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ABSTRACT
The wide-scale deployment of IEEE 802.11 wireless networks has
generated significant challenges for Information Technology (IT) de-
partments in corporations. Users frequently complain about connec-
tivity and performance problems, and network administrators are ex-
pected to diagnose these problems while managing corporate security
and coverage. Their task is particularly difficult due to the unreliable
nature of the wireless medium and a lack of intelligent diagnostic
tools for determining the cause of these problems.

This paper presents an architecture for detecting and diagnosing
faults in IEEE 802.11 infrastructure wireless networks. To the best
of our knowledge, ours is the first paper to address fault diagnostic
issues for these networks. As part of our architecture, we propose and
evaluate a novel technique called Client Conduit, which enables boot-
strapping and fault diagnosis of disconnected clients. We describe
techniques for analyzing performance problems faced in a wireless
LAN deployment. We also present an approach for detecting unau-
thorized access points. We have built a prototype of our fault diagnos-
tic architecture on the Windows operating system using off-the-shelf
IEEE 802.11 cards. The initial results show that our mechanisms are
effective; furthermore, they impose low overheads when clients are
not experiencing problems.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Operations

General Terms
Management, Reliability

Keywords
Infrastructure wireless networks, fault detection, fault diagnosis, dis-
connected clients, IEEE 802.11, Rogue APs
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The convenience of wireless networking has led to a wide-scale
adoption of IEEE 802.11 networks [22]. Corporations, universities,
homes, and public places are deploying these networks at a remark-
able rate. However, a significant number of “pain points” remain for
end-users and network administrators. Users experience a number of
problems such as intermittent connectivity, poor performance, lack of
coverage, and authentication failures. These problems occur due to
a variety of reasons such as poor access point layout, device miscon-
figuration, hardware and software errors, the nature of the wireless
medium (e.g., interference, propagation), and traffic congestion.

Figure 1 shows the number of such wireless-related complaints
logged by the Information Technology (IT) department of Microsoft
corporation over a period of six months. The company has a large
deployment of IEEE 802.11 networks with several thousand Access
Points (APs) spread over more than forty buildings. Each complaint
is an indication of end-user frustration and loss of productivity for
the corporation. Furthermore, resolution of each complaint results in
additional support personnel costs to the IT department; our research
revealed that this cost is several tens of dollars and this does not in-
clude the cost due to the loss of end-user productivity.

To resolve complaints quickly and efficiently, network administra-
tors need tools for detecting, isolating, diagnosing, and correcting
faults. To the best of our knowledge, there is no previous research
that addresses fault diagnostic problems in IEEE 802.11 infrastruc-
ture networks. In contrast, the importance of diagnosing these prob-
lems in the “real-world” is apparent from the number of companies
that offer solutions in this space [2, 4, 20, 16, 37]. These products do
a reasonable job of presenting statistical data from the network; how-
ever, they lack a number of desirable features. Specifically, they do
not do a comprehensive job of gathering and analyzing the data to es-
tablish the possible causes of a problem. Furthermore, most products
only gather data from the APs and neglect the client-side view of the
network. Some products that monitor the network from the client’s
perspective require hardware sensors, which can be expensive to de-
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Figure 1: Number of wireless related complaints logged by the IT
department of a major US corporation



ploy and maintain. Also, current solutions do not provide any support
for disconnected clients even though these are the ones that need the
most help. We discuss these products in more detail in Section 8.

This paper presents a flexible architecture for detecting and di-
agnosing faults in infrastructure wireless networks. We instrument
wireless clients and (if possible) access points to monitor the wire-
less medium and devices that are nearby. Our architecture supports
both proactive and reactive fault diagnosis. We use this monitoring
framework to address some of the problems plaguing wireless users.
We present a novel technique called Client Conduit that enables dis-
connected clients to diagnose their problems with the help of nearby
clients. This technique takes advantage of the beaconing and prob-
ing mechanisms of IEEE 802.11 to ensure that connected clients do
not pay unnecessary overheads for detecting disconnected clients. We
also present a simple technique for finding the approximate location
of disconnected clients. We present a technique that uses nearby wire-
less clients for diagnosing wireless network performance problems.
Finally, we show how our monitoring architecture naturally lends
itself to detecting rogue or unauthorized access points in enterprise
wireless networks. We have implemented and evaluated the basic ar-
chitectural framework, Client Conduit, and Rogue AP detection on
the Windows operating system using off-the-shelf IEEE 802.11 net-
work cards; we have evaluated our other mechanisms using tools such
as AiroPeek [38] and WinDump [39]. Our results show that our tech-
niques are effective; furthermore, they impose negligible overheads
when clients are not experiencing problems.

We summarize the primary contributions of our paper as follows:

• We believe ours is the first paper to identify fault diagnosis in IEEE
802.11 infrastructure networks as an important area of research.
The identification of various problems in such environments is an
important contribution since wireless fault diagnosis is an area that
needs attention.

• We present a flexible client-based architecture for detecting and
diagnosing faults in an IEEE 802.11 infrastructure network. Our
fault-diagnosis approach is unique in the wireless context since
we use clients (and if possible, infrastructure APs) to monitor the
network and the radio frequency (RF) environment.

• We describe a simple and efficient technique called Client Conduit
that allows disconnected clients to communicate via other nearby
connected clients; this mechanism can be used to bootstrap wire-
less clients and resolve certain connectivity problems.

• We present novel solutions that use our architecture for detecting
and diagnosing a variety of faults: locating disconnected clients,
diagnosing performance problems, and detecting Rogue APs.

Our work is just a first step in the direction of self-healing wire-
less networks and there are a number of issues that still need to be
addressed. From the vast number of wireless problems faced by end-
users and network administrators everyday, we have focused only on
a subset of those problems; our selection was based on conversations
with network administrators [11] along with the high-priority prob-
lems observed in user-complaint logs. Even though some of our tech-
niques are applicable to other deployments (e.g., hotspots, homes),
our main emphasis has been diagnosing faults in enterprise wireless
networks. We ensure that our techniques do not introduce new secu-
rity attacks but we do not focus on denial-of-service and greedy MAC
attacks [31].

The rest of the paper is organized as follows: In Section 2, we
discuss the most important problems that users and network admin-
istrators complain about with respect to wireless LAN deployment.
Section 3 describes the components of our client-based architecture.
Section 4 presents the Client Conduit protocol. Section 5 focuses on

locating disconnected clients, performance isolation, and Rogue AP
detection. Section 6 describes the implementation of our system and
Section 7 presents an evaluation of our techniques. Section 8 dis-
cusses related work. Finally, we discuss future work in Section 9 and
conclude in Section 10.

2. FAULTS IN A WIRELESS NETWORK
We enumerate the most important problems that users and network

administrators face when using and maintaining corporate wireless
networks. Our list has been derived from interviews and discussions
we conducted with network administrators and operation engineers
of Microsoft’s IT department. These individuals are responsible for
managing over 4,400 IEEE 802.11 APs distributed over forty build-
ings in the company.

Connectivity problems: End-users complain about inconsistent or a
lack of network connectivity in certain areas of a building. Such “dead
spots” or “RF holes” can occur due to a weak RF signal, lack of a
signal, changing environmental conditions, or obstructions. Locating
an RF hole automatically is critical for wireless administrators; they
can then resolve the problem by either relocating APs or increasing
the density of APs in the problem area or by adjusting the power
settings on nearby APs for better coverage.

Performance problems: This category includes all the situations
where a client observes degraded performance, e.g., low throughput
or high latency. There could be a number of reasons why the perfor-
mance problem exists, e.g., traffic slow-down due to congestion, RF
interference due to a microwave oven or cordless phone, multi-path
interference, large co-channel interference due to poor network plan-
ning, or due to a poorly configured client/AP. Performance problems
can also occur as a result of problems in the non-wireless part of the
network, e.g., due to a slow server or proxy. It is therefore necessary
that the diagnostic tool be able to determine whether the problem is
in the wireless network or elsewhere. Furthermore, identifying the
cause in the wireless part is important for allowing network adminis-
trators to better provision the system and improve the experience for
end-users.

Network security: Large enterprises often use solutions such as IEEE
802.1x [21] to secure their networks. However, a nightmare scenario
for IT managers occurs when employees unknowingly compromise
the security of the network by connecting an unauthorized AP to an
Ethernet tap of the corporate network. The problem is commonly re-
ferred to as the “Rogue AP Problem” [4, 2, 15]. These Rogue APs
are one of the most common and serious breaches of wireless network
security. Due to the presence of such APs, external users are allowed
access to resources on the corporate network; these users can leak in-
formation or cause other damage. Furthermore, Rogue APs can cause
interference with other access points in the vicinity. Detecting Rogue
APs in a large network via a manual process is expensive and time-
consuming; thus, it is important to detect such APs proactively.

Authentication problems: According to the IT support group’s logs,
a number of complaints are related to users’ inability to authenticate
themselves to the network. In wireless networks secured by technolo-
gies such as IEEE 802.1x [21], authentication failures are typically
due to missing or expired certificates. Thus, detecting such authenti-
cation problems and helping clients to bootstrap with valid certificates
is important.

In this paper, we focus on detecting RF holes, diagnosing perfor-
mance problems, detecting Rogue APs, and helping a client to recover
from an authentication problem via Client Conduit. As part of our fu-



ture work, we will investigate diagnosis of authentication problems as
well.

3. SYSTEM ARCHITECTURE
We now describe the components that make up our fault detection

and diagnosis architecture.

