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Abstract— In order to maximize throughput in end-system
multicast, it is necessary to have fine-grained control over the
transmit load of each participating member. This both avoids
bottlenecks where members are overloaded, and allows hetero-
geneous members to contribute as much transmit capacity as they
are able or willing to. In this paper, we describe and simulate an
unstructured end-system multicast protocol called Chunkyspread
that provides members with fine-grained control over their
transmit load, scales well, has relatively low latencies, and can
tolerate high membership churn. Chunkyspread is designed as a
flexible framework that easily incorporates different constraints
and optimizations. For instance, it is straightforward to add tit-
for-tat or path disjointness as constraints to the system. This
paper demonstrates the performance of Chunkyspread through
extensive simulations, and provides partial validation of these
simulations on Emulab. It also provides detailed comparisons
with Splitstream, a structured heterogeneous end-system multi-
cast protocol. The simulations show that Chunkyspread provides
far better control over transmit load than Splitstream, while
exhibiting comparable or better latency and responsiveness to
churn.

I. I NTRODUCTION

In 1997 and 1998, Francis and Zhang independently argued
that IP multicast was going nowhere, and that some form of
end-system (P2P) multicast is needed to bring multicast to the
masses ([7], [8]). Nearly a decade and a plethora of multicast
protocols later, P2P multicast has itself gone nowhere, this
in spite of the success of other P2P technologies such as file
sharing and swarming. Part of the reason for this is surely that
multicast is something of a niche application. It is only really
needed for live or near-live streaming, whereas most content
distribution is non-live. Nevertheless, there are some multicast
applications out there, which today are largely handled by
infrastructure-based overlays (i.e. Akamai) or IP multicast
(in enterprise settings [25]). We believe, however, that there
are still substantial improvements that can be made to P2P
multicast algorithms, and that these improvements may yet
lead to widespread use of this technology.

In this paper, we focus on non-interactive multicast appli-
cations that can grow to a very large scale (many thousands
of recipients), can tolerate high-churn, and can handle a
wide range of volumes. A canonical application for us is
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the broadcast of a sports event, where the content may be
a simple text description of the score and important events
(low volume), an audio play-by-play (medium volume), or
video (high volume). To be honest, we focus on non-interactive
applications because the delay tolerance required by interac-
tive applications such as video conferencing, a few hundred
milliseconds, seems extremely difficult to achieve at arbitrarily
large scale and with high membership churn, without using IP
multicast. In essence, we are sacrificing interactivity for scale
and membership churn.

Once we accept that we can’t achieve extreme low latencies,
a few seconds of delay becomes tolerable. Indeed in the case of
streaming media applications, a few seconds of delay is neces-
sary in the form of a receiver play-out buffer to smooth over
short-term disruptions in network or OS performance [20].
Allowing this much delay buys us considerable flexibility in
the design, and in particular, allows us to exploit randomness
in the overall structure of the protocol. Like other unstructured
P2P applications, this allows us to work with relatively simple
approaches. Having said that, all other things being equal, a
low latency is still preferable, and we do provide mechanisms
to reduce latency.

In addition to large scale and robustness to churn, a critical
requirement is to have fine-grained control over member
transmit load. The need for this stems from fairness, utility, and
performance arguments. Fairness suggests that each member
node should transmit the same volume that it receives. Where
utility is valued over fairness, control over load allows the sys-
tem to exploit the heterogeneous capacities of members, thus
maximizing the throughput of the system. Good performance
requires that there be no bottlenecks: no node should be called
on to transmit more than it can.

It is widely accepted that onlymulti-path approaches can
lead to high utilization, since they allow all nodes to participate
in transmission of the data stream (as opposed to single-tree
approaches, which necessarily require that a large fraction of
nodes be leaves and therefore contribute nothing) [11], [2].
By multi-path, we mean where each node receives portions
of the multicast stream via different routes. A multi-path may
be achieved through multiple trees, as in SplitStream [11], or
through a so-calledtreelessapproach, as in Bullet [9], Chain-
saw [12] or Coolstreaming [2]. We say “so-called” treeless,
because the goal of Bullet or Coolstreaming is nevertheless
that each individual packet or block of packets traverses a tree.
This gives rise to the question of which approach to adopt:
per-block(or packet) orper-slice.
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In the case of protocols that build trees with per-block
granularity, each node explicitly informs its neighbors of
which blocks it has, and requests from each neighbor which
blocks it would like to receive. This kind of a push-pull
swarming strategy represents a substantial overhead: with an
average node degree of 20 (as used in [12]), this means an
additional 20 packets (10 sent and 10 received on average),
for every data block received. If the stream is low volume,
this overhead can be many times the stream volume. For
higher volume applications, which Bullet and Coolstreaming
target, the overhead is more acceptable, but is nevertheless
worth trying to avoid. Swarming also results in added delay
to execute the push-pull, requiring that packets be buffered
long enough to accommodate the delay and avoid packet loss.

With a per-slice granularity, nodes maintain a long-term
parent-child relationship with respect to each slice (where a
slice is defined as everyM th packet of a data stream,M
being the number of slices). As a result, once the trees are
established, there is virtually no per-packet overhead. On the
other hand, if a node crashes or otherwise stops performing
adequately, all of its offspring in the tree will suddenly stop
receiving some packets until the tree can be re-built. In an
environment with constant churn, trees are continuously being
destroyed and rebuilt, resulting in a considerable control mes-
sage overhead. In order to avoid packet loss due to disruptions
in the trees, nodes must buffer packets for the period of time
it takes to repair a tree.

What all this means is that both swarming and tree-building
approaches exhibit the same types of trade-offs. Both have
control message overheads (though for different reasons), both
suffer from substantial delays in packet reception (though for
different reasons) and require some amount of buffering to
prevent packet loss. To succeed, tree-building approaches must
have simple tree creation and repair algorithms that converge
very fast. Swarming approaches, on the other hand, must adopt
strategies that minimize the overhead and delay of the push-
pull. It is not at all clear which approach might emerge as
the best by these measures. Ultimately some kind of hybrid
strategy may be appropriate.

