have
a fixed dataset, the task of learning to rank from im-
plicit feedback is an interactive process between the
user and learning algorithm. The training data is col-
lected by observing user behavior given a particular
ranking. If an algorithm presents users with a differ-
ent ranking, different training data will be collected.

This type of interactive learning requires that we ei-
ther run systems with real users, or build simulations
to evaluate algorithm performance. The first involves
building a search system to collect training data and
evaluate real user behavior. While providing the most
compelling results, this approach has a number of
drawbacks. First, evaluating with real users is slow
and requires a significant number of different users.
Moreover, if a particular learning method proves in-
effective, users quickly switch to other search engines.
Finally, when we only collect the behavior of real users,
the behavior is determined by the user base. Such re-
sults do not allow us to study the robustness of learn-
ing algorithms and feedback mechanisms. It is this
issue that is our primary concern in this paper.

The alternative, often used in reinforcement learning,
is to build a simulation environment. Obviously this
has the drawback that it is merely a simulation, but it
also has significant advantages. It allows more rapid
testing of algorithms than by relying on user partic-
ipation. It also allows exploration of the parameters
of user behavior. In particular, we can use a model
to explore the robustness of a learning algorithm to
noise in the training data. We cannot have such con-
trol when real users are involved, and unlike the usual
learning problem setting we are unaware of any way to
inject realistic implicit feedback noise into real-world

Evaluating the Robustness of Learning from Implicit Feedback

training data and evaluate its effect.

In this paper, we present a user model to analyze the
robustness of the Osmot search engine (Radlinski &
Joachims, 2005). Osmot learns ranked retrieval func-
tions by observing how users reformulate queries and
how they click on results. We first present the learn-
ing algorithm, then the user model where we draw on
the results of an eye-tracking study (Granka et al.,
2004). We next demonstrate our algorithm’s tolerance
to noise in user behavior, having previously shown it
to be effective in a real-world search engine (Radlinski
& Joachims, 2005). We find Osmot to tolerate a strong
user preference to click on higher ranked documents,
and that it is able to learn despite most users only look-
ing at the top few results. Our approach is generally
interesting because it provides a practical method to
evaluate the robustness of learning from implicit feed-
back. We plan to publicly release Osmot, including
our model implementation.

2. Learning to Rank

Before we present our simulation model, we describe
how Osmot learns from implicit feedback. For this, we
assume a standard web search setting.

Our method relies on implicit feedback collected from
log files. We record the queries users run as well as the
documents they click on in the results. In these log
files, we assume that documents clicked on are likely
more relevant than documents seen earlier by the user,
but not clicked on. This allows us to extract implicit
relevance judgments according to a given set of feed-
back strategies. Within each search session, we assume
each user runs a sequence, or chain, of queries while
looking for information on some topic. We segment
the log data into query chains using a simple heuristic
(Radlinski & Joachims, 2005).

2.1. Implicit Feedback Strategies

We generate preference feedback using the six strate-
gies illustrated in Figure 1. They are validated and dis-
cussed more in (Radlinski & Joachims, 2005). The first
two strategies show single query preferences. “Click
>q Skip Above” proposes that given a clicked-on doc-
ument, any higher ranked document that was not
clicked on is less relevant. The preference is indicated
by an arrow labeled with the query, to show that the
preference is with respect to that query. Note that
these preferences are not stating that the clicked-on
document is relevant, rather that it is more likely to
be relevant than the ones not clicked on. The second
strategy, “Click 1st >q No-Click 2nd” assumes that
users typically view both of the top two results be-

Click >q Skip Above Click 1st >q No-Click 2nd

Click >q′ Skip Above Click 1st >q′ No-Click 2nd

Click >q′
Skip Earlier

Query
Click >q′

Top Two
Earlier Query

Figure 1. Feedback strategies. The user has run query q′

followed by q. Each dot represents a result and an x indi-
cates it was clicked on. We generate a constraint for each
arrow shown, with respect to the query marked.

fore clicking, as suggested by an eye-tracking study
described below (Joachims et al., 2005). It states that
if the first document is clicked on, but the second is
not, the first is likely more relevant than the second.