3.1 System Requirements
Before we describe the system components, we enumerate the re-

quirements for our system:

• We require that the software on clients be augmented for moni-
toring. In our system, software modifications on APs are needed
only for better scalability and for analyzing an AP’s performance
(Section 5.2). Since our approach does not require hardware mod-
ifications, “the bar” for deploying our system is lower.

• For some of our mechanisms, we need the ability to control bea-
cons and probes. We also require that clients have the capability
of starting an infrastructure network (i.e., become an AP) or an ad
hoc network on their own; this ability is supported by many wire-
less cards, e.g., Atheros [6], Native WiFi [26]. Whenever faced
with a choice of starting an ad hoc or an infrastructure network,
we prefer the latter since infrastructure mode is better supported in
current cards.

• We rely on the availability of a database that keeps track of the lo-
cation of all the access points; such location databases are typically
maintained by network administrators.

• Some of our techniques require the presence of nearby clients or
access points. With the increasing deployment of access points
and the use of wireless laptops and PDAs in enterprise wireless
networks, this requirement is becoming relatively easy to satisfy in
these environments. In fact, based on SNMP data collected from
APs over a period of two days, we observed the presence of 13-15
associated wireless clients on our floor (approximately 2500 sq.
meters) during working hours of the day; thus, with such client
densities, there is a high likelihood that our requirement will be
satisfied.

Compared with the existing products that require deploying spe-
cial wireless sensors throughout the enterprise, our approach takes
advantage of nearby clients and access points instrumented with
software “sensors”, thereby imposing a lower deployment cost.

3.2 System Components
Our system consists of the following components — a Diagnostic

Client (DC) that runs on a wireless client machine, an optional Di-
agnostic AP (DAP) that runs on an Access Point, and a Diagnostic
Server (DS) that runs on a backend server of the organization (see
Figure 2). Below, we describe each of these in detail.

Diagnostic Client module or DC: The Diagnostic Client module
monitors the RF environment and the traffic flow from neighboring
clients and APs. Note that during normal activity, the client’s wireless
card is not placed in promiscuous mode. The DC uses the collected
data to perform local fault diagnosis. Depending on the individual
fault-detection mechanism, a summary of this data is transmitted to
the DAPs or DSs at regular intervals, e.g., for Rogue AP detection, the
DC in our prototype sends MAC and channel information of nearby
APs every 30 seconds. In addition, the DC is geared to accept com-
mands from the DAP or the DS to perform on-demand data gathering,
e.g., switching to promiscuous mode and analyzing a nearby client’s
performance problems. In case the wireless client becomes discon-
nected, the DC logs data to a local database/file. This data can be
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Figure 2: Fault Diagnosis Architecture

analyzed by the DAP or DS at some future time when network con-
nectivity is resumed.

Diagnostic Access Point module or DAP: The Diagnostic AP’s main
function is to accept diagnostic messages from DCs, merge them
along with its own measurements and send a summary report to the
DS. The Diagnostic AP is not a fundamental requirement of our ar-
chitecture; it is primarily needed for offloading work from the DS.
Most of our techniques can work in an environment with a mixture of
legacy APs and DAPs: if an AP is a legacy AP, its monitoring func-
tions are performed by the DCs and its summarizing functions and
checks are performed at the DS. In the rest of the paper, for the ease
of exposition, we assume the presence of DAPs.

Diagnostic Server module or DS: The Diagnostic Server accepts
data from DCs and DAPs and performs the appropriate analysis to
detect and diagnose different faults. The DS also has access to a
database that stores each AP’s location. Network administrators may
deploy multiple DSs in the system to balance the load, e.g., each AP’s
MAC address could be hashed to a particular DS. In the rest of the pa-
per, we present our mechanisms as if one Diagnostic Server is present
in the system.

Figure 2 gives a schematic view of our fault diagnosis system. As
shown, the Diagnostic Server interacts with other network servers
e.g., the RADIUS [32] and Kerberos [27] servers, to get client autho-
rization and user information. Our architecture allows disconnected
clients to communicate with the DS via a nearby connected client
using the Client Conduit protocol; this mechanism is presented in
Section 4.

Our system supports both reactive and proactive monitoring. In
proactive monitoring, DCs and DAPs monitor the system continu-
ously: if an anomaly is detected by a DC, DAP, or DS, an alarm is
raised for a network administrator to investigate. The reactive mon-
itoring mode is used when a support personnel wants to diagnose a
user complaint. The personnel can issue a directive to a DC from one
of the DSs to collect and analyze the data for diagnosing the problem.
We believe that it is acceptable to increase the network and CPU load
(on the DCs, DAPs, DSs) by a small amount during reactive moni-
toring; of course, in the proactive case, these overheads must be kept
low.

Our architecture itself imposes negligible overheads with respect



Fault Diagnosis Where performed Support for
legacy APs?

Help disconnected client DC Yes
Locate disconnected client DS Yes
Performance Isolation DC and DAP Partially
Detect Rogue APs DS Yes

Table 1: Different fault diagnosis mechanisms and entities that
can diagnose them; the last column indicates if the solution can
be supported using legacy APs

to power management: the individual techniques have to be designed
to prevent unnecessary battery wastage. Both the proactive and reac-
tive techniques presented later in this paper consume very little band-
width, CPU, or disk resources; as a result, they should have negligible
impact on battery consumption. Only during data transfer in Client
Conduit does a connected client send/receive messages on behalf of
a disconnected client. To ensure that the helping client’s applications
(or battery) are not affected significantly, it is offered a knob to con-
trol the amount of resources it wants to devote for this transfer (see
Section 4.2.1).

Table 1 shows the various problems diagnosed in this paper, the
entities (DCs, DAPs, and DSs) involved in the diagnosis, and whether
the solution can be used with legacy APs.

3.3 System Scaling
We have designed our system to scale with the number of clients

and APs in the system. The two shared resources in our system are
DSs and DAPs. To prevent a single Diagnostic Server from becom-
ing a potential bottleneck in our system, the design allows more DSs
to be added as the system load increases. Furthermore, we offload
work from each individual DS by sharing the diagnosis burden with
the DCs and the DAPs. The DS is used only when the DCs and DAPs
are unable to diagnose the problem and the analysis requires a global
perspective and additional data, e.g., signal strength information ob-
tained from multiple DAPs may be needed for locating a disconnected
client. As stated earlier, the presence of legacy APs degrades scala-
bility since the work usually performed by DAPs would need to be
performed by the DSs.

Similarly, since the DAP is a shared resource, making it do extra
work can potentially hurt the performance of all its associated clients.
To reduce the load on a DAP, different fault diagnosis mechanisms
can use a simple technique that we refer to as Busy AP Optimization:
with this optimization, an AP does not perform active scanning if any
client is associated with it; the associated clients perform these oper-
ations as needed, e.g., our Rogue AP detection requires such scans.
The AP continues to perform passive monitoring activities that have
a negligible effect on its performance. If there is no client associ-
ated, the AP is idle and it can perform these monitoring operations.
This approach ensures that most of the physical area around the AP is
monitored without hurting the AP’s performance.

3.4 System Security
The interactions between the DC, DAP, and DS are secured using

EAP-TLS [1] certificates issued over IEEE 802.1x. An authorized
certification authority (CA) issues certificates to DCs, DAPs and DSs;
we use these certificates to ensure that all communication between
these entities is mutually authenticated.

We do not address malicious behavior by legitimate users in our
environment. Researchers have developed techniques for detecting
greedy and malicious behavior for hotspot environments [31]; others
have suggested techniques to handle problems due to false informa-
tion sent by malicious clients to central entities such as the DS [30].

These approaches are complimentary to our design and could be in-
cluded in our system.

4. CLIENT CONDUIT
In this section, we present a novel mechanism called Client Con-

duit that allows disconnected wireless clients to convey information
to network administrators and support personnel.

If a wireless client cannot connect to the network, the DC logs the
problem in its database. When the client is connected later (e.g., via a
wired connection), this log is uploaded to the DS, which performs the
diagnosis to determine the cause of the problem. However, sometimes
it is possible that this client is in the range of other connected clients;
this client may be disconnected since it is just outside the range of
any AP or due to authentication problems. In this situation, it would
be desirable to perform fault diagnosis with the DS immediately and,
if possible, rectify the problem. We now focus on this scenario.

On first thought one may ask: why not have the disconnected node
simply send a message to its connected neighbor? Unfortunately, this
approach does not work because IEEE 802.11 does not allow a client
to be connected to two networks at the same time. Since the con-
nected node has already associated to an infrastructure network, it
cannot simultaneously connect to an ad-hoc network with the discon-
nected client D — if it wants to receive a message from D, it first has
to disconnect and then join the ad-hoc network started by D. This is
inefficient and unfair to a normally-functioning connected client.

One can imagine solving this problem using multiple radios on the
connected client (one dedicated on an ad hoc network for diagnosis),
or using MultiNet [14] (which allows a client to multiplex a single
wireless card such that it is present on multiple networks), or by mak-
ing a connected client periodically scan all channels. All these ap-
proaches have the undesirable property of penalizing the normal-case
operation/costs to deal with a problem that is expected to occur in-
frequently. In the periodic scanning case, switching the wireless card
across channels or networks can cause packet drops at the connected
client. In the MultiNet case, the wireless card will periodically spend
time on the ad hoc network, and will thus consume bandwidth on the
connected client. On the other hand, our Client Conduit approach im-
poses no overheads in the common case when no disconnected clients
are present in the neighborhood.