An important consideration is simplicity. In spite of the fact
that we, the research community do not have good measures
for ”simplicity”, it seems clear to us that swarming strategies
are simpler than tree-building strategies. We believe that this
simplicity makes swarming approaches easier to build and
deploy, and ultimately results in more robust systems.

Despite the above arguments, we have chosen to place a
stake in the ground, and that stake is a tree-building approach.
Our reasoning for this boils down to two arguments. First,
we believe that tree-building approaches can in fact be made
quite simple, even if not as simple as swarming. For instance,
we have chosen an unstructured approach that exploits bloom
filters in the data path [19]. Second, as already discussed
we believe that fine-grained control over transmission load
is critical. We also believe that the multicast system should
be able to easily incorporate other performance criteria and
constraints such as tit-for-tat. Our intuition, as well as our
experience so far, suggests that a certain amount of fine-tuning
is required to consistently achieve a desired load balance, and

that this fine-tuning inevitably takes a certain amount of time
and overhead. Enforcing tit-for-tat constrains this fine-tuning
even further. The long-term parent-child relationships inherent
in trees allows us to amortize the cost of this fine-tuning over
a relatively long period of time.

By contrast, swarming, in its purest form, constantly re-
formulates what is exchanged between neighbors. Fine-tuning
load balance or establishing enforceable tit-for-tat in this en-
vironment seems problematic. This may seem an odd thing to
say given BitTorrent, whose success arguably derives from its
tit-for-tat capability. The difference, however, is that BitTorrent
is a file sharing protocol, not a real-time multicast protocol.
The issues of delay and sustainable load don’t come into play
with file sharing, thus giving BitTorrent a form of flexibility
that multicast doesn’t have.

This paper makes the following contributions:
1) We give a detailed description of Chunkyspread, a new

end-system multicast protocol that gives fine-grained
control over each member’s transmit load, reacts quickly
to membership changes, exhibits relatively low laten-
cies, scales well, and has low overhead. Furthermore,
Chunkyspread is designed such that it provides a frame-
work for adding new performance optimizations and
constraints, such as tit-for-tat.

2) We present a thorough simulation analysis of
Chunkyspread’s load control, latency optimization,
responsiveness, and overhead.

3) Using the MSPastry simulation of Splitstream, we
present an analysis of Splitstream for the same metrics,
and compare Splitstream with Chunkyspread.

4) Again through simulation, we present preliminary and
limited analysis of Chunkyspread for tit-for-tat, and for
the basic trade-off of buffer size, data redundancy, and
packet loss in the face of churn.

5) We present limited results of a complete implementation
of Chunkyspread running on Emulab. These results
validate our simulation results.

This paper is organized as follows. Section II describes our
approach in detail. Section III gives an overview of the existing
multi-tree approach, namely Splitstream. Section IV presents
evaluations of both Chunkyspread and Splitstream, V discusses
related work in our area while VI concludes the paper and
presents future directions to our work.

II. PROTOCOL DESCRIPTION

We start with a high-level overview of Chunkyspread,
followed by detailed descriptions of its various components.

Chunkyspread constructs a single-source multicast group
among a set of member end-systems. In other words, there
is one sender, (which we call thetrue source), and multiple
receivers. Support for multiple senders is simple, but we have
not provided this so far in our implemetation and do not dis-
cuss any further in this paper. Like Splitstream, the true source
transmits the multicast stream asM distinct slices. Each set
of these M slices is said to constitute ablock of stream.
Each slice is transmitted over a separate multicast tree. But,
quite unlike Splitstream, the trees are not necessarily node-
disjoint; as we explain in a later section, node-disjointness is
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a difficult property to achieve even in Splitstream especially
in heterogeneous environments.

Applications can access Chunkyspread through an API that
providesjoin(), quit(), send(), andreceive()primitives, typical
to any multicast protocol. Of particular interest is thejoin()
primitive that takes the following parameters: the group name,
the member type (true source or receiver), the target load,
and the maximum load. The two load parameters refer to
the transmit load of a member, and may be expressed by the
application as absolute throughput values (e.g. 100Kbps), or
as a percentage of the stream volume (e.g. 75% or 250%).
The maximum load is the absolute maximum volume that
the member1 will transmit at any time while the target load
is the volume that the member would like to be sending at
steady state. The expectation is that the steady state volume
sent by the application will be near the target load: in fact,
it may be slightly above or below. Of course, there should
be enough capacity in the system to transmit the stream. No
P2P multicast system can operate otherwise. Chunkyspread
internally expresses load in units of the number of slices, and
not bandwidth or percentage of stream volume. Chunkyspread
uses the following parameters: the number of slicesM, the
latency threshold, minimum node degreeMND, and minimum
load MinL. These might be set by the true source and com-
municated to all members. We will postpone the discussion
on the last two parameters to later in this section.

The default value for the number of slices that the stream is
split, is 162. The latency thresholdis a value that determines
how the system should weigh the trade-off between achieving
target load and minimizing latency. It is expressed as a
percentage of the target load. For instance, assume that a given
Chunkyspread application requests a target load of 100%, and
thatM = 16 and the latency threshold=10%. 10% above and
below 16 slices is 18 and 14 slices respectively after rounding
to the nearest slice. The lower edge of the range (14 slices in
this case) is called theLower Latency Threshold LLTwhile
the upper edge is called theUpper Latency Threshold ULT.

Given theLLT and theULT, load balancing and latency
reduction work as follows. As long as a given member node’s
load is outside this range, the system adjusts to move the load
within the range. If a node X’s load is below itsLLT, other
nodes will try to become a child of X, thus increasing X’s
load. If X’s load is above itsULT, existing children of X will
try to find other parents, thus decreasing X’s load. Once nodes’
loads are within theLLT-ULT range, they will no longer try
to improve load, but rather try to optimize latency. Whenever
a change of parent for a given slice improves latency by a
certain margin without causing the load to fall outside this
range, that change is made.

