
END-TO-END TECHNIQUES FOR NETWORK

RESOURCE MANAGEMENT

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Manpreet Singh

August 2006

c© 2006 Manpreet Singh

ALL RIGHTS RESERVED

END-TO-END TECHNIQUES FOR NETWORK RESOURCE MANAGEMENT

Manpreet Singh, Ph.D.

Cornell University 2006

Network-based applications have evolved from simple web browsing to complex

commercial transactions. This evolution has made a clear case for network QoS

mechanisms, since the delays seen on the network often form the major component

of an end-user’s perceived delay. The key challenge in providing network QoS is

the distributed and decentralized nature of the network resource.

In this thesis, we have attempted to develop techniques for exposing the network

as a managed resource to applications without requiring any explicit support from

the network elements like routers, gateways, ISPs, etc. As part of this broad

initiative, we have developed two key components: MPAT (used to control the

network from end-hosts), and Netmapper (used to monitor the network from end-

hosts).

MPAT is the first truly scalable algorithm for providing differential services to

a group of TCP flows that share the same bottleneck link. The challenge is to hold

the cumulative fair share of all flows, while being fair to the background traffic.

Our system can give more bandwidth to one TCP flow at the expense of lower

bandwidth to another flow, in such a way that the sum total of the bandwidth that

the two flows get is same as the fair share of two TCP flows. Using experiments

on the real Internet, we show that our system can share congestion state across

more than 100 TCP flows with throughput differentials of 95:1.

We also developed a network mapping and annotation service (called Netmap-

per) for distributed applications sensitive to bandwidth availability, latency, or

loss. The system exposes internal network state (e.g. bandwidth available at links,

location of bottleneck links) using only end-to-end measurements that are TCP-

friendly. Our novel scheme to identify the location of bottleneck links improves

upon existing methods for bottleneck identification, which detect incorrect bot-

tleneck link if the bottleneck is due to transient network congestion. We built

Netmapper, and show, using experiments on the real Internet, that the system

consumes very small amount of bandwidth, and converges even with dynamically

varying network state.

BIOGRAPHICAL SKETCH

Manpreet Singh was born on Nov 18, 1978 in Delhi, India where he spent all

of his formative years. In his mother tongue Punjabi, Manpreet means one who

is loved by everyone from heart. He attended the Indian Institute of Technology,

Delhi from 1996 to 2001 and graduated with an Integrated Masters of Technology

in Mathematics and Computing. He came to Cornell University in the Fall of

2001 and began his doctoral studies in Computer Science. He pursued his research

in distributed systems and networking under the guidance of Prof. Paul Francis

and Dr. Prashant Pradhan. He also pursued a minor in Business and Finance

at Johnson Graduate School of Management. He received his Masters degree

in Computer Science in May 2004 and a Doctoral degree in Computer Science

in August 2006. During his stay at Cornell, he interned at IBM T. J. Watson

Research and Microsoft Research and spent very productive and enjoyable summers

at Hawthorne, NY and Seattle, WA respectively. Manpreet’s research interests

include distributed systems, networking, databases. He loves to build challenging

systems that can make an impact on the real world.

iii

To Mumma, Papa, Veer, Bhabhi, Taarini and Simran

iv

ACKNOWLEDGEMENTS

“Guru Gobind dou khare, kake lagun pain ?

Balihari Guru apane, jin Govind diyo bataye.”

Lord Kabir was once faced in a delusion as to whose feet to touch first when

both his Guru (teacher) and God were standing before him at the same time. He

decided to choose the Guru, who had shown him the path to the God (meaning

Guru is superior to God).

First and foremost, my deep appreciation goes to my advisors Prof. Paul

Francis and Dr. Prashant Pradhan, who have guided me through my research

work. I started the work on this thesis during my internship at IBM T.J. Watson

in summer 2003, where I worked under the guidance of Ms. Donna Dillenberger and

Dr. Prashant Pradhan (Networking Software and Services group). The preliminary

results were very promising, and I decided to continue this work as part of my PhD

thesis.

I have also benefited a lot from the guidance of Ken Birman and Robbert van

Renesse during the early phase of my PhD. I extend my gratitude to my other

committee members Zygmunt Haas and Alan Demers, who provided helpful input

on this thesis. Special thanks to Sambit Sahu from IBM and Jitu Padhye from

Microsoft for being great mentors, and always guiding me. I also acknowledge my

other colleagues at IBM (Debanjan Saha, Alan Bivens, Anees Shaikh, Eric Nahum,

Joshua Knight) and Microsoft (Alec Wolman, Brain Zill, Paramvir Bahl) with

whom I have interacted a lot during the summer internships. I also got valuable

guidance from my seniors Indranil, Rama, Ranveer, Abhinandan and Rohit.

I feel very fortunate to have great friends like Pallavi, Chandar, Anisa, Pranav,

Tanmoy, Mou, Aseem, Saurabh, Shobhit, Reshmi, Ashok, Mahesh, Sudhakar, Kar-

v

tik, Sagnik, Charanjit, Asita, Giri, Lakshmi, Ganesh, Hitesh, Saikat, Joy, Vivek,

Vidya who made my stay at Cornell a memorable period for the whole of life.

I would like to dedicate this thesis to my family, whose support over the years

has enabled me to pursue a career path directed from the core of my heart. They

have always encouraged and guided me to independence, never trying to limit

my aspirations. I am forever indebted to them for their understanding, endless

patience and encouragement when it was most required. I shall always consider

myself extremely fortunate to have had the opportunity - all due to them - to

discover the seductive powers lying in the pursuit of knowledge.

And most of all, thanks to God, in whom nothing is impossible.

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Need for an end-to-end control . 1
1.2 Thesis overview . 3

1.2.1 Bandwidth apportionment amongst TCP flows 4
1.2.2 Monitoring the network from end-hosts 5
1.2.3 Locating internet bottlenecks 6

1.3 Relevance of this thesis to IBM . 7
1.4 Thesis outline . 8

2 MPAT: Aggregate TCP Congestion Management as a Building
Block for Internet QoS 10
2.1 Introduction . 10
2.2 Existing Approaches . 13
2.3 QoS through aggregate congestion management 21

2.3.1 An illustration using two flows 21
2.3.2 The general case . 26
2.3.3 The MPAT Algorithm . 27
2.3.4 Implementation . 32

2.4 Evaluation . 33
2.4.1 Scalability . 34
2.4.2 Performance differentiation 34
2.4.3 Fairness to background flows 35
2.4.4 Interaction between multiple MPAT flows 36
2.4.5 Adaptation to changing performance requirements 38
2.4.6 Reduced variance . 42
2.4.7 Adaptation to Transient Congestion 43
2.4.8 Bursty background traffic 45

2.5 Conclusions . 46

3 Netmapper: A network mapping and annotation service for dis-
tributed applications 52
3.1 Monitoring the network . 52
3.2 Motivation and related work . 54
3.3 Our contributions . 56
3.4 Network annotation algorithms . 58

3.4.1 Basic idea behind annotating a link 59
3.4.2 Naive algorithm . 59
3.4.3 An improved algorithm with bottleneck identification 63
3.4.4 The general case . 66
3.4.5 Use of Dynamic Programming 75
3.4.6 Choosing the minimum number of flows 75

vii

3.4.7 Identifying bottleneck link with simultaneous flows 79
3.4.8 Estimating bandwidth for multiple TCP flows 81

3.5 Experimental Results . 82
3.5.1 Variability in bandwidth . 85
3.5.2 Shift in location of bottleneck link 87
3.5.3 Fast converging algorithm and consistent graph 90
3.5.4 Consistency across time . 97
3.5.5 Reduction in the amount of probe traffic 101

3.6 Conclusions . 105

4 Tneck: A tool to identify bottlenecks 108
4.1 Bottleneck Identification . 108

4.1.1 TCP-based bottleneck estimation 109
4.1.2 Need for parallel traceroute 112

4.2 Experimental results . 113
4.2.1 Bottleneck due to transient congestion 114
4.2.2 Effect on background traffic 115
4.2.3 The role of TCP and parallel traceroute 115
4.2.4 Limitations of Tneck . 116

4.3 Conclusions . 117

5 Conclusions and future work 118

Bibliography 122

viii

LIST OF TABLES

2.1 Table showing the bandwidth obtained by two mulTCP flows run-
ning simultaneously through the same bottleneck link over Emulab
network. 24

