
Trees versus meshes: Is
the Debate Over?

Paul Francis
P2P Streaming Workshop, Sep. ‘06

“Mesh” approaches to P2P
streaming are popular

Coolstreaming
Lots of startups use meshes

(as far as I know)

Simple
Robust
Acceptable overhead (high volume apps)

But I’ve been working on “tree”
based approaches

So, motivated to show that tree-based
approaches are better than mesh-based

Don’t want to have wasted my time!
Therefore came up with this title of talk when
Pablo asked me to speak:

Trees versus Meshes: Is the Debate Over?

Some caveats

Only talking about live streaming
Not sure I’m really ready to give this talk

Haven’t done a good study of trees versus mesh
pros and cons

Though I plan to

Therefore may be holes in my logic
This is a workshop!
Food for thought…

What I have done (with Vidhya
Venkatraman)

Design of an unstructured tree-based P2P
multicast protocol
Chunkyspread

ICNP ’06
Multi-tree
Scalable
Supports heterogeneity

Good control over transmit load
Performs better than Splitstream

Trees versus meshes

More similarities than differences

Trees versus meshes

More similarities than differences
Both approaches can be unstructured

Chunkyspread is, but also Yoid (1998)

Trees versus meshes

More similarities than differences
Both approaches can be unstructured

Chunkyspread is, but also Yoid (1998)
Both optimize on volume

Most bytes follow the path of a tree

Trees versus meshes

More similarities than differences
Both approaches can be unstructured

Chunkyspread is, but also Yoid (1998)
Both optimize on volume

Most bytes follow the path of a tree
Both effectively utilize send capacity of all
peers

Multi-tree

So what is different?

So what is different?

Data delimiting?
Meshes use blocks, trees use slices
But both of these are attempts to aggregate
This difference isn’t really important

So what is different?

Data delimiting?
Meshes use blocks, trees use slices
But both of these are attempts to aggregate
This difference isn’t really important

Trees are push and meshes are pull?

So what is different?

Data delimiting?
Meshes use blocks, trees use slices
But both of these are attempts to aggregate
This difference isn’t really important

Trees are push and meshes are pull?
But when a child selects a parent in the tree, it
effectively requests (pulls) a slice

The basic difference:

Meshes:
Peers advertise what they already have

Trees:
Peers advertise what they expect to have in the
future
The path in a tree is a “chain of promises”
But this doesn’t mean trees are fragile per se: a
tree can repair itself

Fairly simply…

Evaluation criteria

Delay
Rather subtle

Overhead
Trees are good…meshes can amortize at high volume

Simplicity
Trees not as bad as you might think

Robustness
Control over send load

Chunkyspread good…not sure where meshes stand

Causes of delay

Mesh:
Sender buffers a block of
data
Advertises block to
neighbors
Neighbors request block
Does this every hop

#hops x buffering time
Trade-off between
overhead and delay

Tree
When failure:
Detect interruption in
data flow
Repair tree (start data
flow from new parent)

Key observation:

If tree can repair faster than mesh buffering
time (x #hops), then trees should always
perform better than meshes!
Why?----worst case, tree nodes always buffer
for time of tree repair

Play out of buffer when parent is lost until tree
repaired

Chunkyspread:
1. Build sparse random mesh

Built scalably with
random walks (Swaplinks, Infocom ‘06)

Chunkyspread:
1. Build sparse random mesh

Control over node
degree (heterogeneity)

Chunkyspread:
2. Stream source selects random
slice sources

Chunkyspread:
3. Each slice source is root of slice
tree

Chunkyspread:
Loop avoidance and detection

Each data packet contains path to slice
source

Parent, parent’s parent, etc. . .
Compressed using Bloom filter [Whitaker ’02]

Detect loop in one data packet cycle
Each peer tells its neighbors its current path
for each slice

Don’t select neighbor if loop would result

Chunkyspread:
Parent selection

For each slice, select a parent from among
neighbors based on several criteria:
Avoid loops
Consider load on parent

Peers advertise desired load (heterogeneity)
Minimize delay

Simple method of estimating delay for each slice

Quality of load balance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-100 -50 0 50 100

N
um

be
r

of
 n

od
es

Excess Load percentage

(a) CDF of Excess Load Percentage for Chunkyspread

Static : Lat0
Static : Lat2
Joins : Lat0
Joins : Lat2

Roughly 5:1
ratio of node
capacities

Recovery from ancestor failure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
at

io
 o

f s
lic

es

Playback Disruption Duration in seconds

CDF of Total Playback Disruption Durations

0s
1s
3s
5s

10s

Total across 1000 second simulation

Size of
playout
buffer

Pareto churn
with 300 sec
mean

Some conclusions

Tree-based protocols not as complex as you
might think
Tree-based has less overhead
Tree-based probably performs better for
latency
Only useful for live streaming
More to come….