From this, we can see that a largerLLT-ULT range will
improve latency at the expense of nodes not getting as close
to their target load, while a smaller range has the opposite
effect.

To join a Chunkyspread multicast group, nodes must first

1Note that the term member refers to receiving members only, not the true
source. We use the terms member and node interchangeably.

2We experimented with more and less and this value gave a satisfactory
load control as well as an acceptable overhead.

ML

0

Overloaded

Underloaded

TL

ULT

LLT

Latency Interval 

Fig. 1. The load-latency thresholds

contact a rendezvous node at a well-known location (DNS
name or IP address). This rendezvous node must know of at
least one existing member of the multicast group. This style
of joining a P2P group is a fairly standard practice, and not
further discussed here.

Once a joining member node or the true source finds at least
one existing node, it participates in a continuously running
distributed algorithm called Swaplinks [5] that produces a
random graph among all nodes using simple weighted random
walks. This random neighbor graph is the underpinning of
Chunkyspread in much the same way as RanSub [17] is the un-
derpinning of Bullet. Swaplinks is able to statistically control
the node degree of each node, and Chunkyspread exploits this
to give nodes with higher target loads proportionally higher
node degrees. The idea here is that nodes with higher load
should have more neighbors to transmit slices, and nodes with
lower load should have proportionally fewer neighbors. With
network churn, the neighbor set of each node changes, but the
number of neighbors stays roughly the same. In addition to
these random neighbors, nodes may discover other nodes that
are nearby with respect to latency. These nodes may be added
to the neighbor set to improve latency.

This is where the system-wide parametersminimum node
degree MND, andminimum load MinLcome into play.MND
is the smallest node degree in the random graph that any
node may have. Its default value is 8, and as far as we know,
this value is universally appropriate. Since node degree is set
proportionally to the target load, the node degree of any nodes
is set to beND = min[8, (TL/MinL)*MND], whereTL is the
target load. As with ensuring that a given Chunkyspread group
has enough capacity, the application must also ensure that
MinL is set to an appropriate value: i.e., the expected smallest
capacity of a host in the system. It may also be possible to
setMinL dynamically, for instance by having nodes remember
the lowestTL they’ve seen in the network, and settingMinL
accordingly. We have not explored this possibility.

Unlike the receiving nodes, the true source discovers exactly
M (the number of slices) neighbors. The true source transmits
one slice to each of these neighbors. These neighbors become
the roots ofM multicast trees, and are called theslice sources.
If a slice source quits, then the true source discovers this and
selects a new random node as the slice source. Note that a
node may be a slice source for more than one slice.

A node, upon joining the random graph, tries to find a parent
for each slice without forming a loop. We avoid and detect
loops using bloom filters in the data packets. In selecting
parents, each node tries to maintain a set of constraints, as
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well as its performance goals and those of its neighbors.
The performance goals we have implemented and studied
in this paper are target and maximum load, and latency, as
described above. Other constraints may include tit-for-tat and
path-disjointness.

The basic process is straightforward. Each node lets its
neighbors know initially about itsLLT-ULT range and its max-
imum load (ML). Further, each node periodically advertises to
all of its neighbors the following: its per-slice bloom filters,
information about the arrival time of each slice, its current load
(i.e. the number of children it has). Additional performance
constraints may be added to this list. Each node takes this
information into consideration to determine which neighbors
would make appropriate parents for each slice. As conditions
change, for example, due to neighborhood alterations, load
or latency changes, nodes may select different neighbors as
parents for each slice. Note that as a result of this process, a
neighbor may be the child for some slices, and the parent for
others. Figure 1 shows the thresholds used by Chunkyspread
in fine tuning the load and latencies in the trees.

Given this overview, the following subsections provide
additional detail.

Loop avoidance and detection: Bloom filters offer a
spatially efficient method to detect and avoid loops, with a
tunable rate of false positives[19]. Each node selects a bloom
mask with an appropriate number of bits. A node, before
forwarding a data packet, adds its bloom mask to the bloom
filter that is tagged along with the data packet. Loops are
avoided by having nodes advertise the bloom filters they
receive for every slice to their neighbors. A given node does
not select a neighbor as a slice parent if the node itself appears
in the neighbor’s received bloom filter.

Loops are detected immediately by the first packet that
traverses the loop3. This packet can either be a data packet
sent by the application, or, in the absence of such packets, a
probe packet transmitted by a node to its children. The first
node to detect the looping packet drops it and immediately
selects a new parent.

Fine-tuning Load: As described above, each node peri-
odically checks to see if it has an overloaded parent (above
the parent’sULT), and an underloaded neighbor (whose load
is below LLT and satisfies the loop-free condition), and if so
attempts toswitchparents. Since multiple nodes are doing this
at the same time, multiple potential switches may be possible.
To encourage only the best such switches take place, each
node with a potential switch informs its overloaded parent of
the loads of all (or a subset of the most) underloaded potential
parents. The parent, which may receive similar information
from multiple children, picks the best candidate (the child’s
neighbor with the least load), and instructs the selected child to
make the switch. In our system, the overloaded parent usually
picks one amongst a set of good candidates so as to avoid
implosion of switch requests to such nodes.

The child then sends a switch message to the potential
parent which accepts or rejects the request depending on its

3A loop can happen in spite of maintaining a bloom filter. A node that is
not yet aware of a bloom filter change in its ancestors, can accept one of the
ancestors as its child.

load and its bloom filter for that slice (these parameters may
have changed from the time since the child had made the
request). If the switch request is accepted, the child informs
the previous parent of the switch completion.