4.1 The Client Conduit Protocol
We now discuss our Client Conduit protocol that allows a discon-

nected client to be diagnosed by a DS via one of the connected clients.
Client Conduit achieves its efficiency (of not penalizing connected
clients) by exploiting two operational facts about the IEEE 802.11
protocol. First, even when a client is associated to an AP, it con-
tinues to receive beacons from neighboring APs or ad hoc networks
at regular intervals. Second, a connected client can send directed or
broadcast Probe Requests without disconnecting from the infrastruc-
ture network. We now present the Client Conduit protocol for a sce-
nario where a disconnected client D is in the vicinity of a connected
client C (see Figure 3). In the following description, we refer to the
first 4 steps of the protocol aa the Connection Setup phase and the last
step as the Data Transfer phase.

1. The DC on the disconnected client D configures the machine to
operate in promiscuous mode. It scans all channels to determine if
any nearby client is connected to the infrastructure network. If it
detects such a connected client on a channel, it starts a new infras-
tructure or an ad hoc network on the channel on which it detected
the client’s packets. For the reasons discussed in Section 3.1, and
for the simplicity of exposition, we assume that client D switches
mode to become an AP and starts an infrastructure network.



 
 

Figure 3: Client Conduit Mechanism (Steps 1 through 5 are de-
scribed below)

Note: By examining the ToDS and FromDS fields of IEEE 802.11
data frames [22], client D can determine whether the data packet is
part of an infrastructure network and is being sent to/from an AP.

2. This newly-formed AP at D now broadcasts its beacon like a reg-
ular AP, with an SSID of the form “SOS HELP <num>” where
num is a 32-bit random number to differentiate between multiple
disconnected clients.

3. The DC on the connected client C detects the SOS beacon of this
new AP. At this point, C needs to inform D that its request has been
heard and it can stop beaconing. If client C tries to connect to D, it
would need to disconnect from the infrastructure network, thereby
hurting the performance of C’s applications. Instead, we utilize the
“active scanning” mechanism of IEEE 802.11 networks — C sends
a Probe Request of the form “SOS ACK <num>” to D. Note that
the Probe Request is sent with a different SSID than the one being
advertised by the AP running on D. This approach prevents some
other nearby client that is not involved in the Client Conduit pro-
tocol from inadvertently sending a Probe Request to D (as part of
that client’s regular tests of detecting new APs in its environment).

4. When D hears this Probe Request (and perhaps other requests as
well), it stops being an AP, and becomes a station again. Note that
in response to the Probe Request, a Probe Response is sent out by
D; client C now knows that it does not need to send more Probe Re-
quests (it would have stopped anyway when D’s beacons stopped).
More importantly, D’s Probe Response indicates if D would like to
use client C as a hop for exchanging diagnostic messages with the
DS. This response mechanism ensures that if multiple connected
clients try to help D, only one of them is chosen by D for setting
up the conduit with the DS.

5. Now D starts an ad hoc network and C joins this network via Multi-
Net [14]. At this point, C becomes a conduit for D’s messages and
D can exchange diagnostic messages with the DS through C.

The key advantage of the Client Conduit protocol is that connected
clients do not experience unnecessary overheads during normal oper-
ation. Their overheads during the execution of the protocol are dis-
cussed later in this section.

It is important to note that the Client Conduit mechanism can also
be used for bootstrapping clients. For example, suppose that a client
tries to access a wireless network for the first time and does not have
EAP-TLS certificates, but has other credentials such as Kerberos cre-
dentials; Client Conduit can be used to authenticate the user/machine
with the backend Radius/Kerberos servers. New certificates can then
be installed on the client machine; similarly, a client’s expired certifi-
cates can also be refreshed without requiring a wired connection.

It is possible that a client D is within the range of an AP and is
disconnected because of IEEE 802.1x authentication problems [11].
Client Conduit can be used if a connected client is in range as well.
If there is no such client, one can dynamically configure the AP to

allow D’s diagnostic messages to the back end DS (or to the RADIUS
servers who can forward to the DS) via the uncontrolled port [21].

4.2 Client Conduit Security and Attacks
We must ensure that the Client Conduit protocol does not introduce

any new security leaks or opportuniues for denial-of-service attacks
in the system. To ensure that a malicious/unauthorized client does
not obtain arbitrary access to the network, the connected client allows
a disconnected client’s packets to be exchanged only with the DS or
backend authentication servers.

We now discuss two potential abuses of Client Conduit: hurting
the performance of helping clients and disguising a Rogue AP as a
disconnected client.

4.2.1 Performance Degradation of Helping Clients
When a connected client C helps a disconnected client via Client

Conduit, we need to ensure that C’s application’s performance is not
adversely affected. During the Connection Setup part of Client Con-
duit, the connected client C simply requires processing the beacon
message and sending/receiving probe messages; no messages are for-
warded by C on the disconnected client’s behalf. These steps not only
consume negligible resources on C but they also do not result in any
security leak or compromise on C; of course, C can further rate-limit
or stop performing these steps if it discovers that the disconnected
client is making it perform these steps often.

We now consider the Data Transfer part of the protocol for possible
security and denial-of-service attacks. Switching to MultiNet mode
can consume bandwidth at the connected client [14]. There are two
problems that need to be addressed. First, a malicious client should
not be allowed to waste a connected client C’s resources by making
it enter MultiNet mode unnecessarily. Second, even when helping a
legitimate client, C should be able to control the amount of resources
that it wants to allocate for the disconnected client D during the Multi-
Net transfer. The second problem can be addressed by providing a
knob to the client that allows it to limit the percentage of time that it
spends on the ad hoc network relative to the infrastructure network;
client C may also limit this usage to save battery power. Section 7.2
characterizes the disconnected client’s performance overheads due to
this tradeoff.

To prevent the first problem due to malicious clients, we add the
following authentication step before Data Transfer to ensure that only
legitimate clients are allowed to connect via client C.

After the Connection Setup phase, client C switches to MultiNet
mode for performing authentication. To prevent a denial-of-service
(DoS) attack where C is forced into MultiNet mode repeatedly, C can
limit the number of times per minute that it performs such an au-
thentication step. As part of the authentication step, client C obtains
the EAP-TLS machine certificate from the disconnected client and
validates it (for ensuring mutual authentication, client D can perform
these steps as well). If the disconnected client has no certificates or its
certificates have expired, client C acts as an intermediary for running
the desired authentication protocol, e.g., C could help D perform Ker-
beros authentication from the back end Kerberos servers and obtain
the relevant tickets. If the disconnected client D still cannot authen-
ticate, C asks D to send the last (say) 10 KBytes of its diagnosis log
to C and C forwards this log to the DS. To prevent a possible DoS at-
tack in which a malicious client tries to send this unauthenticated log
repeatedly (e.g., while spoofing different MAC addresses), the con-
nected client can limit the total amount of unauthenticated data that it
sends in a fixed time period, e.g., C could say that it will send at most
10 KBytes of such data every 5 minutes.

4.2.2 Preventing Disguised Rogue APs



As discussed in Section 2, unauthorized APs are a serious security
problem in an enterprise wireless network. An attacker who wants
to set up an unauthorized AP and remain undetected may try to ex-
ploit the properties of Client Conduit. The attacker’s AP can be set
up to beacon with an SOS SSID; our Rogue AP detection mechanism
(Section 5.3) will assume that this beaconing device is actually a dis-
connected client and not declare it as a Rogue AP. Thus, we need to
distinguish between the cases where the beaconing device is a legiti-
mate client and where it is actually a Rogue AP.

In Client Conduit, when a disconnected client becomes an AP or
starts an ad hoc network during the Connection Setup and starts bea-
coning, it does not send or receive any data packets. Thus, if a DC
ever detects an AP (or a node in ad hoc mode) that is beaconing the
SOS SSID and sending/receiving data packets, the DC can immedi-
ately flag it as a Rogue device. There is another test that can be used to
detect such a Rogue device: when the helping client hears the Probe
Response in step 4 of the Client Conduit protocol, it knows that the
disconnected client no longer needs to beacon. Thus, if the helping
client continues to hear the SOS beacons after a few seconds, it can
flag the device as a disguised Rogue device.

5. FAULT DETECTION AND DIAGNOSIS
This section discusses our techniques for detecting and diagnosing

faults in a IEEE 802.11 wireless network. Section 5.1 describes a sim-
ple technique for locating disconnected clients. Section 5.2 presents
our mechanisms for isolating performance problems and Section 5.3
describes how we detect rogue access points.

5.1 Locating Disconnected Clients
The ability to locate disconnected wireless clients automatically in

a fault diagnosis system is valuable for proactively determining prob-
lematic regions in a deployment, e.g., poor coverage or high inter-
ference (locating RF holes) or for locating possibly faulty APs. A
disconnected client can determine that it is in an RF hole if it does not
hear beacons from any AP (as opposed to being disconnected due to
some other reason such as authentication failures). To approximately
locate disconnected clients (and hence help in locating RF holes), we
now discuss a technique called Double Indirection for Approximating
Location or DIAL.

As discussed earlier, when a client D discovers that it is discon-
nected, it becomes an AP or starts an ad hoc network and starts bea-
coning. To determine the approximate location of this client, nearby
connected clients hear D’s beacons and record the signal strength
(RSSI) of these packets. They inform the DS that client D is discon-
nected and send the collected RSSI data. At this point, the DS exe-
cutes the first step of DIAL to determine the location of the connected
clients: this can be done using any known location-determination
technique in the literature [8, 23]. In the next step of DIAL, the DS
uses the locations of the connected clients as “anchor points” and the
disconnected client’s RSSI data to estimate its approximate location.
This step can be performed using any scheme that uses RSSI val-
ues from multiple clients for determining a machine’s location [8, 12,
23]. Since locating the connected clients results in some error, conse-
quently locating disconnected clients with these anchor points further
increases the error. In Section 7.3, we show that this error is approxi-
mately 10 to 12 meters which is acceptable for estimating the location
of disconnected clients.