The next two strategies are identical to the first two
except that they generate feedback with respect to
the earlier query. The intuition is that since the two
queries belong to the same query chain, the user is
looking for the same information with both. Had the
user been presented with the later results for the earlier
query, she would have preferred the clicked-on docu-
ment over those skipped over.

The last two strategies make the most use of query
chains. They state that a clicked-on result is pre-
ferred over any result not clicked on in an earlier query
(within the same query chain). This judgment is made
with respect to the earlier query. We assume the user
looked at all the documents in the earlier query up
to one past the last one clicked on. In the event that
no documents were clicked on in the earlier query, we
assume the user looked at the top two results.

Ultimately, given some query chain, we make use of all
six strategies as illustrated in the example in Figure 2.

2.2. Learning ranking functions

We define the relevance of di to q as a linear function,

rel(di, q) := w · Φ(di, q) (1)

Evaluating the Robustness of Learning from Implicit Feedback

q1 q2
d1 d4 x
d2 x d5
d3 d6

d2 >q1 d1 d4 >q2 d5 d4 >q1 d5

d4 >q1 d1 d4 >q1 d3

Figure 2. Sample query chain and the feedback that would
be generated. Two queries were run, each returning three
results of which one was clicked on. di >q dj means that
di is preferred over dj with respect to the query q.

where Φ(di, q) maps documents and queries to a fea-
ture vector. Intuitively, Φ can be though of as describ-
ing the quality of the match between di and the query
q. w is a weight vector that assigns weights to each of
the features in Φ, giving a real valued retrieval func-
tion where a higher score indicates di is estimated to
be more relevant to q. The task of learning a ranking
function becomes one of learning w.

The definition of Φ(di, q) is key in determining the
class of ranking functions we can learn. We define
two types of features: rank features, φrank(di, q), and
term/document features, φterms(di, q). Rank features
serve to exploit an existing static retrieval function
rel0, while term/document features allow us to learn
fine-grained relationships between particular query
terms and specific documents. Note that rel0 is the
only ranking function we have before any learning has
occurred and is thus used to generate the original rank-
ing of documents. In our case, we use a simple TFIDF
weighted cosine similarity metric as rel0.

Let W := {t1, . . . , tN} be all the terms in our dic-
tionary. A query q is a set of terms q := {t′1, . . . , t′n}
where t′i ∈ W . Let D := {d1, . . . , dM} be the set of
all documents. We also define r0(q) as the ordered set
of results as ranked by rel0 given query q. Now,

Φ(d, q) =
[

φrank(d, q)
φterms(d, q)

]

φrank(d, q) =

 1(Rank(d in r0(q)) ≤ 1)
...

1(Rank(d in r0(q)) ≤ 100)

φterms(d, q) =

 1(d = d1 ∧ t1 ∈ q)
...

1(d = dM ∧ tN ∈ q)

where 1 is the indicator function.

Before looking at the term features φterms(d, q), con-
sider the rank features φrank(d, q). We have 28 rank
features (for ranks 1,2,..,10,15,20,..,100), with each set
to 1 if document d in r0(q) is at or above the specified

rank. The rank features allow us to make use of the
original ranking function.

The term features, φterms(d, q), are each of the form
φ

ti,dj

term(d, q), set to either 0 or 1. There is one for every
(term, document) pair in W × D. These features al-
low the ranking function to learn associations between
specific query words and documents. This is usually
a very large number of features, although most never
appear in the training data. Furthermore, the feature
vector φterms(d, q) is very sparse. For any particular
document d, given a query with |q| terms, only |q| of
the φ

ti,dj

term(d, q) features are set to 1.