2.2 Table showing the bandwidth obtained by TFRC(+mulTCP) con-
nections along with standard TCP connection. 25

2.3 Symbols and their meanings . 28
2.4 Multiple MPAT aggregates running simultaneously cooperate with

each other (day time). 39
2.5 Multiple MPAT aggregates running simultaneously cooperate with

each other (night-time). 40

3.1 Information about various nodes used for the Netmapper experiments. 83
3.2 List of nodes used in various experiments of Netmapper. 103
3.3 Comparison of the probes for various experiments of Netmapper

versus Naive algorithm. 104
3.4 Comparison for the breakup of the total number of probes for var-

ious experiments using Netmapper and Naive algorithms. 106

ix

LIST OF FIGURES

2.1 This figure shows the scalability of mulTCP scheme. 18
2.2 This figure shows the number of Fast Retransmits incurred by

mulTCP scheme over a period of five minutes. 19
2.3 As N increases, due to multiple losses within the same window, fast

retransmit does not trigger, causing a large number of timeouts, and
hence limiting the scalability of the mulTCP scheme. 20

2.4 As N increases, variance of a mulTCP flow keeps increasing. . . . 21
2.5 Mean bandwidth and standard deviation obtained by a standard

TCP flow running in parallel with a mulTCP flow. 22
2.6 As N increases, the total link utilization for mulTCP decreases. . . 23
2.7 MPAT can apportion bandwidth among its flows, irrespective of

the total bandwidth available. 36
2.8 MPAT can hold the total fair share while apportioning bandwidth

in the desired ratio. 37
2.9 Competing MPAT aggregates cooperate with each other. 38
2.10 mulTCP scheme exhibits very high variance in bandwidth. 41
2.11 MPAT exhibits much lower variance due to sharing of losses. . . . 42
2.12 MPAT is friendly to the background traffic. 43
2.13 This figure shows the how absolute bandwidth of 3 MPAT flows

adapts itself very quickly to dynamically changing performance re-
quirements. 44

2.14 This figure shows the how relative bandwidth of 3 MPAT flows
adapts itself very quickly to dynamically changing performance re-
quirements. 45

2.15 This figure shows how the total bandwidth achieved by an MPAT
aggregate (N=16) adapts itself with additional UDP traffic intro-
duced at t=120 and then removed at t=240. 46

2.16 A deeper look into Figure 2.15 at t=120 to see the effect of intro-
ducing additonal UDP traffic. 47

2.17 A deeper look into Figure 2.15 at t=240 to see the effect of removing
additonal UDP traffic. 48

2.18 This figure shows how the total bandwidth achieved by an MPAT
aggregate (N=16) adapts itself with additional TCP traffic intro-
duced at t=120 and then removed at t=240. 49

2.19 A deeper look into Figure 2.18 at t=120 to see the effect of intro-
ducing additonal TCP traffic. 50

2.20 A deeper look into Figure 2.18 at t=120 to see the effect of intro-
ducing additonal TCP traffic. 51

3.1 Example topology used to show how the improved algorithm with
bottleneck identification reduces the amount of probe traffic needed
to annotate a graph, as compared to a naive scheme. 60

x

3.2 Annotation steps with naive algorithm for the topology in Fig-
ure 3.1. The annotation requires a total of seven steps, three of
which drive multiple probe flows simultaneously into the network. 61

3.3 Annotation steps for improved algorithm with bottleneck identifi-
cation for the topology in Figure 3.1. The annotation requires only
four steps (down from seven steps taken by the naive scheme), each
requiring only one probe flow. 65

3.4 Example showing that when we identify a link as the bottleneck,
we annotate each edge on all paths of which the link is a part, up
to the point where another path is incident on this path. 67

3.5 Topology and list of end-to-end paths used to illustrate the im-
proved algorithm using bottleneck identification for the general
case. 67

3.6 First six steps for the pre-processing stage of the improved algo-
rithm with bottleneck identification on the topology shown in Fig-
ure 3.5. Continued to Figure 3.7 68

3.7 Steps 7 and 8 for the pre-processing stage of the improved algorithm
with bottleneck identification on the topology shown in Figure 3.5.
Continued from Figure 3.6 . 69

3.8 Examples showing the subgraph spanned by paths through a given
edge. This is used to calculate the Maxflow through the edge. . . 72

3.9 Example showing how we add two new nodes in the subgraph, in
order to calculate the max-flow edge e6. 73

3.10 Partial steps for the recursive stage of the improved algorithm with
bottleneck identification on the topology shown in Figure 3.5. . . 76

3.11 Pre-processing stage for the improved annotation algorithm with
bottleneck identification (contd. to Figure 3.12) 77

3.12 Recursive stage for the improved annotation algorithm with bot-
tleneck identification (contd. from Figure 3.11) 78

3.13 Example showing how to identify bottleneck link with simultaneous
flows. 80

3.14 CDF for average length of Change-Free Region amongst 72 paths
on the Internet for bandwidth variation. 86

3.15 CDF for median length of Change-Free Region amongst 72 paths
on the Internet for bandwidth variation. 87

3.16 CDF for maximum length of Change-Free Region amongst 72 paths
on the Internet for bandwidth variation. 88

3.17 CDF for average length of Change-Free Region for shift in location
of bottleneck link along a path. 89

3.18 CDF for median length of Change-Free Region for shift in location
of bottleneck link along a path. 90

3.19 CDF for maximum length of Change-Free Region for shift in loca-
tion of bottleneck link along a path. 91

xi

3.20 Final annotated graph output by Netmapper for four source nodes
(around West Coast) and eight destination nodes (around East
Coast). 92

3.21 Final annotated graph output by Netmapper for single source node
and eight destination nodes. 93

3.22 Final annotated graph output by Naive algorithm for single source
node and eight destination nodes. 94

3.23 Validating the accuracy (relative change) of bandwidth annotations
output by our improved algorithm (using bottleneck identification),
with reference to the naive scheme. 95

3.24 Validating the accuracy (absolute difference) of bandwidth annota-
tions output by our improved algorithm (using bottleneck identifi-
cation), with reference to the naive scheme. 96

3.25 CDF for the relative change in bandwidth annotation of a link at
two different times. 99

3.26 CDF for the difference in bandwidth annotation of a link at two
different times. 100

3.27 Probability that an edge is identified bottleneck in one graph, but
not another as a function of the time interval between runs. . . . 102

4.1 TCP-based identification of the bottleneck link along a path. . . . 110
4.2 This figure shows how using standard traceroute may not provide

accurate information about the queues being built at the bottleneck
link. 111

4.3 This figure shows how the modified (parallel) traceroute can cap-
ture link latencies very quickly and frequently. 112

4.4 Emulab topology used to show that existing tools detect an incor-
rect bottleneck link if the bottleneck is due to transient congestion. 114

xii

Chapter 1

Introduction
It is hard to find an example of a commercial application or service today that

does not use the Internet or some other form of underlying network. Yet we are

equally unlikely to find an example of an application that has explicit mechanisms

to manage its network performance and availability. The apparent reason is that

network performance and availability is acceptable most of the time. Yet service

and content providers constantly seek (and in some cases, are willing to pay for)

solutions that essentially provide different ways of bypassing network bottlenecks

and failures. Well-studied examples of such solutions are content distribution net-

works (e.g., Akamai [59]), application-level overlays [5, 8, 38, 47], ISP selection

(e.g., multi-homing [60]) and peer-to-peer communication. Several measurement

studies have also shown that network bottlenecks are not confined to specific parts

of the network, (e.g. access links [53]), and hence are not localized problems that

can be fixed easily. There is also no easy or cost efficient way to simply scale

or a-priori plan the network capacity between all of an application’s endpoints,

and businesses already pay significant fixed bandwidth costs to data-centers and

network service providers, just for access to the network.

1.1 Need for an end-to-end control

We assert that even though network performance and availability is a real problem,

and is a key determinant of an application’s end-to-end user experience, most

applications today do not have explicit management of network performance. The

primary reason being that network performance management has traditionally

1

2

been thought of as a problem of providing QoS capabilities in the network, which

remains an unrealized vision. A number of schemes like RSVP [14], Intserv [15],

Diffserv [16], etc. have been proposed in the past. Technically there is little

wrong with these schemes; they can be made to work. Nevertheless none of these

have been deployed on a large scale in practice. The exact reason for this is not

easy to pin down, but ultimately the problem stems from the fact that too many

networking players need to come together at once to provide effective network QoS.

Both the providers of end equipment and the providers of networking equipment

need to agree on a common set of protocols. The ISPs have to deploy the protocols,

and application developers have to build applications that use the protocols. In

the end, no business model was compelling enough to bring all the players together

at the same time.

We envision that network performance management is more of a constrained re-

source allocation/planning problem, where an application must intelligently “pack”

its traffic demand within the capacity available on the network paths it may use.

These paths are in turn constrained by IP routing between the application’s end-

points, and the knobs the application may use to pack its traffic over these paths

are end-to-end techniques like server selection [59], ISP selection [60] and overlay

routing [5, 38].

Moreover, it is simply too complex, and in some cases not possible for appli-

cations to plan and exercise these controls by themselves. Exercising end-to-end

controls for performance management requires an application to understand the

underlying network structure, monitor it, and map its performance requirements

to the setting of an end-to-end control knob.

