=])) Cornell University

Trees versus meshes: Is
the Debate Over?

Paul Francis
P2P Streaming Workshop, Sep. ‘06

“Mesh” approaches to P2P
streaming are popular

Coolstreaming

Lots of startups use meshes
o (as far as | know)

Simple
Robust
Acceptable overhead (high volume apps)

S %
5/ 8 B} . .
¥ Cornell University

But I've been working on “tree”
based approaches

So, motivated to show that tree-based
approaches are better than mesh-based

2 Don’'t want to have wasted my time!

Therefore came up with this title of talk when
Pablo asked me to speak:

o Trees versus Meshes: Is the Debate Over?

5/ 8 B} . .
¥ Cornell University

Some caveats

Only talking about live streaming

Not sure I'm really ready to give this talk

o Haven't done a good study of trees versus mesh
pros and cons

Though | plan to

Therefore may be holes in my logic
o This Iis a workshop!
o Food for thought...

Bl . i
Cornell University

What | have done (with Vidhya
Venkatraman)

Design of an unstructured tree-based P2P
multicast protocol

Chunkyspread
a ICNP '06
o Multi-tree
o Scalable

0 Supports heterogeneity
Good control over transmit load

o Performs better than Splitstream

Bl . i
Cornell University

‘ Trees versus meshes

= More similarities than differences

Trees versus meshes

More similarities than differences

Both approaches can be unstructured
o Chunkyspread is, but also Yoid (1998)

S %
5/ 8 B} . .
¥ Cornell University

Trees versus meshes

More similarities than differences
Both approaches can be unstructured
o Chunkyspread is, but also Yoid (1998)

Both optimize on volume
o Most bytes follow the path of a tree

Bl . i
Cornell University

Trees versus meshes

More similarities than differences

Both approaches can be unstructured
o Chunkyspread is, but also Yoid (1998)

Both optimize on volume
o Most bytes follow the path of a tree

Both effectively utilize send capacity of all
peers

o Multi-tree

Bl . i
Cornell University

‘ So what is different?

;,, Cornell University

So what is different?

Data delimiting?

o Meshes use blocks, trees use slices

o But both of these are attempts to aggregate
o This difference isn’t really important

o

of) . .
k@g Cornell University

So what is different?

Data delimiting?

o Meshes use blocks, trees use slices

o But both of these are attempts to aggregate
o This difference isn’t really important

Trees are push and meshes are pull?

o

of) . .
k@g Cornell University

So what is different?

Data delimiting?

o Meshes use blocks, trees use slices

o But both of these are attempts to aggregate
o This difference isn’t really important

Trees are push and meshes are pull?

o But when a child selects a parent in the tree, it
effectively requests (pulls) a slice

o

of) . .
k@g Cornell University

The basic difference:

Meshes:
o Peers advertise what they already have

Trees:

o Peers advertise what they expect to have in the
future
o The path in a tree is a “chain of promises”

o But this doesn’'t mean trees are fragile per se: a
tree can repair itself
Fairly simply...

o

of) . .
k@g Cornell University

Evaluation criteria

Delay
o Rather subtle

Overhead

o Trees are good...meshes can amortize at high volume
Simplicity

o Trees not as bad as you might think

Robustness

Control over send load
o Chunkyspread good...not sure where meshes stand

o

of) . .
k@g Cornell University

Causes of delay

Mesh: Tree
o Sender buffers a block of o When failure:

data o Detect interruption in
o Advertises block to data flow

neighbors o Repair tree (start data
o Neighbors request block flow from new parent)

o Does this every hop

#hops x buffering time

o Trade-off between
overhead and delay

o

of) . .
k@g Cornell University

Key observation:

If tree can repair faster than mesh buffering
time (X #hops), then trees should always
perform better than meshes!

Why?----worst case, tree nodes always buffer
for time of tree repair

o Play out of buffer when parent is lost until tree
repaired

5 [E 8]} . .
i Cornell University

‘ Chunkyspread:
1. Build sparse random mesh

J— //D
-;iééw—fa
\\j/ \D/ /

\
J

Built scalably with '
random walks (Swaplinks, Infocom ‘06)

‘ Chunkyspread:
1. Build sparse random mesh

J— //D
\—;\i_\}fz —
D/ \ /

e
Control over node D/\)D

degree (heterogeneity)

‘ Chunkyspread:
2. Stream source selects random
slice sources

o 18 B\ . .
¥) Cornell University

‘ Chunkyspread:
3. Each slice source is root of slice
tree

Chunkyspread:
Loop avoidance and detection

Each data packet contains path to slice
source

o Parent, parent’s parent, etc. . .

o Compressed using Bloom filter [Whitaker '02]
Detect loop in one data packet cycle

Each peer tells its neighbors its current path
for each slice

o Don’t select neighbor if loop would result

S %
5/ 8 B} . .
¥ Cornell University

Chunkyspread:

Parent selection
For each slice, select a parent from among
neighbors based on several criteria:
Avoid loops

Consider load on parent
0 Peers advertise desired load (heterogeneity)

Minimize delay
2o Simple method of estimating delay for each slice

Bl . i
Cornell University

Quality of load balance

Roughly 5:1
(a) CDF of Excess Load Percentage for Chunkyspread ratio of node
5000 v .
/ Static : Lat0 ——
4500 F ; Static : Lat2 | cap acities
JOInS Lato
4000 F JOINs : Lat2 -
g 3500 F
g 3000
9 X
S 2500 } a0
a0 \/\c"}j
g 2000 | w\’Q’
Z 1500 }
1000
500 |
O ']
-100 50 100

Excess Load percentage

)

Cornell University

S
{3
55
A CHEe

T

A\
&)
10 L“

Recovery from ancestor failure

CDF of Total Playback Disruption Durations Pareto churn
. ya with 300 sec
. mean
0.8 oo X
@
e 06
%))
S
S o4t
x Size of
0.2 | playout
buffer
0 . —l . —l . —l . —l . —l . —
0.001 0.01 0.1 1 10 100 1000

Playback Disruption Duration in seconds
Total across 1000 second simulation

Cornell University

Some conclusions

Tree-based protocols not as complex as you
might think

Tree-based has less overhead

Tree-based probably performs better for
latency

Only useful for live streaming
More to come....

5/ 8 B} . .
¥ Cornell University