We use a modified ranking SVM (Joachims, 2002) to
learn w from Equation 1. Let di be more relevant than
dj to query q: rel(di, q) > rel(dj , q). We can rewrite
this, adding margin and non-negative slack variables:

w · Φ(di, q) ≥ w · Φ(dj , q) + 1− ξij (2)

We also have additional prior knowledge that absent
any other information, documents with a higher rank
in r0(q) should be ranked higher in the learned ranking
system. There are both intuitive and practical reasons
for these constraints (Radlinski & Joachims, 2005).

This gives the following optimization problem that we
solve using SV M light (Joachims, 1999) with C = 0.1:

minw,ξij

1
2w · w + C

∑
ij ξij subject to

∀(q, i, j) : w · (Φ(di, q)− Φ(dj , q)) ≥ 1− ξij

∀i ∈ [1, 28] : wi ≥ 0.01
∀i, j : ξij ≥ 0

(3)

We have shown that this algorithm works in a real-
world setting in the Cornell University library web
search engine (Radlinski & Joachims, 2005). Due to
space constraints we do not repeat those results here.

3. Model Description

We now present a model of user behavior when search-
ing. This model will allow us to measure the ro-
bustness of Osmot to changes in user behavior. One
part generates documents, and another simulates users
searching the collection. After presenting the model,
we support it by drawing on user behavior studies. Al-
though it is clearly a simplification of reality, we show
that this model is nonetheless useful.

3.1. Document Generation

Documents are generated as described in Table 1. The
set of words is W , with word frequencies obeying a Zipf
law. We define a set of topics T by uniformly picking N
words from W for each topic. Some topics thus include

Evaluating the Robustness of Learning from Implicit Feedback

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

3
T2

T1 T

d1

W

d1

Figure 3. Document generation illustration. T1, T2 and T3

are topics. Document d1 is picked as relevant to two topics
(kd = 2), T1 and T3, although in selecting words from T1,
we also happened to select some words in T2.

Table 1. Document Generation Model.

1. Let W be the set of all words. Let T be the set of
topics, with each topic described by Ti ⊂ W .

2. Let each document d be generated as follows:

2.1. ∀Ti ∈ T : rel(d, Ti) = 0
2.2. Pick kd binomially from [0, MAXT].
2.3. If kd = 0 Then

Pick L words from W .
2.4. Otherwise, do the following kd times

a. Pick t from [1, |T |].
b. Pick L/kd words from Tt.
c. rel(d, Tt) = rel(d, Tt) + 1/kd.

more common words than others (for example consider
two topics, basketball and machine learning). This
construct is illustrated in Figure 3. In our experiments,
each word is on average in two topics.

Next, we generate each document d with L words one
at a time. We pick kd, which specifies how many dif-
ferent topics d is relevant to, as described in Table 1.
Topics are picked according to a Zipf law to account
for some topics being much more popular than others
(again consider basketball versus machine learning).
We set the relevance of the document to each topic to
be proportional to the number of times the topic was
picked with the sum of the relevances normalized to 1.

3.2. User Model

The process each user goes through as they search the
web is specified in Table 2. This is a simple model, but
as we will show it is reasonable and useful. Assume
the user has a question q and wants to find the most
relevant documents to the related topic Tq ∈ T . Users
differ in their patience p and relevance threshold r.
The patience determines how many results the user is
likely to look at, while the relevance threshold specifies

Table 2. User Behavior Model

1. Let q be the user’s question, and p and r the
user’s patience and relevance thresholds respec-
tively. They are sampled uniformly from (0,5] and
[0.375,0.875] respectively.

2. While question q is unanswered

2.1. Generate a query for question q. Let d1 . . . dn

be the results for this query.
2.2. Let i = 1, pq = p.
2.3. While pq > 0

a. If obsRel(di, q) > r Then
If obsRel(di+1, q) > obsRel(di, q) + c

Go to step (c)
Otherwise

Click on di.
pq = pq − 0.5− (1− rel(di, q)).
If rel(di, q) = 1 the user is done.

b. Otherwise
pq = pq − (r − obsRel(di, q))

c. i = i + 1.
2.4. With 50% probability, the user gives up.

how relevant a document must appear to be (according
to the abstract shown by the search engine) before the
user clicks on it.