Further, on a longer time scale, application traffic demands should be used to

3

scale and evolve the network in an informed manner. This is possible by making

application traffic demand patterns available to network providers for long-term

capacity planning. This inherent division of responsibility where the application

maps its traffic onto the available capacity over a short term, and network providers

make informed capacity scaling decisions over a long term, represents a viable

approach to the network performance management problem.

The broad goal of this thesis is to find ways to provide network QoS without

requiring changes to the network itself. In other words, we wish to find ways to

reallocate network resources from one user or application to another without any

explicit support from the network. If this can be done, then it should be possible

to reduce the number of players that must sync up to provide QoS. For instance, a

single organization might be able to build a QoS-capable network overlaid on top

of the “best-effort” Internet and offer “QISP” (Quality Internet Service Provider)

services. Or, the computing systems that comprise a Web Services infrastructure

in an Enterprise might be able to obtain differential services from the network they

connect to.

The key challenge in providing QoS without taking the support of network

is to do it in a TCP-friendly way (i.e., the performance of other traffic in the

network should not get affected). Otherwise, the network becomes unstable, and

the proposed system cannot be deployed on a large scale.

1.2 Thesis overview

The broad goal of this thesis is to expose the network as a managed resource to

applications without requiring any explicit support from the network elements like

routers, gateways, ISPs, etc. As part of this broad initiative, we have developed

4

two key components: MPAT (used to control the network from end-hosts), and

Netmapper (used to monitor the network from end-hosts).

1.2.1 Bandwidth apportionment amongst TCP flows

MPAT is the first truly scalable algorithm for providing differential services to a

group of TCP flows that share the same bottleneck link. The challenge is to hold

the cumulative fair share of all flows, while being fair to the background traffic.

Our system can give more bandwidth to one TCP flow at the expense of lower

bandwidth to another flow, in such a way that the sum total of the bandwidth

that the two flows get is same as the fair share of two TCP flows. The reason this

problem is hard is that the fair share of a TCP flow keeps changing dynamically

with time, and the end-hosts do not have an explicit indication of the amount of

cross-traffic.

It is well-known that the use of TCP by all network flows entitles each flow to

a fair share of its bottleneck link bandwidth. Thus, the flows originating from a

server that share a bottleneck link are entitled to a total fair share of that link’s

bandwidth. We let the server (while sitting at an end-point) aggregate congestion

information of all these flows, and apportion the total fair share among these flows

in accordance with their performance requirements, while also “holding” the fair

share of network bandwidth that the server is entitled to. A flow requiring higher

bandwidth than each flow’s fair share is allowed to send packets through another

flow’s open congestion window. Correspondingly, when ACKs are received on a

flow, we update the congestion window through which that packet was sent.

Using experiments on the real Internet, we have demonstrated that MPAT can

be used to share congestion state across more than 100 TCP flows with throughput

5

differentials of 95:1. In other words, MPAT can give 95 times more bandwidth to

one TCP flow over another without hurting the background traffic. This is up

to five times better than differentials achievable by known techniques. This sug-

gests that MPAT is an appropriate candidate technology for broader overlay QoS

services, both because MPAT provides the requisite differentiation and scalabil-

ity, and because MPAT can co-exist with other TCP flows and with other MPAT

aggregates.

1.2.2 Monitoring the network from end-hosts

In Chapter 3, we describe a network mapping and annotation service for distributed

applications sensitive to bandwidth availability, latency, or loss. Applications are

expected to use this service as a guide to plan their network resource usage and

fault response. Netmapper takes as input the set of end-points for a distributed

application, and maps out the network connectivity between them using layer-3

traceroute. The key distinction between Netmapper and other network distance

services is that it annotates the edges of this graph with available bandwidth using

only end-to end probes (TCP and traceroute). Available bandwidth is a key perfor-

mance metric for many commercial bandwidth-sensitive applications like streaming

media, video/voice conferencing, and shared whiteboard applications (like Webex)

with a large customer base. Network latency measurements do not suffice for such

applications since path sharing directly impacts available bandwidth. Hence, a

bandwidth annotation service must expose the location of the bottleneck as well

as the underlying topology (which determines bottleneck sharing) to the appli-

cation. Netmapper deploys end-to-end TCP probes between the endpoints of an

application to estimate the available bandwidth on various network paths. It then

6

identifies the bottleneck links on these paths using a novel TCP-friendly bottleneck

identification technique, and annotates the bottleneck link with the probed avail-

able bandwidth. Netmapper eventually annotates all the edges whose annotation

is theoretically possible given the network topology and the available probe points.

The end-to-end probes are intelligently planned so that the annotation requires a

minimum number of probes.

We have built Netmapper, and tested it out on the real Internet. Our experience

deploying Netmapper shows that the system consumes a very small amount of

bandwidth, and converges fast even with dynamically varying network state. Both

variability in available bandwidth and shift in location of bottleneck link are slow

enough that they allow our system to converge, and maintain a consistent graph.

1.2.3 Locating internet bottlenecks

We have built a novel scheme to identify the location of bottlenecks in a network for

a distributed networked application. The system improves upon existing methods

[53, 39] for bottleneck identification. Specific contributions over existing schemes

include identifying bottlenecks with little to no impact on the regular traffic, and

matching TCP’s notion of bottleneck (as opposed to raw bandwidth). We show

using experiments (under controlled settings of the Emulab environment [56]) that

existing bottleneck identification schemes detect an incorrect bottleneck link if the

bottleneck is due to transient congestion. We used the bottleneck identification

tool as a key primitive in the Netmapper network annotation algorithm described

above. The applicability of the tool is broad enough that end-users can use it to

estimate the performance of the network path to a given destination, while ISPs

may use it to quickly locate network problems, or to guide traffic engineering both

7

at the interdomain and intradomain level.

1.3 Relevance of this thesis to IBM

A killer application of this thesis work for the enterprise network is in workload

management for e-business. An enterprise network typically consists of front-end

appliance servers, middle-tier web servers, and the backend database servers. These

servers are geographically distributed across different parts of the world. Each

request from a customer needs to be processed by multiple servers. So, there are

large numbers of TCP connections running simultaneously between these servers

at any given instant of time. Some of these TCP flows serve requests for “gold”

customers, while others are for “best-effort” customers.

We use eWLM group at IBM as an example. eWLM is developing a workload

manager that controls various resources in order to provide end-to-end response

time guarantees to each customer. eWLM currently manages various resources like

CPU, memory, inbound network accept queues, etc. As long as eWLM’s current

resources are local to the server, mechanisms to control them can also be locally

created in servers. However, the network is a resource in which contention occurs

outside the server, and at some point that the server cannot control. Network

delays are often a significant component of the overall delay seen by a request

[1, 2, 25, 38, 53], and hence we need to develop mechanisms to manage them.

The MPAT system developed as part of this thesis exposes the network as a

managed resource to workload manager, hence, it can be used to provide a knob

to the workload manager for controlling the delays that occur inside the network

(without requiring any cooperation from the network elements like routers, ISPs,

etc). This will provide faster service to gold customers over first-time visitors. The

8

approach can, in general, be applied to any system that needs to provide some

kind of service differentiation inside the network without involving the routers or

other network elements. This work will become increasingly significant as IBM

deploys more service-level agreements for B2B web services.

Because IBM employees frequently download software in the process of de-

veloping, engineering, testing and marketing products, IBM must ensure that its

employees utilize the most efficient methods for downloading large files. Many

employees use IBM Standard Software Installer to download and install software

using file transfer protocol and dedicated servers throughout the IBM worldwide

intranet. However, download times for software installation, demos, videos and

other types of large files take up hundreds of thousands of employee hours each

year. To reduce this time, improve productivity and use existing resources more

efficiently, IBM IntraGrid, a testbed for Grid services and solutions, is developing

solutions to download large digital files faster than before. The Netmapper system

developed as part of this thesis can be used to monitor the network, and hence

manage network delays for IBM Intra-grid. Netmapper builds a map of the IP

network from the perspective of a set of hosts using the network, and annotates

each link with available bandwidth using end-to-end techniques. The idea here

is that a smart scheduler could use this annotated network map to maximize its

performance and minimize network load. We are planning to integrate Netmapper

in server selection for the download Grid.

1.4 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we describe

MPAT, an end-to-end approach for bandwidth apportionment. In Chapter 3, we

9

provide a network mapping and annotation service for distributed applications.

Chapter 4 describes a novel technique to identify the location of bottlenecks in

networks. We conclude in Chapter 5 by describing a set of applications we are

interfacing our system with.