5.2 Network Performance Problems
Our proposed design to diagnose network performance problems

comprises two lightweight components: a proactive/passive monitor-
ing component and a reactive diagnosing component. The monitor-
ing component runs in the background at the DC and informs the di-

agnosing component when it detects connections experiencing poor
performance. At this point, the diagnosing component analyzes the
connections and outputs a report that gives a breakdown of the delays,
i.e., the extent of the delays in the wired and the wireless part, and for
the latter, a further breakdown into delays at the client, AP, and the
medium. Note that the monitoring component can be conservative in
declaring that network problems are being encountered; a false alarm
simply invokes our diagnosing component. Since this component has
low overheads, invoking it has a small impact on the performance of
clients and APs. These components have not been implemented yet in
our current prototype but we have evaluated the effectiveness of some
of these techniques using tools such as AiroPeek and WinDump.

5.2.1 Detecting Network Performance Problems
We focus on diagnosing performance problems for TCP connec-

tions since TCP is the most widely used transport protocol in the In-
ternet. For a TCP connection, we can passively diagnose performance
problems by leveraging the connection’s data and acknowledgment
(ACK) packets. For other transport protocols, we can determine end-
to-end loss-rate and round-trip times using either active probing or
performance reports (e.g., RTCP reports [33]).

Network performance problems can manifest themselves in differ-
ent ways, such as low throughput, high loss rate, and high delay. We
do not use throughput as a metric for detecting a problem since it
is dependent on the workload (i.e., the client’s application may not
need a high throughput) and on specific parameters of the transport
protocol (e.g., initial window size, sender and receive window size in
TCP). Instead, we use packet loss rate and round-trip time for detect-
ing performance problems.

Estimating the round trip time (RTT) in a TCP connection is sim-
ple: if the client is a sender, it already keeps track of the RTT; if
the client is a receiver, it can apply the heuristic proposed in [40] to
estimate the round-trip time.

To estimate the loss rate, we use heuristics suggested in [18] and [5]
on the client side. We compute different loss rates for packets sent and
received by the client. For data packets sent by the client, the loss rate
is estimated as the ratio of retransmitted packets to the packets sent
over the last L RTTs [5]. This estimation mechanism assumes that
the TCP implementation uses Selective ACKs so that loss rate is not
overestimated unnecessarily; this is a reasonable assumption since
a number of operating systems now support this option by default,
e.g., Windows, Linux, Solaris. As shown in [5], this estimate can be
higher than the actual loss rate when timeouts occur in a TCP connec-
tion. For our purposes, this inaccuracy is acceptable for two reasons:
first, if a TCP connection is experiencing timeouts, it is probably ex-
periencing problems and is worth diagnosing; second, the only con-
sequence of a mistake is to trigger our diagnosis component, which
incurs low overhead. If more accurate analysis is needed, the LEAST
approach suggested in [5] can be used.

For the data packets received by the client, we use an approach
similar to the one suggested in [18] to estimate the number of losses:
if a packet is received such that its starting sequence number is not the
next expected sequence number, the missing segment is considered
lost. The loss rate is estimated as the ratio of lost packets to the total
number of expected packets in the last L RTTs. Note that the expected
number of bytes is calculated as the maximum observed sequence
number minus the minimum during the last L RTTs; we apply the
idea in [40] to estimate maximum segment size (MSS), and estimate
the number of packets by dividing the number of bytes by MSS. Our
assumption is that segments are rarely delivered out-of-order in a TCP
connection (which has been observed by others [10]).

Our detection component triggers the diagnosis component if a
connection is very lossy or it experiences high delay. A connec-



tion is detected as experiencing high delays if the RTT of a partic-
ular packet is more than 250 msec or is higher than twice the current
TCP RTT [41]. To avoid invoking our diagnosis algorithm for high
delays that occur temporarily, we flag a connection only when D or
more packets experience a high delay. A connection is classified as
lossy if its loss rate (for transmitted or received packets) is higher than
5% [28, 41].

Both D and L are configurable parameters and each represents a
tradeoff between responsiveness of the detection component and un-
necessary invocation of the diagnosis component. That is, with a low
value of D or L, any change in delays/losses will be detected quickly
but it may also result in invoking the diagnosis component unnec-
essarily. For high values, apart from slow responsiveness, another
problem occurs: the TCP connection may end before sufficient num-
ber of samples have been collected. Such a situation can occur with
short Web transfers. We can alleviate this problem by aggregating
loss rate and delay information between the client and remote hosts
across TCP connections. We are currently exploring such techniques
along with choosing appropriate values of D and L.

5.2.2 Isolating Wireless and Wired Problems
When the DC at a client detects a network performance problem

for a TCP connection, it communicates with its associated DAP to
differentiate between the delays on the wired and wireless parts of
the path. The DAP then starts monitoring the TCP data and ACK
packets for that client’s connection. If the DC is the sender in the
TCP connection, the DAP computes the difference between the re-
ceived time of a data packet from the client to the remote host and the
corresponding TCP ACK packet; this time difference is an estimate of
the delay incurred in the wired network. To ensure that the roundtrip
time estimate is reasonable, various heuristics used by TCP need to
be applied to these roundtrip measurements as well, e.g., Karn’s al-
gorithm [34]. The DAP sends this estimate to the DC who can now
determine the wireless part of the delay by subtracting this estimate
from the TCP roundtrip time. A similar approach can be used to
compute this breakdown when the client is a receiver: the DAP de-
termines the wireless delay by monitoring the data packets from the
remote host to the client and the corresponding ACK packets. Note
that the amount of state maintained at the DAP is small since it cor-
responds to the number of unacknowledged TCP packets; this can be
reduced further by sampling.

5.2.3 Diagnosing Wireless Network Problems
A client may experience poor wireless performance due to a num-

ber of reasons, such as an overloaded processor at the AP or the client,
problems in the wireless medium, some driver or other kernel issues at
either the AP or the client. We quantify the effect of these problems
by observing their impact on packet delay in the wireless network
path. We group these performance problems into three categories:
packet delay at the client, packet delay at the AP, and packet delay
in the wireless medium. In this section, we describe a collaborative
scheme, called Estimating Delay using Eavesdropping Neighbors or
EDEN, which leverages the presence of other clients to quantify the
delay experienced in each of the above categories. Since electromag-
netic waves travel at the speed of light, we can safely assume that RF
propagation delays are negligible relative to the client or AP delays.

When a client D’s performance diagnosis component is triggered,
it starts broadcasting packets asking for diagnosis help from nearby
clients. All clients who hear these packets switch to promiscuous
mode and ask the DAP to start the diagnosis (Section 7.1 shows that
the CPU overheads of entering promiscuous mode are low on modern
processors). Security mechanisms similar to the ones discussed in
Section 4.2 can be used to prevent attacks on these clients. Note that

we use multiple snooping clients in EDEN primarily for robustness:
multiple clients increase the likelihood that at least one client hears
the EDEN protocol requests and responses discussed below.

EDEN proceeds in two phases. In the first phase, the DAP to which
client D is associated estimates the delay at D. The DAP periodi-
cally (say every 2 seconds) sends Snoop request packets to client D.
When D receives a Snoop request packet, it immediately replies with
a Snoop response message. The eavesdropping clients log the time
when they hear a Snoop request and the first attempt by D to send
the corresponding Snoop response packet, i.e., we only record the
times of response packets for which the retransmission bit is clear. If
an eavesdropping client misses either of these packets, it ignores the
timing values for that request/response pair. The difference between
the recorded times is the client delay, i.e., application and OS delays
experienced by D after receiving the request packet. For robustness,
Snoop requests are sent a number of times (say 20); the client and AP
delays are averaged over all these instances.

In the second phase, a similar technique is used to measure the AP
delay, i.e., client D sends the Snoop request packets and the AP sends
the responses. Client D also records the round trip times to the AP for
these Snoop requests and responses along with the number of request
packets for which it did not receive a response, e.g., the request or
response was lost.

Strictly speaking, this client and AP delay also includes the delay
due to contention experienced in the wireless medium. In Section 7.4,
we discuss the extent of inaccuracy introduced in EDEN’s estimates
due to traffic congestion.

At the end of the protocol, all the eavesdropping clients send the
AP and client delay times to the client D. The difference between the
round trip time reported by D, and the sum of the delays at the client
and the AP, approximates the sum of the delay experienced by the
packet in the forward and backward wireless link. The client can then
report the client/AP/medium breakdown to the network administrator;
it can also report the percentage of unacknowledged request packets
as an indicator of the network-level loss rate on the wireless link.

5.3 Rogue AP Detection
As discussed in Section 2, Rogue APs are unauthorized APs that

have been connected to an Ethernet tap in an enterprise or university
network; such APs can result in security holes, and unwanted RF and
network load. Rogue APs are considered a major security issue for
enterprise wireless LANs [4, 2, 15].

Our architectural framework of using clients and (if possible) APs
to monitor the environment around them naturally lends itself for de-
tecting Rogue APs. Our basic approach is to make clients and DAPs
collect information about nearby access points and send it to the DS.
When the DS receives information about an AP X, it checks the AP
location database and ensures that X is a registered AP in the expected
location and channel.