Given a question, the user generates a query. We
implement this by sampling words from the question
topic with a Zipf law. This query returns a set of
results and the user considers each in order. When
the user observes a result, she estimates it’s rele-
vance to her question given a short abstract, observ-
ing obsRel(di, q). The real relevance of di to query
q is rel(di, q). obsRel(di, q) is drawn from an incom-
plete Beta distribution with α dependent on the level

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pr

ob
ab

ili
ty

Observed relevance

rel=0.33, low noise
rel=0.33, medium noise
rel=1.00, low noise
rel=1.00, medium noise
any relevance, maximum noise

Figure 4. Probability of observing different perceived rele-
vance as a function of the actual relevance.

Evaluating the Robustness of Learning from Implicit Feedback

0%

20%

40%

60%

80%

100%

 10 9 8 7 6 5 4 3 2 1

P
er

ce
nt

ag
e

Rank of Abstract

% looked at

% clicked on

Figure 5. Percentage of time an abstract was viewed and
clicked on depending on the rank of the result.

of noise and β selected so that the mode is at rel(di, q)
(unless rel(di, q) = 0, when the mode is at 0.05) as
shown in Figure 4. This ensures the observed rele-
vance is in the range [0,1] and has a level of noise that
can be controlled.

If obsRel(di, q) > r, the user’s relevance threshold, the
user intends to click on di. However, the eye tracking
study described below showed that users typically look
at the next document below any they click on. Hence
before clicking, the user looks at the next document,
and moves on to it if it appears substantially more rel-
evant. Otherwise, if obsRel(di, q) ≤ r, the user moves
on and her patience is reduced. The patience is re-
duced more for documents that appear less relevant
because if she sees a document that appears to be com-
pletely irrelevant, she is more discouraged than if she
sees a document that appears somewhat relevant.

When the user clicks on a document, she sees rel(di, q).
If she finds a document with maximum relevance, she
stops searching. Otherwise, she returns to the search
results and continues looking until her patience runs
out, and then runs a new query with 50% probability.

3.3. Model Justification

We base our usage model on results obtained in an
eye tracking study (Granka, 2004; Granka et al., 2004;
Joachims et al., 2005). The study aimed to observe
how users formulate queries, assess the results returned
by the search engine and select the links they click on.
Thirty six student volunteers were asked to search for
the answers to ten queries. The subjects were asked
to start from the Google search page and find the an-
swers. There were no restrictions on what queries they
may choose, how and when to reformulate queries, or
which links to follow. All clicks and the results re-
turned by Google were recorded by an HTTP proxy.
Movement of the eyes was recorded using a commer-
cial eye tracker. Details of the study are provided in
(Granka et al., 2004).

Figure 5 shows the fraction of time users looked at,

0%

20%

40%

60%

80%

100%

 10 9 8 7 6 5 4 3 2 1

P
er

ce
nt

ag
e

Rank of Abstract

% looked at

% clicked on

Figure 6. Percentage of time an abstract was viewed and
clicked on in model depending on the rank of the result.

Table 3. Behavioral dimensions explored

Short Name Description
noise Accuracy of relevance estimates.
ambiguity Topic and word ambiguity.
trust User’s trust in presented ranking.
threshold User selectivity over results.
patience Number of results looked at.
reformulation How often users reformulate.
improvement Query improvement over time.

and clicked on, each of the top 10 search results after
running a query. It tells us that users usually look at
the top two result abstracts, and are much more likely
to click on the first result than any other. Addition-
ally, (Joachims et al., 2005) show that users usually
look sequentially at the results from the top to the
one below the last one clicked on.