Chapter 2

MPAT: Aggregate TCP Congestion

Management as a Building Block for

Internet QoS

2.1 Introduction

After the heady optimism of the vision of a universal QoS in the form of RSVP

[14, 15], we have come to understand that realistically QoS can only be deployed

piecemeal. Rather than a single ubiquitous QoS architecture, what is evolving is an

arsenal of tools that can be opportunistically deployed where benefits can clearly

be demonstrated. These benefits are most clear where a bottleneck resource (e.g. a

single bottleneck link) can be identified, there is an identifiable set of user or traffic

classes that would benefit from arbitration of that bottleneck, and the organization

with a vested interest in providing QoS has control over the bottleneck resource.

One example is an enterprise network using IP telephony over the Internet[33],

where the bottleneck is the access link between the enterprise locations and the

Internet. Differentiation between voice and non-voice traffic provides clear benefits,

and this traffic can be identified by a router, say by looking for RTP packets. The

enterprise has control over the routers on either end of the access link, either

directly or by coordinating with its ISP. Another common example is in wireless

networking, either 802.11 or cellular, where there may be different types of traffic

or different classes of users (gold, silver, bronze customers, or emergency services)

vying for scarce radio spectrum. Here, QoS mechanisms may be implemented at

10

11

several layers in the protocol stack (for instance, [11]), and the wireless network

provider controls these protocols.

In these diverse examples, a single organization (enterprise, wireless network

provider) was able to apply a QoS tool (router queuing, radio access control) to

an identifiable bottleneck resource (enterprise access link, radio spectrum). These

examples represent the “low hanging fruit”, if you will, of QoS tools—those cases

where the opportunity and motivation are clear. What about the more difficult

scenarios where there is an underlying network of some complexity, and no single

organization has the motivation or wherewithal to implement QoS services in that

network?

An interesting approach to create a network with controllable properties, on

top of an unstructured Internet, is the overlay network. Overlay networks have

been produced for reducing network delays [22], improving network resilience [5],

and providing QoS to network applications like games [8]. The basic building block

for providing QoS over an overlay network is the ability to provide QoS over each

logical overlay link. Flows between the two ends of an overlay link share the same

underlying network path, thus sharing the bottleneck link. Hence mechanisms to

arbitrate the bottleneck link bandwidth to provide QoS can be deployed at the

ends of the overlay link.

Note that the question of whether overlay networks is a valid approach to pro-

viding QoS is an open question, and this chapter does not answer that question.

In particular, if the overlay changes the characteristics of the individual TCP flows

that pass through it, and if multiple overlays try to “compete” under these cir-

cumstances, then the overlays may lose their effectiveness, or worse may destabilize

the Internet. What is clear, however, is that if we are to make progress in under-

12

standing what can legitimately be achieved with overlays, we need to understand

the characteristics of a single hop in the overlay. More specifically, in order to co-

exist with Internet traffic (and with other similar overlays), such a QoS mechanism

should satisfy certain properties. We state these properties below, assuming there

are N flows belonging to an overlay using a logical overlay link.

• Fairness: The overlay flows should not steal bandwidth away from other

flows (overlay or non-overlay) sharing the same bottleneck. In particular,

other TCP or TCP-friendly flows using that bottleneck link should get the

same bandwidth as they would with N standard TCP flows using the overlay.

This requirement ensures that the overlay’s QoS mechanism is “transparent”

to the background flows.

• Utilization: The overlay flows should be able to hold the fair share of the

bottleneck link bandwidth entitled to them. In particular, the total band-

width available to the overlay’s flows should be equal to the total fair share

of N TCP flows. This ensures that the overlay flows do not lose bandwidth

to the background traffic.

• Scalability: The above properties should hold for large values of N .

The key technical contribution of this chapter is an aggregate TCP congestion

management scheme that scales well by the number of flows in the aggregate

(we have demonstrated up to N=100), that provides large differentiation ratios

(we have demonstrated up to 95:1), and that does so fairly. We call the scheme

MPAT, for Multi-Probe Aggregate TCP, because it maintains an active AIMD

loop (i.e. a “probe”) for every TCP flow in the aggregate. This can be contrasted

with mulTCP[3], which tries to obtain N fair shares by running a single, more

13

aggresive AIMD loop. A secondary contribution of this chapter is to provide more

experimental data and insights on the existing schemes (primarily mulTCP). Even

though the scalability and stability of mulTCP is known to be limited, we feel it

is important to provide this data for two reasons. First, contrasting MPAT with

mulTCP allows us to clarify and verify our intuitions as to why MPAT performs

well. Second, mulTCP, in spite of its stated limitations, is nevertheless still being

proposed for overlay QoS [8] and so can be considered the incumbant. Thus it is

important to make more direct comparisons between MPAT and mulTCP.

The rest of this chapter is organized as follows. Section 2.2 discusses the existing

techniques to provide QoS to TCP or TFRC flows over a single path or bottleneck

link, and demonstrates that they fall short of meeting the desirable criteria for such

a QoS mechanism. Section 2.3 presents the proposed aggregate TCP approach

in detail. Section 2.4 presents a detailed performance evaluation of MPAT using

experiments in controlled settings as well as over the Internet, and compares MPAT

with proposed techniques. Section 2.5 concludes the chapter, detailing our key

findings.

2.2 Existing Approaches

One class of approaches (e.g. pTCP [31]) that provide network QoS in a best-

effort network, try to open extra simultaneous TCP connections, instead of a single

connection, to give more bandwidth to an application. By contrast, MPAT does

not create extra TCP connections. It tries to provide relative QoS among only

the TCP flows that the applications normally create. The resulting behavior of

schemes like pTCP is clearly not desirable, and in fact CM[2] proposes to explicitly

forbid this kind of behavior by using one active AIMD loop (i.e. one congestion

14

“probe”) for multiple flows between two given end-points. Further, this approach

does not scale to higher performance ratios between flows, since a large number of

flows active at a bottleneck lead to significant unfairness in TCP [37]. Of course,

the scalability of both MPAT and pTCP is limited by the delay-bandwidth product

of the aggregated flows. But pTCP would reach this limit much before MPAT.

As an example, we later show in Section 2.4.5 (using experiments on the real

Internet) that MPAT can give 95 times more bandwidth to one application over

another using only three TCP connections. On the other hand, schemes like pTCP

would need to open 95 parallel TCP connections for this.

The idea of providing performance differentiation between TCP flows sharing

a path has been discussed in the context of aggregate congestion management

approaches [9, 6] like TCP Session [1, 4], Congestion Manager (CM) [2, 10], TCP

Trunking [21], A TCP trunk is a TCP connection between two routers, which is

shared by multiple TCP flows active between the two routers. The end-to-end flows

terminate at the end points of the trunk, where data from all the flows is buffered.

The bandwidth available on the trunk is the bandwidth available on the TCP

trunk, which evolves using the standard TCP AIMD[29, 30] algorithm. The data

from various TCP flows can then be sent over the trunk according to any chosen

scheduling policy. CM[2] is a congestion management scheme that provides unified

congestion management to TCP as well as non-TCP flows, decouples congestion

control from reliability, and ensures that end-points of a connection cannot hog

more than their fair share of network bandwidth by opening multiple connections

between them. CM defines an aggregate (termed “macroflow”) as a set of TCP

flows between a source and a destination host (termed “microflows”). Both CM

and TCP Session keep one AIMD bandwidth estimation loop active per aggregate,

15

and hence the bandwidth available to the aggregate is that entitled to one TCP

flow. Microflows can share this bandwidth according to any chosen scheduling

policy. Thus, in case of a logical overlay link, flows between the endpoints of the

link could be aggregated into a CM macroflow or a TCP trunk, and performance

differentiation could be provided between them.

However, by virtue of using one AIMD loop per trunk or per CM macroflow,

both TCP Session and CM, in their current form, do not satisfy the utilization

requirement. If N flows constitute an aggregate (trunk or macroflow), and the

aggregate shares a bottleneck link with M background flows, then with equal

sharing within the aggregate, the share of the bottleneck link bandwidth received

by the aggregate’s flows is 1/(N(M+1)). If the N flows compete for bandwidth like

standard TCP flows, each of the flows would be entitled to a share of 1/(M + N).

This has also been mentioned in Chapter 7 of [1].

The above problem could be addressed by using a variant of the AIMD loop that

acts like N TCP flows, as proposed in [1]. When a TCP flow has a bottleneck link

where the loss probability p characterizes the congestion state at the link, TCP’s

AIMD algorithm allocates the flow a bandwidth given by B = K/(RTT ∗ sqrt(p))

[19], where K is proportional to
√

α
β
∗ (1 − β

2
). To achieve performance differen-

tiation among these flows, one possible approach is to play with the parameters

α and β in the AIMD algorithm. This is the approach used by mulTCP [3]. The

idea behind mulTCP is that one flow should be able to get N times more band-

width than a standard TCP flow by choosing α = N/2 and β = 1/2N . Thus, the

congestion window increases by N (as opposed to 1) when a congestion window

worth of packets is successfully acknowledged. Losses leading to fast retransmit

cause the window to be cut by (1 - β), and losses leading to a timeout cut down

16

the window to 1. Analytically, a mulTCP flow achieves a bandwidth N times that

of a standard TCP flow experiencing the same loss rate. It is thus possible for

CM or TCP trunking to use one mulTCP AIMD loop per aggregate to address the

utilization problem. An equivalent TFRC [23] variant of mulTCP exists, where

the throughput equation of mulTCP can be used in conjunction with a TFRC rate

adjustment loop. A TFRC variant of mulTCP is used by OverQoS[8] to estimate

the bandwidth entitled to N TCP flows on a logical overlay link.