5.3.1 Assumptions
We assume that all Rogue APs and the corresponding connected

“rogue” clients use off-the-shelf IEEE 802.11-compliant hardware.
Our approach essentially “raises the bar” such that non-compliant
APs with low-level modifications are needed to defeat our scheme: to
avoid detection, an attacker must modify the Rogue AP to not beacon
and not respond to probe requests. Of course, an attacker can sim-
ply use a proprietary access point or one with different technology,
e.g. HIPERLAN. Detecting such intruders requires special hardware
and is not our goal. We simply want a low-cost mechanism that ad-
dresses the (common case) Rogue AP problem being faced in current
deployments: for many networks administrators, the main goal is to
detect APs inadvertently installed by employees for experimentation



or convenience [11]. As part of future research, we will investigate the
detection of non-compliant Rogue access points and clients as well.

If two companies have neighboring wireless networks, our mecha-
nisms will classify the other companies’ access points as Rogue APs.
If this classification is unacceptable, the network administrators of the
respective companies can share their AP location databases.

5.3.2 Monitoring at clients and APs
In our system, each DC monitors the packets in its vicinity (non-

promiscuous mode), and for each AP that it detects, it sends a 4-tuple
< MAC address, SSID, channel, RSSI > to the DS. Essentially, the
4-tuple uniquely identifies an AP in a particular location and channel.
To get this information, a DC needs to determine the MAC addresses
of all APs around it.

The DC can obtain the MAC address of an AP by switching to
promiscuous mode and observing data packets (it can use the FromDS
and ToDS bits in the packet to determine which address belongs to
the AP). However, we can achieve the same effect using a simpler
approach: since IEEE 802.11 requires all APs to broadcast beacons
at regular intervals, the DC can obtain the MAC addresses from the
APs’ beacons from all the APs that it can hear. In Section 7.5.1,
we show that a DC not only hears beacons on its channel but it may
also hear beacons from overlapping channels as well; this property
increases the likelihood of a Rogue AP being detected.

To ensure that we do not miss a Rogue AP even if no client is
present on any channel overlapping with the AP, we use the Active
Scanning mechanism of the IEEE 802.11 protocol: when a client
wants to find out what APs are nearby, the client goes to each of
the 11 channels (in 802.11b), sends Probe Requests and waits for
Probe Responses from all APs that hear those Probe Requests; from
these responses, the DC can obtain the APs’ MAC addresses. Ev-
ery IEEE 802.11-compliant AP must respond to such requests and
in some chipsets [26], no controls are provided to disable this func-
tionality. Consistent with our framework, we use the Busy AP Opti-
mization (see Section 3.3) so that active scans in an AP’s vicinity are
performed by the AP only when it has no client associated with it.

5.3.3 Analysis at the DS
When the DS receives information for an AP from various clients,

it uses DIAL to estimate the AP’s approximate location based on these
clients’ locations and the AP’s RSSI values from them.

The DS classifies an AP as rogue if a 4-tuple does not correspond
to a known legal AP in the DS’s AP location database, i.e., if the
MAC address is not present in the database, or if the AP is not in the
expected location, or the SSID does not correspond to the expected
SSID(s) in the organization. Note that if an AP’s SSID corresponds
to an SOS SSID, the DS skips further analysis since this AP actually
corresponds to a disconnected client that is executing the Connection
Setup phase of the Client Conduit protocol. The channel information
is used in a slightly different way. As stated above, if an AP is on
a certain channel, it is possible to be heard on overlapping channels.
Thus, an AP is classified as rogue only if it is reported on a channel
that does not overlap with the one on which it is expected. Note that
if the channel on an AP is changed, the DAP can ask the DS to update
its AP location database (recall that the communication between the
DAP and the DS is authenticated; if the AP is a legacy AP, the admin-
istrator can update the AP location database when the AP’s channel
is changed). The checks that the DS executes are summarized in Fig-
ure 4.

A Rogue AP R may try to use MAC address spoofing to avoid being
detected, i.e., send packets using the MAC address corresponding to
a real AP G. However, the DS can still detect R since R will reside in
a different location or channel than G (if it is on the same channel and
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 Figure 4: Decision steps taken by the DS to determine if an AP is

a Rogue AP or not

location, G would immediately detect it). Note that our approach will
also detect a Rogue AP even if it does not broadcast the SSID in its
beacons since a DC can still obtain the AP’s MAC address from the
beacon. Of course, we can detect such unauthorized APs in an even
simpler manner by disallowing APs that do not broadcast SSIDs in an
enterprise LAN.

Thus, given the above strategy, an unauthorized AP may stay un-
detected for a short time by spoofing an existing AP X near X’s loca-
tion, beacon a valid SSID in the organization, and stay on a channel
on which no DC or AP can overhear its beacons. However, when a
nearby client performs an active scan, the Rogue AP will be detected;
as we show in Section 7.5.2, a DC can easily perform such a scan
every 5 minutes.

6. IMPLEMENTATION
We now describe the details of our fault diagnosis implementation.

We have implemented the basic architecture consisting of the DC,
DAP and DS daemons; the authentication and logging mechanisms
have not been implemented. We have also implemented the Client
Conduit protocol and the Rogue AP detection mechanism. The sup-
port for DIAL and EDEN is currently being added.

Our system has been implemented on the Windows operating sys-
tem with Netgear MA 521 802.11b cards. On the DS, we simply run
a daemon process that accepts information from DAPs. The DS reads
the list of legitimate APs from a file; support for reading this informa-
tion from a database can be easily added. The structure of the code
on the DC or DAP consists of a user-level daemon and kernel level
drivers (see Figure 5). These pieces are structured such that code is
added to the kernel drivers only if the functionality cannot be achieved
in the user-level daemon or if the performance penalty is too high.

Kernel drivers: There are two drivers in our system — a miniport
driver and an intermediate driver (IM driver) called the Native WiFi
driver [26].

The miniport driver communicates directly with the hardware and
provides basic functionalities such as sending/receiving packets, set-
ting channels, etc. It exposes sufficient interfaces such that functions
like association, authentication, etc. can be handled in the IM driver.
The IM driver supports a number of interfaces (exposed via ioctls) for
querying various parameters such as the current channel, transmission
level, power management mode, SSID, etc. In addition to allowing
the parameters to be set, it allows the user-level code to request for
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Figure 5: Components on DC and DAP

active scans, associate with a particular SSID, capture packets, etc. In
general, it provides a significant amount of flexibility and control to
the user-level code.

Even though most of the required operations were already present
in the IM driver, we still had to make some modifications to expose
certain functionalities and to improve performance of our specific
protocols. The miniport driver was changed minimally to expose cer-
tain types of packets to the IM driver. In the IM driver, we added the
following support:

• Capturing packet headers and packets: We allow filters to be set
such that only certain packets or packet headers are captured, e.g.,
filters based on specific MAC addresses, packet types, packet sub-
types (such as management and beacon packets), etc.

• Storing the RSSI values from received packets: We obtain the
RSSI value of every received packet and maintain a table called
the NeighborInfo table that keeps track of the RSSI value from
each neighbor (indexed on the MAC address). We maintain an ex-
ponentially weighted average with the new value given a weighting
factor of 0.25. The RSSI information is needed for estimating the
location of disconnected clients and APs using DIAL.

• Keeping track of AP information: In the NeighborInfo table, we
keep track of the channels on which packets were heard from a
particular MAC address, SSID information (from beacons), and
whether the device is an AP or a station. This information needs
to be sent to the DAP/DS for Rogue AP detection.

• Kernel event support for protocol efficiency: We added an event
that is shared between the kernel and user-level code. The kernel
triggers this event when an “interesting” event occurs; this allows
some of our protocols to be interrupt-driven rather being polling-
based. Currently, the kernel sets this event whenever it hears an
SOS beacon from a disconnected client during Client Conduit,
thereby resulting in a lower protocol latency (see Section 7.2).

• We added a number of ioctls to get and clear the information dis-
cussed above.

Fault Diagnostic daemon: This daemon gathers information and im-
plements various mechanisms discussed in this paper, e.g.., collect
MAC addresses of APs for Rogue AP detection, perform Client Con-
duit, etc. If the device is an AP, it communicates diagnostic informa-
tion with the DS and the DCs; if the device is just a DC, it communi-
cates with its associated AP to convey the diagnostic information.

The Diagnostic daemon on the DC obtains the current Neighbor-
Info table from the kernel every 30 seconds. If any new node has been
discovered or if the existing data has changed significantly (e.g., RSSI
value of a client has changed by more than a factor of 2), it is sent to
the DAP. The DAP also maintains a similar table indexed on MAC
addresses. However, it only sends information about disconnected
clients and APs to the DS; otherwise, the DS would end up getting
updates for every client in the system, making it less scalable. The
DAP sends new or changed information about APs to the DS period-
ically (30 seconds in our current prototype). Furthermore, if the DAP
has any pending information about a disconnected client D, it informs
the DS immediately so that D can be serviced in a timely fashion.

All messages from the DC to the DAP and DAP to the DS are sent
as XML messages. A sample message format from the DC is shown
below (timestamps have been removed):

<DiagPacket Type="RSSIInfo" TStamp="...">
<Clients TStamp="...">
<MacInfo MAC="00:40:96:27:dd:cc" RSSI="23"

Channels ="19" SSID="" TStamp="..."/>
</Clients>
<Real-APs TStamp="...">
<MacInfo MAC="00:20:a6:4c:c7:85" RSSI="89"

Channels="12" SSID="UNIV_LAN" TStamp="..."/>
<MacInfo MAC="00:20:a6:4c:bb:ad" RSSI="7"

Channels="10" SSID="EXPER" TStamp="..."/>
</Real-APs>
<Disconnected-Clients TStamp="...">
<MacInfo MAC="00:40:96:33:34:3e" RSSI="57"

Channels="2048" SSID="SOS_764" TStamp="..."/>
</Disconnected-Clients>
</DiagPacket>

As the sample message shows, the DC sends information about
other connected clients, APs, and disconnected clients. For each such
class of entities, it sends the MAC address of a machine along with
RSSI, SSID, and a channel bitmap which indicates the channels on
which the particular device was overheard.