The switch messages that the child sends to its future and the
current parent, identify the sequence number of a future data
packet at which the current parent should stop transmitting,
and the new parent should start. This minimizes packet loss
or duplication during the switch itself. The switch message
also contains the load parameters that were in force when the
decision to switch was made. If these parameters have changed
significantly in the interim, the switch is aborted.

It is important to note that, in the absence of churn and
switches due to fine-tuning latency, the algorithm for balancing
load will converge. Every load balancing switch results in a
node aboveULT reducing its load and a node belowLLT
increasing its load. Once within theLLT-ULT range, there
are no load-balancing switches that can push a node out of
that range, and no load-balancing switches take place between
nodes already in theLLT-ULT range. The period when the
load-balancing switches take place predominantly in a node is
called the load-phase of the algorithm.

Fine-tuning Latency: Once all of a node’s parents are
within theirLLT-ULT range, the node looks for parent switches
that can improve the latency with which it receives packets
while keeping loads within theLLT-ULTrange. This constitutes
the latency phase of our algorithm. We use a novel trick that
allows us to measure the relative latency with which each
neighbor receives each slice without requiring synchronized
clocks. Specifically, each node measures the delay at which
it receives packets from each slicerelative to other slices.
The idea is simple: a node close to a slice source in a tree
will receive packets for that slice relativelysoonerthan it will
receive comparable packets of other slices. If a node has a
parent that is receiving a given slicelate (relative to its other
slices), and a potential parent that is receiving the same slice
relatively early, then it should switch parents (as long as both
neighbors’ loads remain within range). Note that nodes only
make such switches if the expected improvement in latency
is beyond a certain threshold. The latency measure described
above should be calculated as a moving average to smooth out
transient changes due to congestion.

We have not used the overlay path length as a measure for
latency reduction for obvious reasons: small path lengths do
not necessarily yield low latencies, especially if the underlying
graph is locality-aware. A smaller path length does, however,
mean that the packet has to traverse fewer nodes which reduces
the chances of disconnections in the path. If this is desired,
path length can be used as a metric for parent selection (in
addition to or instead of latency).

Initial Tree Construction and Forced Parent Selection:
In Chunkyspread, new trees must be ”kick-started” when the
true source first starts the multicast stream or when a slice
source quits and the true source chooses a new one. Initial tree
construction involves a simple controlled flooding mechanism
similar to the one used in Chainsaw. Shortly after a node starts
receiving flooded packets for a given slice, it selects a parent
from among the neighbors from which it received the flooded
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packet and the parent accepts the node if its load has not
exceededML.

Apart from this, a node that joins a multicast session whose
trees have already been constructed through the flooding
mechanism described above, may have to periodically request
its neighbors to be parents for each of its slices until it finds
them. As a result of these cases, the parent’s load may exceed
the upper latency thresholdULT. Normally, the ongoing load
balancing process will bring the load back to or belowULT,
though on the rare occasion a node’s load may stay aboveULT
for a period of time due to the lack of availability of potential
parents for its children (though there may be underloaded
nodes elsewhere in the system).

There are three other cases where a node may request a
parent even though doing so pushes the parent’s load above its
ULT. All three are cases where the node is forced to change
its parent. This may happen when a loop is detected, when
the parent quits the group, and when the Swaplinks algorithm
changes the neighbor set as part of its normal operation[5].
While the first two is effectively a temporary disconnection
from the tree, the third is usually similar in effect of any
normal switch. Note that a node may only reject a request
to become a parent if doing so pushes its load aboveML,
or it does not satisfy the looping constraint (and any other if
needed).

III. OVERVIEW OF SPLITSTREAM

Since we make simulation comparisons of Chunkyspread
and Splitstream, a brief overview of Splitstream is provided
here. Splitstream builds multiple trees on top of Scribe, a
single-tree multicast protocol that constructs its tree using
the overlay routes of the underlying DHT (Pastry). However,
a node may not have enough capacity to serve all its in-
neighbors that want to join the multicast group. In order to
avoid nodes getting loaded beyond their capacities, Scribe
resorts to two other mechanisms, namely pushdown and
anycast operations. When a fully loaded Splitstream node is
requested to parent another node, it may preempt one child
node for another based on ID constraints [16]. The resulting
orphaned node recursively contacts the parent’s descendants
(called pushdown) to find a parent and if it still cannot find
one,anycaststo the group of nodes that have spare capacity.

Splitstream works well in homogeneous cases with usually
the Pastry neighbors serving the nodes. However, in hetero-
geneous environments, the pushdown and anycast operations
happen more often and this leads to frequent disconnections
of nodes: not only is the preempted node disconnected, but
so are its descendants in the tree. The two operations lead
to the formation of parent-child links that are apart from the
underlying Pastry neighbors. Hence, Splitstream starts losing
the benefits of cycle-free and route-convergence guarantees
offered by the underlying DHT as the number of non-Pastry
neighbors increases. In short, Splitstream prefers ID-based
constraints over load constraints when initially creating the
tree and this leads to further complications in the tree-building
protocol.

IV. RESULTS

We have performed a series of experiments on a packet-
level, event-driven simulator coded in C++. We have also
implemented the system and made some simple deployment
experiments on Emulab. The default number of member nodes
in each simulation is 5000. The Chunkyspread simulation
could operate with more, but the Splitstream simulator could
not, so we limit our simulations to 5000 members. To calculate
the latencies between members, we placed member nodes at
random edge locations on GT-ITM network topologies having
5050 routers [14], and set delays proportional to the distance
metric of the resulting topology. We assume that control
messages are sent over TCP, and so ignore message loss in
our simulations.

The random overlay is constructed using a packet-level trace
file generated offline by a Swaplinks simulator. The trace file
allows us to determine the delays associated with the neighbor
selection in Swaplinks. The trace file was used in order to
avoid running the random neighbor selection as part of the
simulator, hence making the simulations faster. To further scale
the simulations, the simulator does not explicitly generate data
packets.