Note however, that the loss process induced by a single mulTCP flow is quite

different from that generated by N independent TCP flows. Hence, it is not clear if

a mulTCP flow, especially for large N , would continue to behave like N TCP flows

in the network. Also note that the ‘amplitude’ of mulTCP’s AIMD control loop

increases with N , leading to an increasingly unstable controller as N grows. This is

in contrast to N control loops of N independent TCP flows, where each has a small

amplitude and thus tends to be more stable. This also has implications for a TFRC

variant of mulTCP, since for large N , the analytically derived bandwidth equation

of mulTCP may not represent the actual bandwidth consumed by a mulTCP flow.

Further, it has been noted in [3] that a mulTCP flow cannot act exactly like N

independent TCP flows because timeout losses force the entire mulTCP window

to be cut down to 1, whereas with N independent TCP flows, such a loss would

cut down only one TCP connection’s window to 1. In [3], it is shown that this

limits the value of N for which a mulTCP flow can achieve as much bandwidth as

N independent TCP flows (the recommended value for N is 4 [7]).

The above discussion indicates that QoS approaches based on mulTCP may not

meet the fairness and utilization requirements for large N , in turn violating the

scalability requirement. In the remaining part of this section, we experimentally

17

investigate this hypothesis.

We conducted experiments on the Emulab network testbed at University of

Utah [56] over an emulated link of bandwidth 90Mbps and RTT 50msec. We ran

a mulTCP flow along with 10 standard TCP flows through the same bottleneck

link. To create a mulTCP connection equivalent to N TCP flows, we set the

additive increase factor (α) and multiplicative decrease factor (β) such that α
β

=

N2 [36, 35, 31]. We performed all our experiments with two sets of parameters: α

= N (i.e. β = 1/N), and α =
√

N (i.e. β = N−1.5). We used a TCP-SACK based

implementation of mulTCP.

Figure 2.1 shows how the achieved bandwidth ratio between mulTCP and a

standard background TCP flow varies with N . Figures 2.2 and 2.3 show the corre-

sponding number of fast retransmits and timeouts seen on the mulTCP flow. Note

that for large N , due to multiple losses within the same window, fast retransmit

does not trigger, causing a large number of timeout-induced window resets. The

result is that mulTCP’s achieved bandwidth ratio flattens out for N > 20 for α =

√
N , and actually falls for α = N .

The 45−degree line in figure 2.1 represents the ideal achieved bandwidth ratio

for a given choice of N . Note that for small values of N , mulTCP’s achieved

bandwidth ratio lies above this graph, indicating that mulTCP is more aggressive

than N TCP flows to the background TCP flow.

Figure 2.4 shows how the mean and variance in the bandwidth achieved by

mulTCP varies with N . Note that the variance increases with N , till it eventually

flattens out together with the bandwidth. This increased variance is a manifesta-

tion of the increasing instability of the modified AIMD controller. Note that even

though mulTCP’s achieved bandwidth flattens out for large N , figure 2.5 shows

18

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

A
ch

ie
ve

d
pe

rf
or

m
an

ce
 d

iff
er

en
tia

l

Target performance differential (N)

Scalability of mulTCP scheme

alpha = sqrt(N)
alpha = N

ideal

Figure 2.1: This figure shows the scalability of mulTCP scheme.

that the background TCP flow is also not able to get the remaining bandwidth,

as its throughput also flattens out. The result, as shown in figure 2.6, is a loss of

utilization of the bottleneck link. The reason for this behavior is also an increased

number of timeouts both for mulTCP and for background TCP traffic, induced by

mulTCP’s aggressive control loop for large N .

To analyse the behavior of multiple virtual overlay links using mulTCP, we

measured the bandwidth distribution achieved between two mulTCP flows with

N = N1 and N = N2. As shown in table 2.1, the achieved bandwidths are not

in the ratio N1/N2. This suggests that the interaction between two control loops,

both with large amplitudes, does not lead to the ideal bandwidth distribution. The

fairness of the bandwidth distribution tends to be much better with identical con-

trol loops, as used by standard TCP flows. Moreover, the utilization of bottleneck

19

 0

 400

 800

 1200

 1600

 2000

 0 20 40 60 80 100

N
um

be
r

of
 F

as
t R

et
ra

ns
m

its

Target performance differential (N)

Number of Fast Retransmits incurred by mulTCP
 over a period of 5 min

alpha = sqrt(N)
alpha = N

Figure 2.2: This figure shows the number of Fast Retransmits incurred by mulTCP

scheme over a period of five minutes.

link (given by B1 + B2) keeps decreasing with larger values of N1 and N2.

Finally, we study the behavior of a TFRC flow using mulTCP, to verify if the

slower responsiveness and averaging effects of TFRC mitigate some of mulTCP’s

problems for large N . In this experiment, 5 mulTCP TFRC flows run simultane-

ously with 5 background TCP flows. Each mulTCP TFRC flow uses the mulTCP

bandwidth equation, and a measurement of the loss probability, to adjust the

sending rate in response to loss events. Table 2.2 shows the average bandwidths

achieved by a mulTCP flow compared to a TCP flow and their ratio, for varying N .

Note that the ratio grows much faster than N , which indicates that the mulTCP

TFRC flows aggressively take bandwidth away from background TCP flows as N

increases.

20

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

N
um

be
r

of
 T

im
eo

ut
s

Target performance differential (N)

Number of Timeouts incurred by mulTCP
 over a period of 5 min

alpha = sqrt(N)
alpha = N

Figure 2.3: As N increases, due to multiple losses within the same window, fast

retransmit does not trigger, causing a large number of timeouts, and hence limiting

the scalability of the mulTCP scheme.

The above analysis shows that beyond small values of N , mulTCP does not

provide an adequate solution to the problem of creating an N-TCP abstraction. In

particular, QoS schemes based on mulTCP do not satisfy the scalability require-

ment. In the next section, we present an aggregate congestion management scheme

that satisfies the fairness, utilization as well as scalability requirements mentioned

in section 2.1.

21

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (

K
B

ps
)

Target performance differential (N)

Mean Bandwidth and Standard Deviation
 obtained by mulTCP as a function of N

Mean (alpha = sqrt(N))
Standard Deviation (alpha = sqrt(N)

Figure 2.4: As N increases, variance of a mulTCP flow keeps increasing.

2.3 QoS through aggregate congestion management

2.3.1 An illustration using two flows

Before we discuss how our MPAT scheme exactly works, let us start with a simple

example. Consider the following scenario: we have two TCP flows running simul-

taneously between the same end-hosts, thus sharing the same bottleneck link and

experiencing similar delay. For ease of illustration, we refer to the first flow as the

red flow and the second flow as the blue flow. 1

Our goal is to provide performance differentation among these two flows under

the following constraints: Firstly, we should not affect other background flows

1Please note that in contrast to schemes like pTCP, we are not intentionally
opening these flows in order to hog more network bandwidth. These are the flows
that applications normally create.

22

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (

K
B

ps
)

Target performance differential (N)

Mean Bandwidth and Standard Deviation
 obtained by a standard TCP flow

 running in parallel with a mulTCP flow

Mean (alpha = sqrt(N))
Standard Deviation (alpha = sqrt(N))

Figure 2.5: Mean bandwidth and standard deviation obtained by a standard TCP

flow running in parallel with a mulTCP flow.

running in the network at the same time (in terms of bandwidth, delay, loss rate,

etc). This is referred to as the fairness property in Section 2.1. Secondly, the sum

total of bandwidth acquired by the red flow and the blue flow should be equal to

the fair share of two standard TCP flows going through the same bottleneck link

at the same time. This is referred to as the utilization property in Section 2.1. The

reason this problem is hard is that the fair share of a TCP flow keeps changing

dynamically with time, depending upon the number of background flows going

through the bottleneck link, and the end-hosts do not have an explicit indication

of the amount of such cross-traffic.

