

Small routing tables

Paul Francis

Outline

- We have a trick for making routing tables very small
 - For hierarchical addresses
 - Global IP, VPNs
 - Called "CRIO" (Core-Router Integrated Overlay)
- And some speculation as to why this might be a good thing

1977

 Folks were looking at the basic trade-off between routing table size and path length

1977

 Folks were looking at the basic trade-off between routing table size and path length

1977

 Folks were looking at the basic trade-off between routing table size and path length

Path-length / Table size trade-off

- A nice trade-off to have
- This trade-off doesn't exist today
 - Hierarchical nature of internet "forces" an ISPcentric address assignment model
 - Because of multi-homing, sites don't fit neatly into a single "cloud"

CRIO has two parts

- Mapping/tunneling part
 - Can operate stand-alone
- Virtual prefix part
 - Requires mapping/tunneling

Mapping/tunneling part

- BGP keeps routes to major POPs only
 - 1000 2000 of these
 - One prefix per POP
- Separate mapping table binds customer prefixes to POPs
- Forwarding is two-step:
 - Map address to POP
 - Tunnel packet to POP address
- Not a new idea
 - Deering's Map-N-Encap, Kim Claffy et. al.

Mapping doesn't shrink FIB per se

- Shifts work from <u>distributed route</u> <u>computation</u> problem to <u>data distribution</u> problem
 - I would argue that the latter problem is easier
- Data distribution could be done by:
 - OSPF-like flooding
 - ICMP-like notification
 - (Note that with data distribution, not all routers needs to know about a topology change)

Data distribution easier than route computation

- Streamlined BGP can converge faster
 - A small number of very stable prefixes
 - Operators could crank down the timers
- Easier to debug
 - Mapping table is the same everywhere, BGP RIBs are not
- Easier to secure
 - Secure mapping only, not entire path

Other mapping characteristics

- Provides a new policy hook
 - For multi-homed nodes, mapping can indicate access preference
- Detunnelling is costly
 - Though it could be implemented lightweight (oneended tunnels)
- Tunnels introduces new security problems
 - Deflection DoS attack
 - Mitigate by using MPLS or a new protocol field for outer IP header

Mappings without virtual prefixes

Mappings with virtual prefixes

Virtual Prefixes

- Mappings for a given virtual super-prefix are stored only at selected routers
- These routers advertise the virtual prefix into BGP
- Mapping tables and FIBs are smaller, paths are longer
- Completely flexibility as to where individual mappings go
 - Fine-tune size/path-length tradeoff

Path length versus FIB size (for global IP routing)

(RIB has around 2000 prefixes)

Path length versus FIB size for VPN routing

A thought

- Does CRIO allow single-chip forwarding engines?
 - FIB and all processing on a single chip
 - May be possible because ISP can control FIB size
 - On other hand, not all of the table is for hierarchical destination address lookup
 - ACLs, source addressing filtering, etc.
- If so, is there a big advantage to single-chip forwarding engines?
 - After all, much of switch/router memory is due to packet buffering

Really small FIBs

- Can probably shrink the "BGP" FIB component to a few hundred prefixes
 - Using Deering's metro addressing...all POPs in a metro area have the same prefix
- Can shrink the "mapping" FIB component almost arbitrarily
 - By chaining tunnels (even within a single POP or router)

Chained tunnels

Conclusion

- CRIO gives us back the path-length / tablesize trade-off
 - We have shown this for global IP and VPNs
- Interesting, but not clear how valuable this is
 - Faster and simpler BGP (or get rid of BGP altogether)?
 - Better multi-homed traffic engineering?
 - Single-chip forwarding engines?