7. SYSTEM EVALUATION
We now evaluate our mechanisms and show that they are not only

effective but they also impose low overheads. For the basic architec-
ture evaluation, Client Conduit, and Rogue AP detection, we use our
prototype. To demonstrate the effectiveness of EDEN and DIAL, we
use a combination of tools such as AiroPeek [38] and WinDump [39].

Section 7.1 presents the timings for individual operations that are
used by our protocols. Section 7.2 presents the breakdown of the
costs involved in the Client Conduit mechanism and shows that it can
be used to help disconnected clients in a timely manner. Section 7.3
show the effectiveness of our DIAL technique for locating discon-
nected clients. In Section 7.4, we evaluate the effectiveness of the
EDEN technique to isolate performance problems. Section 7.5 shows
that the scanning requirements of our Rogue AP detection mechanism
imposes low overheads on client machines. Finally, in Section 7.6, we
discuss scalability issues with respect to the Client Conduit protocol,
DIAL, EDEN, and Rogue AP detection mechanisms.

7.1 Cost of Individual Operations
To better understand the cost of various operations involved in our

detection and diagnosis mechanisms (e.g., Client Conduit), we ran
a series of micro-benchmarks. We believe that these numbers are
valuable for other researchers for modeling purposes as well. Table
2 shows the results. Note, the cost of changing a machine from AP to
Station mode is less than 2 seconds (731 msecs for the actual change
and then waiting for a few hundred msecs as specified by the hardware
specifications).



Operation Time (msecs) Std. dev

Mostly No-op Ioctl (U) 0.096 0.0008
RPC-based Ioctl (U) 5.72 0.29
Set channel 177.56 7.52
Set beacon period 71.43 7.73
Set AP/STA mode 731.77 232.53
Active Scan 1901.04 14.73
Set SSID 64.73 5.47

Table 2: Times for different operations: U means time measured
from user-level code; rest are times taken for the corresponding
ioctl to complete

Additionally, we ran some experiments to understand the over-
heads of placing a card in promiscuous mode. We first ran an ex-
periment with 4 machines, A, B, C, and D to determine if placing a
machine in promiscuous mode has any effect on the machine’s incom-
ing/outgoing bandwidth. We setup the machines such that machine A
did a TCP transfer to C at full blast and B performed a full blast TCP
transfer to D. The experiment was performed three times; in each
case, machine C was placed in normal mode first and then in promis-
cuous mode. We observed that C’s throughput was largely unaffected
by being in promiscuous mode: C achieved an incoming bandwidth
of 254.7 KB/sec (standard deviation of 63.7 KB/sec) in the normal
mode case and a bandwidth of 252.3 KB/sec (standard deviation of
21.7 KB/sec) in the promiscuous mode case.

We ran another experiment to determine a machine’s CPU utiliza-
tion when it is placed in promiscuous mode. In this case, we ran a full
blast TCP transfer between two machines A and B; during this pro-
cess, we first placed machine M in normal mode and then in promis-
cuous mode. Figure 6 shows the CPU overhead for machine M (a 1
GHz Pentium III machine). Even for such a relatively old machine,
the CPU overhead of placing it in promiscuous mode is quite low,
mostly staying below 10%; we also observed that none of the packets
were dropped. Thus, these results show that the CPU overheads on a
machine due to promiscuous mode are reasonably low.

7.2 Client Conduit
To measure the performance of the Client Conduit protocol, we

set an experiment with one AP, one connected client C and a dis-
connected client D. The connected client is a 1 GHz Pentium III
machine and the disconnected machine is a 800 MHz Pentium III ma-
chine. Both machines have 512 MB of memory and Netgear MA521
802.11b cards.

Figure 7 shows the total time taken along with a breakdown of the
Connection Setup part of the protocol. “User time” indicates the end-
to-end time taken by our user-level implementation whereas “Ker-
nel time” indicates the time taken by the relevant ioctls for the same
functionality. The costs in both cases are similar thereby justifying
our approach of implementing only the essential mechanisms at the
kernel level and driving most of the protocol from the user-level (for
ease of debugging). In the first two bars, the user-level daemon at
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Figure 7: Breakdown of costs for Client Conduit. The protocol
steps are executed from the bottom entry in the legend to the top-
most, i.e., starting at “Set channel”.

the connected client shares an event with the kernel who immediately
informs the daemon when a disconnected client’s beacon is detected
(See Section 6). Thus, the disconnected client needs to wait only a
short time before it hears the Probe Request message from the con-
nected client C indicating that C is ready to help (see the “Get ACK”
times). This delay would be much higher if the daemon obtained the
disconnected machine information from the kernel periodically in-
stead of being interrupt-driven. The third bar shows the delay break-
down for an implementation where the daemon client polls for this
information every 10 seconds from the kernel (from a disconnected
client’s perspective, the “Get ACK” delay is higher).

We now clarify a couple of details about our experiment. First, the
initial step of setting the channel and checking for available clients
takes approximately 190 msecs. In the worst case, the disconnected
client may have to scan all channels and check for connected clients;
in that case, this step may take an 2-3 seconds. Second, the steps in
which we set the AP/Station mode of the machine take approximately
730 msec; however, the hardware specifications require that the oper-
ating system must wait for a few hundred milliseconds before using
the card in the new mode. For robustness, we added a one second
delay after such a mode change; the figure includes these delays after
each mode change.

From the figure, one can see that the Connection Setup and asso-
ciation time for the disconnected client is quite reasonable: it takes
less than 5 seconds to run the setup and another 1.9 seconds to asso-
ciate with a connected client C in ad-hoc mode so that the MultiNet
protocol can be started on C.

After MultiNet starts running on the connected client, the discon-
nected client can interact with the DS to diagnose its problems, e.g.,
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Figure 8: Time taken by a disconnected client to transfer data via
Multinet



transfer certificates or log files to the DS. To evaluate the time taken to
perform these transfers via MultiNet, we ran an experiment in which
a machine D sent files of different sizes (100KB, 500KB and 1MB)
to the DS through connected client C. Figure 8 shows the time taken
when the connected client C allows 17-50% of its time to be used
for ad hoc mode; client C stays on the infrastructure network for 500
msecs, and the time on the ad-hoc network is varied between 100
to 500 msecs. In our experiment, the time to switch from ad-hoc to
infrastructure mode is 500 msecs and from infrastructure to ad hoc
mode is 300 msecs.

As expected, the results show that the file transfer speed is a direct
function of the time a connected client stays in the ad hoc network.
We expect that as the switching delay overhead reduces (as in newer
cards) the transfer speeds will improve.

Thus, our results show that Client Conduit allows a disconnected
client’s problem to be reported (and may be even resolved, e.g., up-
dating expired certificates) in a few seconds.

7.3 Location Determination
We now evaluate the accuracy of locating disconnected clients (or

Rogue APs) using our DIAL scheme described in Section 5.1. Un-
like previous work on location determination, DIAL incurs extra error
since the location of reference points themselves may not be known
accurately.

We evaluated DIAL using RADAR [8] for locating the discon-
nected clients from the anchor points due to its simplicity; more so-
phisticated RSSI-based schemes such as the one suggested in [23] can
be used for reducing the errors of DIAL even further.

In our experiment, we placed 3 connected clients in 3 offices on
the same floor of our building. We obtained the floor map, and ap-
plied the Cohen-Sutherland line-clipping algorithm [19] to compute
the number of walls between each of the three connected clients and
the other rooms. We placed a disconnected client at 7 different loca-
tions while it sent out broadcast packets. We used AiroPeek [38] to
measure the RSSI of the disconnected client’s packets received at the
connected machines. We then applied the equation specified in [8] to
compute the wall attenuation factor (WAF). Based on the WAF, we
inferred that the disconnected client is in location X if the predicted
signal strength at X is closest to the observed signal strength at the
three connected clients.

We ran the RADAR algorithm on the collected RSSI data for lo-
cating the disconnected client D using the precise location of the con-
nected clients. We computed the error in D’s predicted location with
respect to its actual location; the “No Error” bar in Figure 9(a) shows
this error. Then, we ran the algorithm again by assuming that there
was an error in estimating the location of one connected client by a
distance of 3.3 meters; this distance corresponds to the average width
of a room in our building. For example, if connected client A was
placed in room X, we assume its estimated location to be a neigh-
bouring room Y when using it as an anchor point in RADAR. The
second bar in Figure 9(a) shows this error when such a situation oc-
curs. The rest of the bars show the error in locating the disconnected
client when the location of either one, two or three connected clients
is estimated incorrectly by one room; Figure 9(b) shows the error
when estimated location is off by a distance equivalient to that of two
rooms.

The results show that when there is no error in the known location
of the connected clients, the median error is 9.7 meters. This error
increases to at most 12 meters when the estimated location of one or
more clients is one or two rooms off from its true location. Of course,
when the estimated locations of the connected clients are off by two
rooms, the maximum error is substantially higher, e.g., 33 meters for
the case when the location of all three clients is incorrect. This case
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(a) Estimated location of connected client is one-room off from its
true location
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(b) Estimated location of connected client is two-rooms off from its
true location.

Figure 9: Median error in locating disconnected clients. The
lower and upper bounds of the error bars correspond to the min
and max error. E(i) denotes that the ith connected client’s loca-
tion contains error.

occrs when the estimated locations of the connected clients are off in
different directions, e.g., client A’s location is off towards north and
client B’s location is off towards south.