Suppose we want to apportion the available bandwidth 2 among these two flows

2In this example, by ’available bandwidth’, we refer to the fair share of two

23

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

Li
nk

 U
til

iz
at

io
n

(K
B

ps
)

Target performance differential (N)

Total utilization of the bottleneck link
 keeps decreasing as we increase N

alpha = sqrt(N)
alpha = N

Figure 2.6: As N increases, the total link utilization for mulTCP decreases.

in the ratio 4:1. Assume that the congestion windows for each of the two flows is

5. Thus, the network allows us to send 10 packets every Round Trip Time (RTT).

In the case of standard TCP, we would have sent 5 red packets and 5 blue packets

every RTT. But the network does not really care how many red and blue packets

we actually send, as long as the total number of red and blue packets is 10. If

we aggregate the congestion information of both these flows at the end-host (the

sender side), we can transmit 8 red packets and 2 blue packets every RTT, thus

giving four times more bandwidth to the red flow over the blue flow. This would

also make sure that we do not hurt the background traffic at all.

The above step allows us to split the instantaneous bandwidth among the two

flows in the ratio 4:1. But will we be able to achieve that over a long period of

TCP flows.

24

Table 2.1: Table showing the bandwidth obtained by two mulTCP flows running

simultaneously through the same bottleneck link over Emulab network.

N1 N2 B1 B2 B1/B2

(KBps) (KBps)

4 1 3990 498 8.01

9 1 5519 392 14.07

16 1 6091 307 19.84

25 1 5907 280 21.09

9 4 4876 1795 2.72

16 4 5156 1320 3.91

16 9 4340 2833 1.53

25 4 5596 1171 4.78

25 9 4082 2618 1.56

25 16 2925 2264 1.29

time? The answer is NO, and the reason is as follows. Since the probability of each

packet getting dropped in the network is the same, the red flow would experience

a higher loss rate than the blue flow. This would force the red flow to cut down

its congestion window more often than the blue flow. In the long run, the total

bandwidth acquired by the two flows would be much less than the fair share of

two TCP flows, thus violating the utilization property.

To overcome this problem, the fundamental invariant that we try to maintain

at all times is that the loss rate experienced by each congestion window should be

the same as in standard TCP. Standard TCP sends data packets, and receives

25

Table 2.2: Table showing the bandwidth obtained by TFRC(+mulTCP) connec-

tions along with standard TCP connection.

N TFRC TCP TFRC/TCP

(KBps) (KBps)

5 1857 350 5.3

7 2078 166 12.5

8 2153 101 21.3

9 2196 63 34.8

10 2223 37 60

20 2230 22 101

30 2247 13 172

40 2254 7 322

congestion signals (either explicitly in terms of ECN, or implicitly in terms of

duplicate acks, fast retransmissions, timeouts, etc) back from the receiver. If we

had used standard TCP for each of the two flows, both the red window and the

blue window would (on an average) experience equal number of congestion signals.

In order to maintain this property, we first separate reliability from congestion

control, as proposed in CM[2]. Next, we decouple the actual growth of congestion

window from the identity of the flow whose packets advance the congestion window.

In the above example, when we get 8 red acks, we send three of these to the blue

congestion window. In other words, we assign 5 acks to the red window, and 5 to the

blue window (3 red + 2 blue). This ensures that each of the two congestion windows

experiences similar loss rate, even though we can split the available bandwidth in

26

the ratio 4:1. Please note that since we separate reliability from congestion control,

it is the red flow that is responsible to maintain the reliability of each of the 8 red

packets (in terms of buffering, retransmission, etc). When we get 8 red acks, we

separate each of them into ’reliability ack’ and ’congestion signal’. For the purpose

of reliability, we send each of the 8 red acks to the red flow. But for the purpose of

congestion control, we apply only 5 of these red acks to the red window, and apply

rest 3 to the blue window. This ensures that the sum total of bandwidth acquired

by both the flows is equal to the fair share of two TCP flows, thus satisfying the

utilization property.

In practice, the actual algorithm is much more complex than this, and we

formally describe it in Section 2.3.3.

2.3.2 The general case

A source of N TCP flows sharing a bottleneck link is entitled to a total share of

the link bandwidth given by the sum of the fair shares of each of the N TCP flows.

The source should thus be able to arbitrate this total share among the N flows

according to their performance requirements. Each TCP connection opened by

an application has a corresponding control loop which uses the AIMD algorithm

to adjust its congestion window in response to feedback from the network. The

key idea behind our aggregate congestion management scheme is to keep as many

AIMD control loops active in the network as the number of TCP flows in the

aggregate, but to decouple application flows from their congestion windows. We

call this scheme MPAT, for Multi-Probe Aggregate TCP, to emphasize the fact

that we keep N AIMD control loops (i.e. “probes”) active.

Thus, in an aggregate of N flows, the N application data streams are decoupled

27

from the N congestion windows that are each evolving using the AIMD algorithm.

The N AIMD control loops allow us to hold the fair share of N TCP flows, while

an additional step of mapping application packets to congestion windows allows us

to arbitrate the aggregate bandwidth to provide the desired QoS. Since the identity

of packets driving a given AIMD loop is irrelevant, this remapping is transparent

to the network. Thus, the aggregate appears as N standard TCP flows to the

network, providing appropriate fairness to any background TCP or TFRC traffic.

Please note that this is different from all the existing schemes[2, 3, 21], which keep

only one bandwidth estimation probe active in the network, and hence suffer from

problems of scalability and fairness.

The following section describes MPAT in detail.

2.3.3 The MPAT Algorithm

Consider N TCP connections running simultaneously as part of an aggregate,

sharing the same bottleneck link in the network. Let these flows be labeled as

fi, 1 ≤ i ≤ N . Let Ci represent the congestion window of flow fi. We introduce

another variable Ai which denotes the MPAT window for flow fi. Let C denote the

aggregate congestion window, given by the sum of the congestion windows of all

flows. Let xi denote the fraction of the total bandwidth allocated to flow fi, such

that
∑

i xi = 1. The shares xi are derived from the performance requirement of

the flows fi, and could change dynamically with time.

Note that C represents the product of the bandwidth available to the aggregate

and the round-trip delay (RTT) on the logical overlay link. While TCP would

allocate C among the N flows roughly equally in every RTT, MPAT would allocate

C in accordance with the performance requirements of the flows. In other words,

28

Ai = xi ∗ C (2.1)

The actual number of packets that flow fi is allowed to send every RTT is

min(Ai, Wi), where Wi is the minimum of the sender and receiver window sizes for

flow fi. With standard TCP, flow fi would be allowed to send min(Ci, Wi) packets

every RTT.

Table 2.3: Symbols and their meanings

Ci Congestion Window for flow i

Ai MPAT Window for flow i

C
∑

i Ci

xi Bandwidth share of flow i

Wi Minimum of sender and receiver

window size for flow i

Each connection i maintains a mapping of the sequence numbers of its packets

to the identifier of the congestion window through which the packets were sent.

We refer to this mapping as seqno2idi(). This mapping is maintained as a list

ordered by increasing sequence number. For each congestion window i, we also

maintain the inverse of this mapping, i.e. the list of packet sequence numbers sent

through this window. We refer to this mapping as id2seqnoi(). This mapping is

also maintained as a list ordered by increasing timestamps (i.e., the time at which

the packet was sent). We use a variable per congestion window that keeps track

of the number of outstanding packets that have been sent through that window.

29

Transmit Processing

Whenever connection fi sends out a packet with sequence number s, it tries to

find a connection (say j) with open congestion window. Congestion window j is

said to be open if the number of outstanding packets sent through it is less than

Cj. Note that the packets sent using congestion window j could belong to fj , or to

any other flow in the aggregate. In practice, j could be the same as i. Connection

i then stores the mapping of seqno s to congestion window j in seqno2idi(). We

also store the inverse mapping in id2seqnoj()

Receive Processing

Our implementation is based on TCP-SACK. When we receive an acknowledge-

ment for a packet with sequence number s, belonging to flow fi, we use the mapping

seqno2idi() to find the congestion window j through which the packet was sent.

We then look at the inverse mapping id2seqnoj() to find if the ack received is

in sequence or not. We then apply the standard AIMD algorithm to congestion

window j. Thus, if the ack is in sequence, we linearly increase Cj to Cj + 1/Cj. If

it is a duplicate ack (in case of SACK, this would be the ack for a later packet in

sequence), we enter the fast retransmit phase, halving Cj if we get three duplicate

acks (in case of SACK, three out-of-sequence acks).

Mapping sequence numbers to congestion windows

The choice of the mapping of a sequence number to a congestion window is criti-

cal, since it affects the number of fast retransmit-induced window halvings that an

MPAT aggregate receives over a given interval of time, and hence the total band-

width gained by it. Recall that standard TCP-SACK considers multiple losses

30

within a single congestion window as one loss event for fast retransmit, and hence

cuts down its window by half only once. To understand how this affects MPAT,

consider the following example: There are two TCP flows running simultaneously

as part of an MPAT aggregate. Connection 1 has a window size of 20, and has

packets 1 through 20 outstanding in the network. Suppose packets 8 and 9 get

dropped. Since both these packets belong to the same window, standard TCP-

SACK would treat them as one signal for fast retransmit, and hence cut down its

window only once.