We observe in Figure 6 that the looks and clicks gen-
erated by this model resemble those seen in the user
study. The most significant difference is in where users
looked. Some of the time in the eye tracking study,
the results show that users did not look at any results.
We believe that this is partly due to errors in the eye
tracker, and partly due to queries that did not return
any results (such as spelling errors). For simplicity, we
ignore these cases here.

We also measured the fraction of users who click on
each of the top ten results in the Cornell University
library search engine. The results confirmed that the
distribution of clicks seen in Figures 5 and 6 is typical.

4. Learning Experiments

In this section, we explore the effect of different aspects
of user behavior on the performance of Osmot. There
are a number dimensions along which we assume user
behavior may vary. These are listed in Table 3. For
each, we present the effect of a change on our learning
results and draw conclusions. Where possible, we re-
late the modeled results to real-world results to verify
that the modeled results are realistic.

Evaluating the Robustness of Learning from Implicit Feedback

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

Low noise
Medium noise

High noise
Maximum noise

Figure 7. Ranking function performance for various noise
levels.

4.1. High Level Parameters

We first consider the effect of two high level parame-
ters: the level of difficulty users have in obtaining ac-
curate relevance estimates from result abstracts, and
the ambiguity in words appearing in documents and
queries.

4.1.1. Accuracy of relevance estimates

After running a query, users select where to click by
estimating the relevance of results from the abstracts
presented. We now vary the noise in the user relevance
estimate and examine the effect.

Figure 7 shows the mean relevance of the most rele-
vant document in the top five results for various noise
levels for the first query in each query chain. This rele-
vance is known because the evaluation is on a synthetic
dataset. Consider the first set of points, at iteration 0.
We used rel0 as a ranking function and modeled 4,000
users running queries and clicking on results. This
gave about 75% mean highest top-5 relevance. Each
curve shows the performance of the learning algorithm
for different levels of noise in users’ estimates of doc-
ument relevance. For each noise level, using the data
generated we learned a new ranking function. These
results are shown at iteration 1. We see that in each
case performance improves and this improvement is
smaller with more noise.

Using the learned ranking function, we collect more
training data. We then use the training data to learn
a second ranking function, re-evaluate (the results are
shown at iteration 2) and so forth. The noise levels
correspond to setting α to 4, 2, 1.4 and 1 in the in-
complete Beta distribution.

We see that most of the improvement occurs in the first
two learning iterations, although it keeps accruing. We
also see that the decay in improvement as more noise
is introduced is gradual, which tells us that the Osmot
algorithm can be decays gracefully with more noise.

Given that the preferences are generated over a known
document collection, we can measure the error in the

constraints generated according to the real document
relevance. In this analysis, we ignore all preferences
that indicate a preference over documents that have
the same true relevance to a query. The fraction of
constraints indicating that two documents should be
ranked one way while the reverse is true for the four
noise levels considered are 5%, 11%, 18% and 48%.
These percentages show the mismatch between the
generated preferences and the known ground truth on
the 0th iteration. They measure how often a prefer-
ence indicates that di >q dj when di <∗

q dj in reality.

In order to measure the level of noise in real data,
we collected explicit relevance judgments for the data
recorded during the eye tracking study. Five judges
were asked to (weakly) order all result documents
encountered during each query chain according to
their relevance to the question (Radlinski & Joachims,
2005). From this data, we found that the inter-judge
disagreement in real preference constraints generated
according to Figure 1 is about 14%. Note that this is
a different measure than above because we are com-
paring the preferences of two judges rather than pref-
erences of one judge to a ground truth. This means
that the error rate between the ground truth and a
human judge is in the range 7-14%, depending on the
level of independence between the judgments of the
two judges. These results tell us that the error rate in
the medium noise setting is likely to be realistic.

The maximum noise case is special because in this case
the users effectively ignore the document abstracts
when deciding whether to click. Despite this, we still
observe improved performance as we run the learning
algorithm. How can this be explained? As mentioned
above, the error rate in these constraints is 48%, mean-
ing that 52% of the constraints correctly state a valid
preference over documents. This comes about because
users still start from the top result and stop searching
after finding (clicking on) a completely relevant docu-
ment, producing some bias. Also note that we generate
the most preferences for the last (and often completely
relevant) document clicked on within a query chain.
While some of this effect may be an artifact of our
setup, we still find it interesting that this learning ap-
proach appears to be effective with such a small signal
to noise ratio.