Note that the error in the location of the anchor points (i.e., con-
nected clients) can be kept low (less than one room off) by using
mechanisms such as Cricket [29] and Active Badges [36] for locating
connected clients. With accurate location of anchor points, DIAL’s
error would be similar to that of the best-known RSSI-based location
mechanism. Note that even an error of 10-12 metres (for our exper-
imental setup using RADAR) is acceptable since the goal of DIAL

is to approximately locate disconnected clients or Rogue APs. Thus,
based on our results, we can say that DIAL is a practical approach for
helping network administrators estimate the approximate location of
problematic areas.

7.4 Estimating Wireless Delays
In Section 5.2.3, we presented the EDEN scheme that uses nearby

clients to measure the delay encountered by a wireless station or an
AP. We now show that EDEN can estimate the delay encountered at
these endpoints with reasonable accuracy.

The EDEN technique measures the time spent on a client (or an
AP) by measuring the times of the Snoop request and response pack-
ets at nearby clients. However, this measurement includes the delay
at the machine due to medium contention. To understand the extent
of this congestion delay, we set up a simple experiment with 4 ma-
chines A, B, C and D on the same channel. Machine A performed
a full-blast data transfer to machine B, thereby creating traffic con-
gestion in the medium. Then we associated client C with the Native
WiFi AP machine D. The Native WiFi AP then sent 20 ping packets
to the associated client, which in turn sent ping reply packets. We
ran the experiment twice: once with no extra client delays and next
when an extra 40 msec were added at the client between the ping
request and replies. Using a fifth machine running Airopeek, we ob-
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Figure 10: EDEN’s accuracy of estimating the delay at a client

served that EDEN over-estimated the client delay by approximately 3
msec. When examining scenarios where the client or the AP are the
bottlenecks, such inaccuracies may be acceptable. However, when
these entities are not bottlenecks or when EDEN is examining a sce-
nario with low delays or when contention is even worse (e.g., the
contention delay can even be more than 20 msec in 802.11b), a bet-
ter estimation is needed; we are currently exploring mechanisms to
reduce such inaccuracies.

Next, we ran an experiment to determine EDEN’s accuracy in de-
termining delays at an endpoint. In this setup, a client machine was
associated with another machine running as an access point; both ma-
chines had Netgear MA521 802.11b cards and the corresponding Na-
tive WiFi drivers. We then injected delays in the path of all packets at
the client (varying from 30 to 300 msecs). To emulate the EDEN pro-
tocol, the AP sent 20 ping packets to the client; the ping packets and
replies emulate the Snoop request and response messages in EDEN.
A third machine running AiroPeek was used to snoop on these ping
packets; this machine effectively emulates the eavesdropping client in
EDEN. The collected Airopeek data was then analyzed to estimate the
delays at the client. Figure 10 shows that EDEN is reasonably accu-
rate in estimating the delays at an endpoint: EDEN can estimate client
delays with an error less than 5% of the actual introduced delay.

Finally, we studied EDEN’s effectiveness in classifying the delays
at the client, AP, and the medium. We used a 3-machine setup sim-
ilar to the one in the previous experiment; in this case, to estimate
delays at the AP, the client also sent ping packets to the AP. To in-
troduce delays in the medium, we increased the distance between the
client and the AP. The medium delay increased relative to the case
when the AP and client were nearby beacuse there were more retries
(the increased distance resulted in an increase in the number of walls
between the two machines, thereby weakening the received signal).
For better accuracy, we ran these experiments in the night when the
wireless traffic was expected to be low (since the corporate LAN is
actively used by employees during the day, we did not want traffic
interference to affect our measurements).

Figure 11 shows EDEN’s breakdown for three different scenarios.
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Figure 11: Breakdown of delay at the client, AP, and the medium
as estimated by EDEN
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Figure 12: Overlapping channels on which an AP is overheard

The 40-40-near bar corresponds to the scenario when the AP and
client were placed near each other, and we added a 40 msec delay
to all packets at both machines. The 40-40-far scenario is similar ex-
cept that client and the AP were placed far from each other. Finally,
the 0-0-far case is one in which we did not introduce any delays at the
client or the AP but they were placed far from each other.

In the 40-40-near case, EDEN estimates approximately equal de-
lays for the client and the AP. With an increase in the distance (the
40-40-far and 0-0-far cases), the medium delays increase and EDEN

is able to estimate this change as well. Note that the client and the AP
delays increased in the the latter two cases by a few milseconds bea-
cuse the wireless cards transmitted the packets at a lower transmission
rate (1 Mbps) in order to decrease the error rate. These results show
that EDEN is an effective mechanism for obtaining a delay breakdown
in a wireless setting.

7.5 Rogue AP Detection
In this section, we explore two issues related to Rogue AP detec-

tion. Section 7.5.1 shows that overlapping channels helps in quicker
detection of Rogue APs that are hiding on channels where no AP or
client is present. Section 7.5.2 shows that even if Rogue APs are not
overheard on overlapping channels, there is ample opportunity for
clients to perform active scanning without hurting their performance.
To check the effectiveness of our implementation, we ran our Rogue
AP detection mechanism on our building floor and were able to detect
all “known” Rogue APs (these were experimental APs being used by
our colleagues).

7.5.1 Overlapping Channels
It is known that overlapping channels in IEEE 802.11 not only in-

terfere with one other but it is sometimes possible for a NIC on one
channel to decode packets from another overlapping channel. This
characteristic is helpful in detecting Rogue APs: if a client is present
on a channel that overlaps with a Rogue AP’s channel, it will detect
the AP’s presence if it is able to hear the AP’s beacons.

To verify the extent of this overlap, we performed an experiment
in which an AP was placed on channel 1 and a nearby client checked
for the AP’s beacons on all 11 channels. We repeated this experiment
by placing the AP in all channels from 2 to 11 and document where
it could be heard. In one run, the client lingered on each channel for
1 second and in the second run, it stayed for 5 seconds. Figure 12
plots the channels on which the AP is heard (Y-axis) when it is placed
on a specific channel (X-axis). Clearly, the overlap across various
channels is non-negligible and is helpful for detection of Rogue APs.
Furthermore, given sufficient time (see the 5-second run), there is
an even higher likelihood that some packet from a Rogue AP leaks
through to a monitoring DC.

In the above experiments, the AP and the client were placed 5 feet
apart with one obstacle between them. We wanted to study the change
in leakage across overlapping channels on increasing the the distance
between the AP and the client. For this we placed an AP machine
at 10 different locations on our floor in various rooms and repeated



the above experiment. Figure 13 shows that as the distance between
the AP and the monitoring client increases, the AP is heard on fewer
channels (the decrease is not monotonic due to obstructions).

The above results show that even though one cannot rely on overlap
as a guaranteed mechanism for detecting Rogue APs, it does reduce
the need of performing frequent active scans. This observation also
implies that there are more opportunities for detecting Rogue APs:
for a Rogue AP to go undetected, it must be far away from any client
that is on an overlapping channel.

7.5.2 Availability of Idle Times for Active Scans
As shown in Section 7.2, active scans can take up to 2 seconds. Our

current implementation performs an active scan every 5 minutes; we
refer to this period as the Active Scan Period. Even though 2 seconds
out of 300 seconds is a small fraction of the time, it is important for
clients to perform these scans at appropriate times; otherwise, net-
work traffic on a client may get disrupted: packets sent to this client
may be dropped, TCP may timeout, etc.

Ideally, these scans should be done when the node is idle and has
no ongoing network transfers. To determine whether such idle times
exist in current usage, we used Ethereal [17] to obtain traces from
3 desktop machines of our colleagues over multiple days. Note that
even though these traces are from desktops attached to wired net-
works, they still give us a reasonable estimate of network traffic gen-
erated by users; as users start using laptops as their primary machines,
it is likely that the network and idle time behavior will be similar to
that of desktop clients.

We divided the traces into 5-minute periods (the Active Scan Pe-
riod) and for each period, we determined the maximum period of time
for which the network was idle. Figure 14 presents the maximum idle
period in every 5-minute interval during a 24-hour period. Each point
in the graph (e.g., for 12:00 pm to 12:05 pm) is obtained by averaging
the maximum idle time value across multiple days and multiple ma-
chines for the same 5-minute period. The figure shows that there are
large chunks of idle periods available for performing active scans: the
smallest idle period available in a 5-minute interval was 118 seconds
and typically, idle periods of more than 2.5 to 3 minutes were eas-
ily available. Thus, a large window of opportunity is available to our
rogue detection scheme for performing active scans every 5 minutes.

Given the availability of such opportunities, one can use any heuris-
tic to predict idle times for launching an active scan (which takes
2 seconds). We studied the effectiveness of a simple history-based
heuristic: if the network has been idle for X seconds, it predicts that
the network will be idle for the next 2 seonds. Thus, after every 5
minutes, the Rogue AP detection module can perform an active scan
whenever it observes that the network interface has been idle for X
seconds. We evaluated the effectiveness of this heuristic over our 3-
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Figure 13: Overlapping channels heard relative to distance
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Figure 14: The maximum idle time duration available during ev-
ery 5-minute period at different times of the day

machine traces with two different values of X: 5 and 10 seconds. With
both values of X, we observed that the active scan would complete
within the idle period for more than 95% of the cases. The effec-
tiveness of this simple heuristic demonstrates that active scans can be
easily performed for Rogue AP detection by wireless clients without
hurting their performance.

7.6 Scalability Analysis
As discussed in Section 3.3, our architecture is designed to scale

with the number of access points and clients in the system. We now
discuss why our proactive and reactive techniques maintain the scal-
ability property. We also argue why our reactive mechanisms impose
low network overhead even if a number of clients are experiencing
wireless problems in an area.