Member nodes in the simulation receive all slices4 The
default number of slices in our simulations isM = 16. To
represent heterogeneity in upload, each node is assigned atotal
degreeselected randomly between 8 and 50. This represents a
moderate level of heterogeneity, representing say a population
of users behind dial-up modems and broadband, or behind
broadband and T1. The upload for each node is then calculated
as the number of slices per stream times the ratio of the
node’s degree to the average degree of the network. Each
node choosesML = (1.5)TL so that there is enough upload
capacity in the system to supply the full stream to all the
nodes.

We experiment with two settings for theLLT-ULT range.
One is when there is no latency range (i.e., ULT=LLT=TL),
resulting in no latency optimizations whatsoever. This is
denotedLat0. In the other, they are set to2(TL)/16slices from
TL (rounded up forULT, and down forLLT). In other words,
if TL=16, thenLLT=14 andULT=18. This is denotedLat2.

We chose a bloom filter size of 128 bits and a bloom mask
size of 6. This yields a false positive rate of 0.25% after
insertion of 10 keys. The heartbeat period is set to 1 second
and the timeout period to detect a node failure is set to 4
seconds. Parent switching decisions are made every second.

We compared Chunkyspread simulations with those of
Splitstream, for which we used a simulator coded in C# that
was provided to us by Miguel Castro. The simulations are
run over the same GT-ITM synthetic routing topology as
used in Chunkyspread simulations and have 16 slices. Unlike
Chunkyspread, Splitstream provides a single parameter, the
maximum load (SML). SML is analogous to Chunkyspread’s
ML in that the load never exceedsSML. It is unlike
Chunkyspread’sML, however, in that a Splitstream node may

4In principle, it would be possible for nodes to receive some fraction of
the slices and still be able to reproduce the stream, for instance, by using
Multiple Description Codes[21]. We neither implemented nor simulated this.
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easily settle on a sustained transmission rate ofSML, whereas
a Chunkyspread node may temporarily trasmit atML, but will
quickly move towards theLLT-ULT range. As a result, we need
to interpretSMLdifferently fromML, and an apples-to-apples
comparison is not really possible.

Because of this difference, in one case we treatSML to be
equivalent toML (denotedSS(1.5)). That is, we set it to be
50% above the number of slices (SML=1.5TL) where TL is
the target loads for the corresponding nodes in Chunkyspread.
In the other case, however, we try to treatSML as though
it were equivalent toULT. As such, we setSML=(1.2)TL to
compare withLat2 (denotedSS(1.2)). To compare withLat0,
we tried settingSML=TL, but Splitstream does not converge
in this case, so instead we useSML=(1.1)TL, denotedSS(1.1).
Splitstream has a time-out parameter that determines how long
a node should wait for the result of an anycast operation before
trying again. This parameter is set to 4 seconds. A value less
than this tended to result in too many unnecessary anycast
operations.

We have broadly considered four scenarios to evaluate
our protocol. Thestatic scenario is when all overlay nodes
are already part of the random graph and the tree building
starts from the first instant; this is useful in analyzing the
load-latency algorithm without any churn. Thejoin scenario
happens when there are 3750 overlay nodes already in the
network and the rest (1250 nodes) join at a rate of 50 joins
per second from the20th second by which time most of the
originally present nodes have reached a steady state. This
scenario is more realistic and can possibly be a live event
that attracts a large audience within a short span of time.
The bursty scenario is the pathological case when a certain
percentage of the nodes fail at thesame time instant; this is
helpful in analyzing the robustness of the protocol against node
failures. To understand the effect of more realistic scenarios
on our protocol, we simulated Chunkyspread undercontinuous
churn in which nodes join and leave at the same time. The
Swaplinks simulator did not have functionality provided for
locality-awareness. To determine the effect of adding locality
to the random graph, in addition to the random neighbors
selected by Swaplinks, some number of nearest neighbors were
added to the neighbor set of each Chunkyspread node only for
the simple static scenarios.

The static and the join scenariosWe first present a com-
parison study between Splitstream and Chunkyspread followed
by an evaluation on the convergence and the control overhead
of Chunkyspread.

1) Comparisons with Splitstream:In the first set of ex-
periments, we analyze the tradeoff between load balance and
latency in Chunkyspread and compare them with Splitstream.
We introduce the termexcess load percentageto quantify load
in the protocols. It is defined for every node as follows.

Excess Load Percentage =
Node′s Load − TL

TL
% (1)

This parameter quantifies how close nodes reach their target
load and hence the degree of fairness provided by the protocol.
A value of 0% implies that the node has perfectly reached
its TL, while a value of -100% means that the node has

zero load. The maximum value of this parameter is bound
by 100.(ML−TL)

TL % which is 50% in our Chunkyspread simu-
lations.

We use two parameters to evaluate the latencies: the maxi-
mum and the average overlay latencies over the slices obtained
at each node. The latencies are normalized with respect to the
median value of the network latencies between overlay nodes.
We chose not to use thenetwork stretch5 parameter to evaluate
our latencies. Network stretch may not give a true picture of
what the latencies are: for example, a high network stretch
could actually be due to high latency or could be due to a low
network latency with the true source.

Figure 2 shows the cumulative distribution function (cdf)
of the excess load percentage of nodes in Chunkyspread after
steady state was reached. We observe thatLat0 performs quite
well in both the static and the join scenarios: more than 80%
of the nodes reach exactly theirTL in the static scenario while
around 90% of the nodes reach theirTL in the join scenario.
With the latency phase added, Chunkyspread still performs
well: almost 90% of the nodes are within 25% of theirTL
values in theLat2 case in both the join and static scenarios.
The maximum fraction of excess load that any node reaches
is about 20%. Apart from the good load balance, we observe
comparable performances of the join and the static cases which
indicates that the protocol can function at high join rates as
good as in cases without any churn at all. The heavy tails
observed on the negative side of the x axis in these curves are
because of imperfect configurations of node connectivity.