4.1.2. Topic and word ambiguity

In the dataset used above, each word is on average in
two topics. We also created collections where words
were never in more than one topic, and where each
word is on average in three topics. Figure 8 shows the
results for the three collections. We see that with un-
ambiguous words the ranking algorithm learns faster

Evaluating the Robustness of Learning from Implicit Feedback

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

No ambiguous words

Words somewhat ambiguous

Words more ambiguous

Figure 8. Ranking function performance for document col-
lections with different levels of word ambiguity.

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

No additional trust

Low level of trust

Medium level of trust

High level of trust

Figure 9. Ranking function performance versus the addi-
tional trust users place in the search engine.

and that even with more word ambiguity, our learning
algorithm performs well.

4.2. Lower Level Parameters

The remainder of the behavioral dimensions are at a
lower level, determining individual user behavior. We
next explore the effect of these parameters.

4.2.1. User trust in ranking presented

We saw earlier that users click surprisingly often on the
top link. In fact, users appear to have inherent trust
in Google that is not correlated to the relevance of the
result abstracts (Joachims et al., 2005). We tested if
such trust affects Osmot. Figure 9 shows that addi-
tional trust (implemented by increasing obsRel pro-
portionally to the inverse of the rank of each result)
has no lasting effect. This is interesting because it
demonstrates that even when click-through feedback
is strongly biased, it still provides useful training data.

An alternative explanation for users clicking predom-
inantly on the top few results is that some users are
more selective than others. Many may click on the first
partially relevant result, i.e. the top one while others
may only click on results that appear highly relevant.
To test this, we added a constant to the threshold value
picked in the user model. We found that performance
was very similar over a reasonable range of values.

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

25% Give-up probability

50% Give-up probability

75% Give-up probability

100% Give-up probability

Figure 10. Ranking function performance for various prob-
abilities that unsuccessful users will reformulate their
query.

4.2.2. Number of results looked at

Figure 5 also showed us that users look at surprisingly
few of the search results. In order to explore the effect
of this on the effectiveness of our learning approach, we
changed the range of patience levels that users have.
In the four settings tested, about 3%, 7%, 15% and
23% of users looked past the top 5 abstracts. The re-
sults showed that this has no significant effect on the
performance for the first few iterations of learning, al-
though the improvement in expected relevance tapers
out faster in the case where users view fewer results.
We omit the full results due to space constraints.

4.2.3. How, and how often users reformulate

Previous work studying web search behavior (Lau &
Horvitz, 1999; Silverstein et al., 1998) observed that
users rarely run only one query and immediately find
suitable results. Rather, users tend to perform a se-
quence of queries. Such query chains are also observed
in the eye tracking study and our real-world search en-
gine. Given Osmot’s dependence on query chains, we
wished to measure the effect of the probability of re-
formulation on the ranking function performance. The
results are shown in Figure 10.

We see that the reformulation probability has a small
but visible effect on ranking performance. While these
results agree with our real-world experience that the
presence of query chains makes a difference in al-
gorithm performance (Radlinski & Joachims, 2005),
we conjecture that in practice the difference is larger
than seen here. In particular, unlike the model of
user behavior presented in this paper, we suspect that
later queries are not identically distributed to earlier
queries. Rather we hypothesize that later queries are
better and that this accounts for an additional im-
provement in performance when users chain multiple
queries.

Using the relevance judgments of the five judges on the
data gathered in the eye tracking study, we tested this
hypothesis. Indeed, when a strict preference judgment

Evaluating the Robustness of Learning from Implicit Feedback

is made by a human judge comparing the top result of
two queries in a query chain, 70% of the time the top
result of the later query is judged more relevant. We
see a similar result when comparing the second ranked
documents. We attempted to add such an effect to
our model by making later queries progressively longer,
but this did not end up having any discernible effect.
We intend to explore this question more in the future.