As discussed in Section 6, each DC pro-actively sends the RSSI,
SSID, and MAC address information about nearby devices to the
DAP 30 seconds; this information is necessary for Rogue AP detec-
tion. The DAP filters this data and sends information about APs every
30 seconds. To understand the network bandwidth consumed on the
wireless link, we set up an experiment with a single DC, DAP and
DS for 4 hours. We observed that the bandwidth consumption by the
DC was less than 0.2 Kbps and the DAP’s bandwidth requirements
were less than 0.01 Kbps. This result implies that even if a large
number of clients were present, the bandwidth usage is still low, e.g.,
20 Kbps for 100 clients by DC. Thus, for pro-active monitoring, our
techniques have negligible bandwidth requirements.

We now analyze the bandwidth overheads of our reactive diagno-
sis mechanisms, i.e., Client Conduit and EDEN; we do not discuss
DIAL’s overheads since DIAL’s beaconing messages are part of Client
Conduit and the overheads of sending the RSSI information to the
DAP has already been discussed above.

The bandwidth requirements of EDEN and the Connection Setup
part (beacons and probe messages) of Client Conduit are low since
these protocols send small broadcast or beacon packets at a low fre-
quency, e.g., every 100 msecs in Client Conduit and every 2 seconds
in EDEN. The bandwidth consumption while using MultiNet can also
be controlled: as stated in Section 4.2, the connected client can limit
the amount of bandwidth that it allocates to the disconnected client.
Thus, if a single client needs help, our reactive mechanisms impose
little overhead.

We now analyze the overheads when a large number of clients (say
50) in an area have wireless faults and are utilizing our reactive mech-
anisms to diagnose their problems. Our basic idea for ensuring that
the performance of the network does not deteoriate is to rate-limit our
mechanisms; we have not implemented these protocol extensions in
our current prototype. In Client Conduit, when a disconnected client
overhears the beacons on N disconnected clients, instead of choos-
ing a fixed beacon period of 100 msec, it sends out a beacon every
K msecs where K is a random number between 0 and 100*N msecs.
This self-regulation ensures that the network is not swamped out by
Client Conduit beacons if a sudden loss of coverage occurs in an area.



A similar self-regulatory mechanism is used to limit the rate at which
the initial broadcast packets are sent in EDEN. Furthermore, to limit
the overheads on a connected client C (and possibly reduce the reac-
tive scheme’s load on the DAP and DS), we can use a policy such that
C helps only one client at any given point. Thus, with these policy
decisions, we can ensure that Client Conduit and EDEN impose low
bandwidth overheads even when a large number of clients are experi-
encing problems.

8. RELATED WORK
To the best of our knowledge, there has been no previous research

on fault diagnosis in IEEE 802.11 infrastructure networks. However,
there are a number of commercial products that provide varying de-
grees of support for network management tasks, e.g., AirWave [4],
Network Systems and Management (NSM) [16], Wireless Security
Advisor [20], AirDefense [2], SpectraMon/SpectraGuard [37], Air-
Magnet [3], and Symbol [35]. Due to their propriety nature, the avail-
able description typically describes the feature-set and not the tech-
niques; the comparison below is based on our understanding of their
brochures.

The emphasis in most of these products is more towards manag-
ing wireless networks rather than diagnosing faults. These tools al-
low network administrators to obtain and visualize data from access
points, upgrade firmware, manage security policies, etc. Some of
them also provide real-time WLAN performance monitoring through
IEEE 802.11 statistics such as packet throughput, number of retries,
number of dropped packets at the AP, etc. Even though these low-
level statistics are useful for network administrators, it is more de-
sirable to provide higher level fault detection and diagnosis, e.g., our
approach detects network performance problems and pinpoints the
components that are problematic.

Many of these products (e.g., AirWave, Unicenter) operate from the
AP or the server side only, i.e., clients are not instrumented. Given
the asymmetry and variability of the wireless medium, observing data
from the client-side is important for fault diagnosis, e.g., since condi-
tions such as interference near the client can be drastically different
than the conditions near the AP, client-side information is needed to
do a detailed performance breakdown. Furthermore, our approach of
modifying clients allows us to help disconnected clients via Client
Conduit, locate Rogue APs and disconnected clients, and obtain bet-
ter coverage for detecting Rogue APs.

Some products like AirMagnet and AirDefense obtain the complete
view of the enterprise by deploying specialized sensors throughout
the organization; these sensors pass all the packets to the server for
analysis. Anecdotal evidence from talking to various network admin-
istrators suggests that products that use sensor-based monitoring are
expensive to deploy; furthermore, their performance degrades signif-
icantly even when very few sensors are deployed due to the network
traffic. Our approach uses regular wireless clients to avoid extra hard-
ware deployment costs. Of course, a limitation of our approach is that
we rely on the presence of nearby clients for diagnosing some of the
wireless faults; however, the increasing usage of wireless clients in
organizations is making it easier to satisfy this requirement.

Since Rogue APs are a serious security problem, all the products
listed above perform Rogue AP detection. Unlike our solution, most
of these products achieve this goal either by using other APs [4, 16] or
by using specialized sensors [2, 3, 37]; as discussed above, these ap-
proaches have deployment and fault-detection limitations. Our tech-
nique of using both clients and APs for detecting Rogue APs is simi-
lar to the Symbol technique [35]. However, unlike their approach, our
technique can also detect Rogue APs that use MAC address spoofing
of real APs; furthermore, we leverage our client and AP instrumenta-
tion to approximately locate Rogue APs using DIAL.

None of the above products provide solutions for assisting discon-
nected clients even though they need the most help. Our Client Con-
duit mechanism allows live and reactive diagnosis to be performed
for such clients that are unable to access the infrastructure wireless
network.

The notion of making wireless clients snoop the environment for
ensuring secure and correct routing has been suggested for ad hoc net-
works. In [25], the authors propose a watchdog mechanism to detect
network unreliability problems stemming from selfish nodes. The ba-
sic idea is to have watchdog nodes observe their neighbors and deter-
mine if they are forwarding traffic as expected; this approach for de-
tecting routing anomalies has been further refined by others as well [7,
13]. Inspired by the watchdog mechanism, we also use nearby clients
to monitor the RF conditions and traffic flow around them; in our ar-
chitecture, the watchdog mechanism is used for fault detection (e.g.,
Rogue APs) and fault diagnosis (e.g., Client Conduit, locating dis-
connected clients, performance isolation). Recent work [31] has used
snooping wireless clients for detecting greedy and malicious behavior
in hotspots environment; these techniques are orthogonal to our work
and can be incorporated in our framework as well.

Researchers have developed techniques for diagnosing performance
problems over the Internet. For example, Barford et al. [9] use traf-
fic traces at the end points and classify delays as occurring due to a
slow server, a slow client, or the network. While EDEN has similar
goals over a wireless network, it does so without requiring tracing
support from both end points. Tulip [24] is another approach for di-
agnosing delays over Internet paths. The client sends ICMP packets
and uses their responses from different components to determine the
cause, such as lost packets, packets reordering, or queueing delay.
EDEN also uses ICMP packets. However, the broadcast nature of the
wireless medium enables EDEN to use a novel approach of snooping
these packets as a mechanism for diagnosing component delays.

9. FUTURE WORK
There are a number of additional problems in wireless fault diag-

nosis that require further research. We plan to pursue these in the near
future.

• We presented a technique for detecting Rogue APs in a deploy-
ment. A related problem is to detect Rogue Ad-hoc Networks.
Such networks are created when a user connected to the corporate
network (e.g., via a wired network) sets up an IEEE 802.11 ad-
hoc network with an unauthenticated client. Thus, like the Rogue
AP scenario, such a network can compromise the security of the
corporate network.

• The problem of performing root-cause analysis on client authen-
tication problems was not discussed in this paper. For example,
the system could analyze the IEEE 802.1x protocol messages to
determine the point at which authentication failed.

• In Section 5.1, we show how the location of disconnected clients
can be determined when a few connected clients are present nearby.
The question remains, what should be done when there are no con-
nected clients in the neighborhood. One approach may be to have
the client log its last known location where connectivity was avail-
able. Using heuristics, such as movement trajectory, it might be
possible to determine the approximate location of the dead spot.

• The next logical step after diagnosis is recovery. Once a fault has
been detected, one needs to determine what automatic steps should
the system take to resolve the situation without necessarily involv-
ing a network administrator.

10. CONCLUSION



The rising popularity of IEEE 802.11 networks has made fault de-
tection and diagnosis an important problem for IT managers respon-
sible for maintaining these networks. Interestingly, the wireless re-
search community has overlooked these problems, perhaps because
maintenance issues surface only after large deployments are in place,
which is a relatively recent phenomenon.

In this paper, we presented novel solutions for detecting a variety of
faults and proposed approaches for analyzing performance problems
experienced by end-users. Our initial results show that our mech-
anisms of locating RF holes, detecting Rogue APs, and diagnosing
performance problems are effective and impose low overheads. Fur-
thermore, we show that a novel mechanism called Client Conduit can
be used for assisting disconnected clients in real-time. These tech-
niques in conjunction with our general architecture that uses clients,
APs, and backend servers together for diagnosing wireless networks
make our system unique and practical.

The general problem space of effective network management for
IEEE 802.11 networks is large. This paper is a first attempt at ad-
dressing some of the critical problems identified to us by network ad-
ministrators managing a large 802.11 deployment. It is our hope that
this paper will stimulate other researchers to investigate such prob-
lems further and propose solutions that will eventually result in the
smooth operation of IEEE 802.11 networks.
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