MPAT could treat this situation as either one or two fast retransmit signals,

depending upon the mapping seqno2id1(). Consider the case when sequence num-

bers 8, 10-12 are mapped to C1, and sequence numbers 9, 13-15 are mapped to

C2. The acks for packets 10-12 will be charged to C1, which will treat all three of

them as duplicate acks for packet 8, and hence cut down its window by half. But

the acks for packets 13-15 will be charged to C2, which will again treat them as

duplicate acks for packet 9, and hence cut down its window by half. This exam-

ple shows how two packet losses within the same window could lead to two fast

retransmit signals. On the other hand, if both packets 8 and 9 were mapped to

C1, this would lead to only one fast retransmit signal. In this case, flow 2 would

treat acks for packets 13-15 as if they were received in sequence, and hence would

not reduce its window.

We tried out three different algorithms to map the packet with sequence number

s, belonging to flow fi, to a congestion window :

• If sequence number s − 1 was sent through congestion window k, send the

current packet s through window k if it is open. Else, randomly pick an

open congestion window to send the packet. This algorithm turns out to be

31

aggressive to the background flows since consecutive packet losses are charged

to the same congestion window, and get absorbed into one loss event for fast

retransmit, reducing the number of window reductions.

• If sequence number s − 1 was sent through congestion window k, randomly

choose an open congestion window different from k. This scheme turns out

to be more conservative than standard TCP, since it forcibly maps multiple

losses on a flow to different congestion windows, causing each one of them to

be cut down.

• Map s to an open congestion window picked uniformly at random. This

option turns out to be a reasonable compromise between the two extremes.

In fact, it turns out to be conservative when one of the flows has a very large

share of the aggregate congestion window, since it still spreads out the losses

of packets on that flow to multiple congestion windows. We use this option

in our implementation.

Whenever any of the congestion windows in the aggregate changes, the aggre-

gate congestion window also changes, and hence we must also update the MPAT

windows Ai of all connections using equation 2.1. Note that this means that when-

ever the congestion window for one of the flows is cut down, the loss in available

bandwidth gets distributed proportionally among the MPAT windows of all the

flows. This has the effect of reducing the inter-connection variance in throughput,

as we shall see later in section 2.4.6.

32

TFRC variant

There exists a TFRC[23] variant of MPAT, in which instead of N AIMD con-

trol loops, we have N rate adjustment loops, each driven by the standard TCP

throughput equation for one TCP flow. Note that loss probabilities will be mea-

sured by congestion window, i.e. over data sent using a given rate adjustment

loop, irrespective of which application flow the packets came from. Loss events

will be mapped to congestion windows in the same way as described above. The

TFRC variant enjoys the same transparency properties as the AIMD version, in

that each rate adjustment loop is oblivious to the identity of the packets driving

it. As a result, the TFRC variant of MPAT appears as a set of N independent

TFRC flows to the network. All of our experiments in this chapter are with the

AIMD version of MPAT.

2.3.4 Implementation

We have prototyped our proposed aggregate congestion management scheme in

Daytona[28], a user-level TCP stack running on Linux. Daytona can be linked as

a library into an application, and offers the same functions as that provided by the

UNIX socket library. Daytona talks to the network using a raw IP socket, thus

avoiding any processing in the operating system’s TCP stack. All TCP processing

is done at user-level, and pre-formed TCP packets are handed to the IP layer to

be sent over a raw socket.

Our user-level implementation allowed us to run wide-area experiments on di-

verse locations in the Internet, as well as in controlled public network testbeds like

Emulab [56], without requiring control over the operating system.

A key goal in MPAT is to ensure that we hold the fair share of N TCP flows

33

in the process. Thus, each AIMD control loop should be kept running as long as

there are packets available to drive it. Note that if a flow with a high share of the

aggregate congestion window gets send or receive window limited, or has a period

of inactivity, then it may leave some of its share of the aggregate congestion window

unused. Left alone, the aggregate would lose this unused share to the background

traffic. By using a work-conserving scheduler on the aggregate, however, we make

sure that other flows in the aggregate take up such unused bandwidth, if they have

data to send.

An implementation detail concerns the amount of memory allocated per socket

corresponding to a connection. Due to an unequal apportionment of the total

bandwidth among different connections, each connection needs a different amount

of buffer memory at any given instant of time. Currently our implementation

statically partitions a large chunk of memory between connections in accordance

with their performance requirements. In the future, our implementation would

dynamically allocate socket memory, as proposed in [20].

2.4 Evaluation

In this section, we conduct extensive experimentation to evaluate the fairness,

utilization and scalability properties of MPAT. We have conducted experiments

both over the real Internet and in controlled settings under stable conditions,

reverse traffic, and transient congestion. We built our own wide-area network

testbed consisting of a network of nodes in diverse locations (including US, Europe

and Asia). Our main goal in choosing these nodes is to test our system across wide-

area links which we believe have losses. For this reason, we made sure that the

whole path is not connected by Internet2 links (known to have very few losses). We

34

changed the routing tables of our campus network to make sure that the path to

our destination did not take any of the Internet2 links. We also did experiments on

the Emulab network [56], which provides a more controlled setting for comparing

our scheme with other approaches. All of our experiments used unconstrained send

and receive windows on both ends of the TCP connections, so that flow control

does not kick-in before congestion control. As background traffic we use long lived

TCP connections and bursty web traffic. We had a Maximum Segment Size (MSS)

of 1460 bytes in all our experiments.

2.4.1 Scalability

Using experiments on both the Emulab network and the real Internet, we found

that the MPAT scheme can hold the fair share of 100 TCP flows running simulta-

neously as part of an aggregate, irrespective of how the aggregate bandwidth was

apportioned among the aggregate’s flows. The limits on scalability beyond 100

flows arise due to other factors like minimum amount of bandwidth needed per

connection, bottleneck shifting from network to memory, etc.

As noted in section 2.2, mulTCP scales only up to 20-25 flows in the Emulab

setting. In a real Internet experiment, we found mulTCP to scale upto 10 to 15

flows.

2.4.2 Performance differentiation

The MPAT scheme can be used to apportion the total available bandwidth among

different flows in any desired ratio. Even though the total fair share allocated to the

aggregate keeps changing with time, MPAT can maintain the target performance

differential at all times. We could give a maximum of 95 times more bandwidth to

35

one TCP flow over another.

The real limits to scalabiliy for large performance differential arise from the

fact that every connection needs to send a minimum of 1-2 packets every RTT

[37]. In the future, we plan to change this to 1 packet every k RTTs, as proposed

in [26].

As an example, Figure 2.7 shows the bandwidth allocated to five TCP flows

running as part of an MPAT aggregate between Utah and our campus network on

the east coast (RTT approximately 70 msec). There were five more long-running

standard TCP flows in the background (in both directions). We tried to split

bandwidth in the ratio 1:2:3:4:5. The graph is for a period of 5 min, with data

samples taken every 500msec (approx 7 RTTs). The average amount of bandwidth

that each of the five flows got was 135 KBps, 265 KBps, 395 KBps, 530 KBps

and 640 KBps respectively. We can see that the MPAT scheme is very effective

at maintaining the desired target differential among different flows at all times,

irrespective of the total share of bandwidth that the aggregate is entitled to. The

average bandwidth of a standard TCP flow running in background during this

time period was 400 KBps. During the process of splitting bandwidth, the MPAT

aggregate holds its total fair share of approximately 2000 KBps, as seen in Figure

2.8, thus satisfying the utilization criterion.

2.4.3 Fairness to background flows

As noted earlier, an MPAT aggregate is naturally fair to background TCP traffic

since the remapping of application packets to congestion windows is transparent

to the N AIMD control loops in the aggregate, which means that the network

effectively sees N standard TCP flows. Under the same experimental conditions

36

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

The MPAT scheme used to apportion total bandwidth in the ratio 1:2:3:4:5

Figure 2.7: MPAT can apportion bandwidth among its flows, irrespective of the

total bandwidth available.

as above, Figure 2.12 shows the ratio of total bandwidth occupied by the MPAT

aggregate (N = 16) as compared to the total bandwidth of 10 standard TCP flows

running in background.

2.4.4 Interaction between multiple MPAT flows

To analyse the behavior of multiple competing virtual overlay links using MPAT,

we study the bandwidth achieved by multiple MPAT aggregates running simulta-

neously. Again, as noted earlier, the behavior of an MPAT aggregate with N flows

is similar to N independent TCP flows running without any aggregation. This

suggests that each MPAT aggregate should be able to get a share of the bottleneck

bandwidth depending upon the number of flows in each aggregate, and the number

37

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 60 120 180 240 300

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

Total bandwidth of the MPAT aggregate
 while splitting it in the ratio 1:2:3:4:5 among 5 flows

Figure 2.8: MPAT can hold the total fair share while apportioning bandwidth in

the desired ratio.

of background TCP flows.