5. Conclusions and Future Work

In this paper we have presented a simple model for
simulating user behavior in a web search setting. We
used this model to study the robustness of an algo-
rithm for learning to rank that we previously found to
be effective in a real-world search engine. We demon-
strated that the learning method is robust to noise in
user behavior for a number of document collections
with different levels of word ambiguity. Our results
are important because they show that modeling al-
lows fast explorations of the properties of algorithms
for learning to rank. Although a more realistic model
of user search behavior can be constructed, we have
presented a reasonable starting model.

The model currently has a number of limitations that
we intend to improve upon in the future. However,
we believe that even in its present state it provides
a valuable tool for understanding the performance of
algorithms for learning to rank. We plan to make our
implementation available to the research community.

6. Acknowledgments

We would like to thank Laura Granka, Bing Pang, He-
lene Hembrooke and Geri Gay for their collaboration
in the eye tracking study. We also thank the subjects
of the eye tracking study and the relevance judges.
This work was funded under NSF CAREER Award
IIS-0237381 and the KD-D grant.

References

Bartell, B., & Cottrell, G. W. (1995). Learning to re-
trieve information. Proceedings of the Swedish Con-
ference on Connectionism.

Cohen, W. W., Shapire, R. E., & Singer, Y. (1999).
Learning to order things. Journal of Artificial Intel-
ligence Research, 10, 243–270.

Crammer, K., & Singer, Y. (2001). Pranking with
ranking. Proceedings of the conference on Neural
Information Processing Systems (NIPS).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y.

(1998). An efficient boosting algorithm for combin-
ing preferences. International Conference on Ma-
chine Learning (ICML).

Granka, L. (2004). Eye tracking analysis of user be-
haviors in online search. Master’s thesis, Cornell
University.

Granka, L., Joachims, T., & Gay, G. (2004). Eye-
tracking analysis of user behavior in www search.
Poster Abstract, Proceedings of the Conference on
Research and Development in Information Retrieval
(SIGIR).

Herbrich, R., Graepel, T., & Obermayer, K. (2000).
Large margin rank boundaries for ordinal regression.
Advances in Large Margin Classifiers (pp. 115–132).

Joachims, T. (1999). Making large-scale SVM learning
practical. In B. Schlkopf, C. Burges and A. Smola
(Eds.), Advances in kernel methods – support vector
machines. MIT Press.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. Proceedings of the ACM Con-
ference on Knowledge Discovery and Data Mining
(KDD).

Joachims, T., Granka, L., Pang, B., Hembrooke, H.,
& Gay, G. (2005). Accurately interpreting click-
through data as implicit feedback. Annual ACM
Conference on Research and Development in Infor-
mation Retrieval (SIGIR).

Kelly, D., & Teevan, J. (2003). Implicit feedback for
inferring user preference: A bibliography. SIGIR
Forum, 32.

Kemp, C., & Ramamohanarao, K. (2003). Long-term
learning for web search engines. PKDD (pp. 263–
274).

Lau, T., & Horvitz, E. (1999). Patterns of search: An-
alyzing and modelling web query refinement. Pro-
ceedings of the 7th International Conference on User
Modeling.

Radlinski, F., & Joachims, T. (2005). Query chains:
Learning to rank from implicit feedback. Proceed-
ings of the ACM Conference on Knowledge Discov-
ery and Data Mining (KDD).

Rajaram, S., Garg, A., Zhou, Z. S., & Huang, T. S.
(2003). Classification approach towards ranking and
sorting problems. Lecture Notes in Artificial Intel-
ligence (pp. 301–312).

Silverstein, C., Henzinger, M., Marais, H., & Moricz,
M. (1998). Analysis of a very large AltaVista query
log (Technical Report 1998-014). Digital SRC.