Figure 3 shows the cdf of the maximum and average overlay
latencies normalized with the median of the network latencies
between nodes in the network. The x-axis is shown in log
scale. The cdfs have been plotted for theLat0 and theLat2
cases. We first observe thatLat0 yields very high latencies in
both the static and the join scenarios, which is expected since
Lat0 is completely ’latency-blind’; this can be seen from the
maximum latencies ofLat0 in both the static and the join
cases. We observe significant improvements in latencies with
Lat2. The 90th percentile values of the maximum latencies
in both the static and the join cases are around 7 and 9
respectively while the same for the average latencies are
around 4 and 6 respectively. The difference between the
maximum and the minimum latency values gives us an idea
of how long it takes to receive all the slices for the same
block of the stream and hence the size of the application
buffer required to counter losses while waiting for the full
block. We note that the latency for any slice experienced by
a node is bounded below by its network latency to the true
source. Then, for example, if we assume the median network
latency were around 50 milliseconds, then a 500 millisecond
buffer is necessary to successfully play out the streamin the
steady stateeven if losses due to factors such as churn or
congestion are not considered. We also found that 90% of
the nodes experience average latencies of at most twice the
minimum overlay path length between the true source and the
nodes forLat2 which again indicates its effectiveness.

5A common term used in the literature that is defined as the ratio of the
measured overlay latency to the network latency between the true source and
the node
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Let us now see how Splitstream fares with respect to load
and latency. Figure 4 shows the cdfs of the excess load
percentage values for SS(1.1), SS(1.2) and SS(1.5) for each of
the join and static cases. As expected, a considerable number
of nodes get saturated to theirSML values and the percentage
of such saturated nodes increases asSML

TL values decrease. For
example, the percentage is 35% for SS(1.5), 60% for SS(1.2)
and 85% for SS(1.1) in the join cases. This is in stark contrast
to the excess load percentage distribution that Chunkyspread’s
Lat2 and Lat0 yielded. We also find that the join case has
a worse load balance than the static case, since the newly
joined nodes are not provided enough opportunities to supply
the slice unless an orphaned node or another newly joined
node requests for a slice. In Chunkyspread, the load balance
algorithm ensures the newly joined nodes also participate in
supplying the slices.

The graph in Figure 5 shows cdfs of the average and
maximum latencies in the static and the join cases. We note
that both the average and the maximum latencies showed
very marginal improvements asSML

TL was increased with
both the static and the join scenarios performing comparably.
The comparable performances show that curbing the spare
capacities do not have a significant effect on the latencies.
We have presented only SS(1.5) here for clarity. The90th

percentile values of the average latencies for both the static
and the join scenarios are close to 8; this is greater than
Chunkyspread’sLat2 values but still quite comparable. How-
ever, the maximum latencies show really high values. SS(1.5)
yields90th percentile values of around 20 in both the static and
the join scenarios; it also displays a heavy tail, almost reaching
30. These are in fact comparable with (static) Chunkyspread’s
Lat0 values. The reason for the high maximum latencies is

that with heterogeneity, more (random) non-DHT parent-child
links are formed which are not necessarily latency-optimized
unlike their DHT counterparts. The huge difference between
the average and the maximum latencies requires an application
buffer of considerable size and this buffer is to just counter
losses due to delays in the slice arrivals for the same stream.
In the example that we had considered for Chunkyspread
above, Splitstream nodes may require a 1.5-second buffer in
the steady state just to counter losses due to late arrival of
slices.

We observe a similar trend with the maximum hop
length (from the true source) at each overlay node. While
Chunkyspread’sLat2 yields a90th percentile hop lengths of
around 8 in both the join scenarios, Splitstream’s values are as
high as 30. This reflects poor resilience in Splitstream’s trees.

We define theinitial startup time of a node as the time taken
since its joining the multicast session, for it to start receiving
the entire stream. While this quantity is clearly defined in
Chunkyspread, it is not in Splitstream, since a node that has
started to receive its stream from all its trees can potentially
get orphaned from one or more trees. Hence, we include all
the time durations during which nodes are disconnected from
the tree due to such preemptions, into the initial startup time.
Note that the disconnection due to orphaning a node will lead
to disconnections of its descendants in that tree, if any.

Figure 6 shows the cdf of the initial startup time for
Chunkyspread. We find that the90th percentile value in the
join scenario is about 8 seconds while it is 7 seconds in the
static scenario. The reason for the difference is the fact that
the static scenario is run with locality which enables faster tree
construction. In the graph,Red 3denotes the case where the
stream is encoded with 3 redundant slices, hence it is enough
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if the node gets any 13 out of the 16 slices to obtain the full
stream. We find that in the static case, the90th percentile value
for Red 3is less than 6 seconds.

Figure 7 shows the initial startup times of Splitstream.
As claimed in [11], the system performs well in the static
case with even SS(1.1) yielding a90th percentile value of
around 8 seconds which is comparable with Chunkyspread’s
values. Expectedly, as spare capacities decrease, performance
worsens. SS(1.5) performs comparable to Chunkyspread in the
join scenario, with a90th percentile value of around 9 seconds.
But with decreasingML

TL values, the startup time shoots up to
17 and 26 seconds for SS(1.2) and SS(1.1) respectively; this
is in a good contrast to the static case. As nodes join, many
of the existing nodes have already been saturated to theirSML
values and the newly joined nodes result in more anycast and
pushdown operations. We note that with Chunkyspread, the
load balance algorithm ensures that the spare capacities are
distributed across nodes even when nodes are joining at a high
rate.

2) Time to convergence:We now assess the convergence
properties of our algorithm. For our protocol, the convergence
time is the time taken till the last switch is successfully
completed. We noted for every node the last time instant that
it had completed a switch in the system. We observed that
Lat0 converged quite well in both the static (18 seconds) and
the join (70 seconds) scenarios. We also saw that whileLat2
converged within 60 seconds in the static scenario, it took
around 120 seconds to converge in the join scenario, which
was 75 seconds after the last join took place. In contrast,
Splitstream reaches a steady state as soon as the last orphan
node gets a parent. Hence its convergence time is actually the
startup time that we discussed earlier.

Figure 8 shows the excess load percentage per node as the
simulation proceeds in the case ofLat2 for the join scenario.
The maximum and the95th percentile curves peak toML
during the first 10 seconds of the simulation after which the
algorithm brings both the curves down to within the target
upload interval in the next few seconds. The second peak
arises after nodes start joining and stays till 10 seconds after
the last node had joined the network. Though there are nodes
saturated to theirML values (50%) during this time period, the
95th percentile and the median curves are close to the target
loads (30% and 10% respectively) which show that there is
a considerable number of nodes with spare capacity that can
serve a newly joined node quite fast.

Figure 9 shows the normalized average latency over the
slices of nodes as the simulation proceeds in the static sce-
nario. We observe that the load phase of the algorithm shoots
the latency up initially, but then, the latency phase of the
algorithm steadily brings it down. The peaks in the95th

percentile curves of the average and the maximum latency
values show that Chunkyspread may need to maintain an
application buffer of a considerable size for the temporary
period of time when the load phase of the algorithm is more
dominant than the latency phase; such cases happen after there
is churn or after the true source kickstarts the multicast session.

3) Control Overhead:Next, we evaluate the the control
overhead incurred by nodes in the network due to switch

messages. Figure 10 shows the number of switch messages
sent per node per second over the simulation time of 200
seconds whenLat2 is run in the join scenario. The peaks
correspond to the time when nodes are joining the system
and also after the true source kickstarts the multicast session.
Though the dominant peak value of the maximum number of
switch messages sent by any node is 60, the peak values of the
95th percentile and the median values of the switch messages
are about 20 and 8 messages per second per node respectively.
This indicates a modest overhead amongst Chunkyspread
nodes even at a high join rate. Apart from this, we observed
that around 50% of the switch messages sent during the joining
phase account for failed switch requests.

Bursty failures: To quantify data losses due to node
failures, we measure the time during which nodes are dis-
connected from one or more trees. We measure therecovery
duration for each node, which is defined as the time duration
calculated from the instant nodesdetect failures of their
neighbors till they get connected back to the trees. It is to be
noted that during the recovery period, nodes are disconnected
from the tree and so are its descendants. Hence, while a node
is trying to recover from a parent’s failure, this duration that
its descendants are disconnected also get accounted to the
descendants’ recovery duration (since an ancestor is trying to
recover on their behalf).

Figure 11 shows the cdf of the recovery duration when 10%
of the 5000 nodes fail at the30th instant, at various levels
of slice redundancy. We find that both the protocols recover
quite fast with90th percentile values of about 5 seconds and
8 seconds inLat2, and SS(1.2) respectively.Lat2 performs
better thanLat0 primarily because the former yields lesser hop
lengths which, as mentioned before, leads to better resilience.
On adding redundant slices, we find a drastic improvement
in the recovery times. For example, with a redundancy of 3
slices, more than 50% of the Chunkyspread nodes are not dis-
connected at all and the maximum recovery duration is around
2.5 seconds. The maximum control overhead experienced by
any Chunkyspread node is 42 messages per second per node
just after failures were detected while the median value is just
12 messages per second per node during this time.

Splitstream performs worse than Chunkyspread when 50%
of the nodes fail at the same instant. Figure 12 shows the
recovery duration in such a scenario. WithLat2, the 90th

percentile recovery time is 10 seconds while it is at least
15 seconds for Splitstream. When redundancy is added, there
is a good improvement in the recovery duration: the95th

percentile value for Chunkyspread is just 5 seconds in the
case when 3 redundant slices are added. This just goes to
show Splitstream’s inability to handle a huge failure burst. The
problem, we suspect, is the high hop lengths that Splitstream
incur, which affects its robustness to node failures.

Effect of other parameters: We tried to see the effect of
altering parameters such as the number of slices (beyond 16
slices), degree of heterogeneity and the number of neighbors
on the protocol. We largely observed that these parametric
changes do not result in significant changes to the protocol
performance. More details can be found in [26]. We have also
made preliminary simulation experiments on applying tit-for-
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tat constraints in the protocol [26].

Churn scenario: We have so far considered isolated node
joins and failures in our simulations. As we had already noted,
a more realistic churn scenario would be to consider one in
which nodes join and leave at the same time. The scenario
that we have studied is similar to the one tested in [16]. We
consider Poisson arrivals at 10 joins per second, and pareto
stay times with a minimum duration of 90 seconds and a mean
of 300 seconds (which implies the pareto parameterα =
10
7 ). Pareto is a heavy-tailed distribution which is typical of

the behavior of users in such environments[15]. The churn
happens for the first 1000 seconds after which the remaining
live nodes are allowed to settle down for the next 200 seconds.

The disconnection time intervals are noted at every node
for every slice; these are the time intervals when the node is
disconnected from the slice tree due to an ancestor’s failure.
After obtaining the disconnection durations at every slice,
we simulated an application playback buffer offline for each
slice at every node to calculate the duration when there is

no playback. This parameter is called the playback disruption
duration. Figure 13 shows the cdf of the total playback
disruption duration at every slice of all nodes for various
buffer sizes. With no buffer at all (which corresponds to the 0
second buffer size), we find that the90th percentile value is
20 seconds and this value decreases steadily as the buffer size
is increased. For example, with a 5 second buffer size 85%
of the slices are not disrupted at all and the90th percentile
disruption duration is 1 second. From this graph, we infer
that most of the disruptions are of short duration and can be
recovered using a buffer of modest sizes. The heavy tail in the
graph was due to one particular slice of a node for which it was
not able to find a parent as the bloom filter condition yielded
false positives for the parents which could have supplied the
slice. An obvious solution to prevent this from happening is
to either request for more neighbors or join all over again.

To better show this fact, we observe the cdfs of the
percentage of disruption duration over the lifetime of nodes
in the system, for various levels of redundancy in Figure 14.
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For example, at a redundancy of 1 slice, a node is said to
be disrupted if its playback buffers are disrupted for at least
two slices. With no buffer at all (not shown), almost 60% of
the nodes are disrupted at the first slice for more than 60%
of the time. But as more redundant slices are added, we find
that the disruption percentage decreases. In particular, with a
redundancy of 4 slices, 90% of the nodes are not disconnected
at all. Further, with a 5-second buffer, we find that no node
(barring the heavy tail) is disrupted for more than 10% of its
lifetime, as can be observed in Figure 14. From these graphs,
we observe the tradeoff between the buffer size, redundancy
and the playback disruption duration, which is fundamental to
any streaming protocol.

Emulation: We have also made small deployment experi-
ments in Emulab and have tested our protocol on a cluster of
machines. The system was tested on 200 nodes emulated on
a set of 50 machines, with the delays obtained from a 100-
router transit-stub graph. A 100 Kbps stream was split into
eight 12.5 Kbps streams and sent across multiple trees. The
stream was multicast by the true source after it received its
first set of 8 neighbors. As a first step, we have used hop
length as the latency reduction parameter6. The system was
run for 20 minutes and a snapshot of the data was taken at the
10th minute. we chose a moderate level of heterogeneity with
the degree distributed uniformly between 8 and 40 neighbors.
Figures 15 and 16 show the load distributions and hop lengths
for theLat0, Lat1 and theLat2 cases. The trends in the graphs
are quite similar to the ones that we had obtained in our
simulations.

V. RELATED WORK

There has been considerable work in the past on single-tree
multicast protocols[8], [7], [22], [10], [23]. Since none of these
effectively support heterogeneity, we restrict our discussion of
related work to multi-path multicast protocols.

Bullet [9] splits the stream into multiple blocks and uses a
single tree on top of a mesh. Nodes receive only a subset of
the blocks from their parents in the tree, the remaining blocks
retrieved from other nodes randomly chosen using a distributed
algorithm calledRanSub. Bullet however incurs a high control
overhead due to this scheme of orthogonally retrieving packets.

Chainsaw [12] and Coolstreaming [2] are swarming-style
data-driven multicast protocols that do away with trees to im-
prove resilience. Each overlay node (proactively or reactively)
notifies neighbors of data arrivals and employs a pull-based
approach to retrieve blocks. Though Coolstreaming has been
used in the Internet for TV broadcasts, it is still not known
completely how these protocols fare in heterogeneous and non-
infrastructural settings.

[15] assessed the feasibility of overlay multicast protocols
supporting large-scale live streaming applications by analyzing
real-world Akamai traces; using these traces along with online
and offline bandwidth measurements, they concluded that
real-world hosts indeed have enough bandwidth to support
themselves in most cases. [3] describes a probabilistic scheme

6Swaplinks does not retrieve locality-aware neighbors, hence hop length
can still be a reasonable parameter.

to improve resilience in tree-based multicast, according to
which each node apart from the usual tree forwarding, proba-
bilistically forwards data to a random node in the overlay. This
scheme, however can incur a high overhead in heterogeneous
settings. [16] points out the limitations in the applicability of
Scribe in heterogeneous environments especially with respect
to its anycast and pushdown operations. [4] uses trace-based
simulations to show that placing nodes with desirable prop-
erties higher up in the trees can improve the performance of
tree-based multicast protocols.

VI. CONCLUSION AND FUTURE WORK

Chunkyspread represents a new point in the P2P multicast
design space: one that has the efficiencies associated with trees
and the simplicity and scalability associated with unstructured
networks. At the foundation of Chunkyspread is the ability
to build random sparse overlay graphs with tight statistical
control over heterogeneous node degrees. This foundation,
combined with a simple loop-detection mechanism based
on bloom filters, provides a framework whereby different
constraints and optimizations can be emphasized, depending
on the application.

To date, we have focused on large-scale, non-interactive
applications like the broadcast of a sporting event, at a range
of volumes (text, audio, or video formats). Here, control
over load is more important than latency, though in this
paper we show nevertheless that significant improvements in
latency can be made if load control is relaxed slightly. We
also show apples-to-apples comparisons with Splitstream, and
find that Chunkyspread performs better across the board, and
significantly better with respect to control over load.

While preliminary results with severe churn are promising,
more work needs to be done to understand the trade-offs
between packet loss, packet delay (buffering), and stream
volume (packet coding schemes). This understanding needs to
be developed for both tree-based and for treeless approaches
such as Chainsaw. Our intuition is that neither approach in
its pure form will perform really well, and that some form of
hybrid approach is called for.

Preliminary results with tit-for-tat also show promise,
though once again there is much work still to be done. We
hope to explore a range of tit-for-tat mechanisms, including
both social and irrational behavior. Tit-for-tat also needs to be
examined for both tree-based and treeless approaches.

While we believe that gaining a better understanding of
severe churn and tit-for-tat represent the most fruitful ar-
eas of research, we still need to consider ways to improve
Chunkyspread. For instance, we feel that Chunkyspread as
designed, has too many parameters that need to be set. Is
it possible for Chunkyspread nodes to self-tune based on
observations within the overlay, possibly achieving parameter-
less operation? Also, while the Chunkyspread framework does
provide something of a generic constraints-and-optimizations
framework, we still find ourselves selecting specific parameters
for specific optimizations. Can we generalize the framework
further, for instance allowing application developers to simply
supply high-level policies about various criteria of interest?
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Beyond this, we would like to explore different types
of applications and environments. These include low-latency
applications, reliable delivery, and pub-sub applications where
nodes may join a large number of groups.
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