To verify this hypothesis, we ran 5 MPAT aggregates, each with a different

value of N , together with 5 background TCP flows between Utah and our campus

network on the east coast. The five MPAT aggregates use N = 2, 4, 6, 8 and 10.

We then replaced each aggregate with the same number of independent TCP flows.

The experiment was repeated during different times of day. Figure 2.9 shows the

bandwidth for each of the five MPAT aggregates, with data points sampled every

1sec. Tables 2.4(a) and 2.5(a) show the number of fast retransmits, (labelled #

Fast), number of timeouts and bandwidth for each flow within the MPAT aggregate

over a period of 390 seconds. Tables 2.4(b) and 2.5(b) show the corresponding data

for the non-aggregated case. Note that in both cases, the achieved bandwidth and

38

loss rates seen by the background TCP flows are similar. The bandwidth obtained

by each aggregate is always proportional to the number of flows it had, and when

the flows within an aggregate were run independently, the sum of bandwidths

achieved by these flows was similar to the bandwidth achieved by the aggregate.

This shows that MPAT is not a selfish scheme. Competing MPAT flows cooperate

with each other, and with the background traffic. The experiment also illustrates

that MPAT adequately satisifies the utilization property.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40 45 50 55 60

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

Bandwidth of 5 MPAT aggregates running simultaneously

N=10 N=8 N=6 N=4 N=2

Figure 2.9: Competing MPAT aggregates cooperate with each other.

2.4.5 Adaptation to changing performance requirements

When the performance requirements of various flows within an aggregate change,

our scheme simply needs to update the MPAT windows Ai for all flows using

Equation 2.1, and thus should be able to respond very quickly (typically 2-3 RTTs)

39

Table 2.4: Multiple MPAT aggregates running simultaneously cooperate with each

other (day time).

(a) With Aggregation (day time)

N # Fast # Timeouts Bandwidth

(KBps)

2 (MPAT) 511 250 51.4

4 (MPAT) 474 231 49.5

6 (MPAT) 499 235 50.3

8 (MPAT) 495 235 50.1

10 (MPAT) 502 236 49.8

5 (TCP) 401 258 48.6

(b) Without Aggregation (day time)

N # Fast # Timeouts Bandwidth

(KBps)

2(TCP) 498 218 56.1

4(TCP) 479 234 58.5

6(TCP) 481 215 58.9

8(TCP) 481 216 57.1

10(TCP) 490 218 57.2

5(TCP) 497 213 56.3

40

Table 2.5: Multiple MPAT aggregates running simultaneously cooperate with each

other (night-time).

(a) With Aggregation (night time)

N # Fast # Timeouts Bandwidth

(KBps)

2 (MPAT) 565 44 97.6

4 (MPAT) 564 34 98.5

6 (MPAT) 555 39 98.1

8 (MPAT) 535 38 99.3

10 (MPAT) 537 41 97.9

5 (TCP) 577 41 93.6

(b) Without Aggregation (night time)

N # Fast # Timeouts Bandwidth

(KBps)

2(TCP) 540 28 106.7

4(TCP) 542 25 110.9

6(TCP) 546 27 108.5

8(TCP) 539 25 106.4

10(TCP) 531 26 109.5

5(TCP) 538 30 107.1

41

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

Bandwidth of a mulTCP connection with N=16.

Figure 2.10: mulTCP scheme exhibits very high variance in bandwidth.

to dynamically changing performance requirements with time.

To test this claim, we ran an MPAT aggregate consisting of three flows between

Utah and our campus network on the east coast, with 5 more long-running standard

TCP flows in the background (in both directions). We changed the performance

requirements every minute. Figure 2.13 shows how the absolute bandwidth for

each of the three connections varies with time for a period of nine minutes. Data

points have been sampled every 500 msec (approx 7 RTTs). Figure 2.14 shows

relative bandwidth of the three flows at all times, along with the target performance

differential. We can see that MPAT very quickly adapts to changing performance

requirements. Note that during the time interval t = 240 to t = 300 sec, we were

able to split bandwidth in the ratio 95:1.

42

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

Total Bandwidth of an MPAT aggregate with N=16.

Figure 2.11: MPAT exhibits much lower variance due to sharing of losses.

2.4.6 Reduced variance

The total bandwidth of an MPAT aggregate is equivalent to the sum of N indepen-

dent standard TCP flows, each of which uses an AIMD control loop. Multiplexing

of these control loops smooths out the bandwidth variations within each AIMD

loop, thus reducing the variance in throughput of an MPAT aggregate drastically.

This is in contrast to mulTCP that exhibits increasing variance with N .

To demonstrate this, we ran an MPAT aggregate consisting of 16 flows be-

tween Utah and our campus network on the east coast. We had 10 long-running

standard TCP flows running in the background. Figure 2.11 shows how the total

bandwidth occupied by the MPAT aggregate varies with time. Figure 2.10 shows

the bandwidth of a mulTCP flow (with N = 16) under similar conditions. Data

points have been sampled every 200msec (3 RTTs).

43

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50 55 60

R
el

at
iv

e
ba

nd
w

id
th

Time elapsed (sec)

Ratio of total bandwidth achieved by an MPAT aggregate (N=16)
 relative to total bandwidth of 10 standard TCP.

Figure 2.12: MPAT is friendly to the background traffic.

Comparing Figure 2.10 and Figure 2.11, we see that mulTCP has a very high

variance as compared to that of MPAT. Please note that the y-axis in Figure 2.11

is shown for the range 1000-3000 KBps, while that in Figure 2.10 is for the range

0-2000 KBps. This is because a mulTCP connection with N = 16 gets much less

throughput than the fair share of 16 TCP flows.

2.4.7 Adaptation to Transient Congestion

The MPAT scheme must be robust to transient congestion in the network, and more

generally, to variations in the fair share of bandwidth available to the aggregate.

With transient congestion, an MPAT aggregate must learn about a change in its

total fair share using the AIMD algorithm. The change is apportioned among the

aggregate’s flows quickly through an adjustment of the MPAT windows Ai of all

44

 0

 500

 1000

 1500

 2000

 0 60 120 180 240 300 360 420 480 540

B
an

dw
id

th
 (

K
B

ps
)

Time elapsed (sec)

Absolute bandwidth of 3 TCP flows
 running as part of an MPAT aggregate

when priorities change every min.

Figure 2.13: This figure shows the how absolute bandwidth of 3 MPAT flows adapts

itself very quickly to dynamically changing performance requirements.

flows, ensuring that the desired bandwidth ratio is maintained at all times.

To study the responsiveness of MPAT to transient congestion, we conducted

experiments on the Emulab network over an emulated link of bandwidth 90 Mbps

and RTT 50msec. We ran an MPAT aggregate consisting of 10 flows with different

performance requirements. Transient congestion was created by introducing con-

stant bit rate (CBR) as well as TCP traffic in the background. We also used 10

long-running standard TCP flows in both directions. At t=120 sec, we introduce

a CBR flow in the background with rate 30Mbps. As shown in Figure 2.16, MPAT

cuts down its total bandwidth in about 4-6 RTTs (200-300 msec), while still ap-

portioning bandwidth within the aggregate in the desired ratio at all times. At

t=240sec, we removed the background CBR traffic. As seen in figure 2.17, MPAT

45

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360 420 480 540

R
el

at
iv

e
B

an
dw

id
th

Time elapsed (sec)

Relative bandwidth of 3 TCP flows
 running as part of an MPAT aggregate

when priorities change every min.

achieved1 target1 achieved2 target2

Figure 2.14: This figure shows the how relative bandwidth of 3 MPAT flows adapts

itself very quickly to dynamically changing performance requirements.

reclaims its fair share of the remaining bandwidth.

When background TCP traffic was introduced to create transient congestion,

it takes about 15-20 (1 sec) RTTs for both MPAT and the background TCP flows

to settle into their respective fair shares, as seen in figures 2.19 and 2.20. This is

because the new TCP flows begin in slow-start mode, and are also adapting to their

fair share together with MPAT. As earlier, MPAT always apportioned bandwidth

within the aggregate in the desired proportion.

2.4.8 Bursty background traffic

Most of the results we described above are for long-running TCP flows in the back-

ground. We also tested our scheme with bursty web traffic running in background.

46

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 60 120 180 240 300 360

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.15: This figure shows how the total bandwidth achieved by an MPAT

aggregate (N=16) adapts itself with additional UDP traffic introduced at t=120

and then removed at t=240.

We did this using a wget loop downloading web pages in the background, together

with MPAT. While bursty traffic increased the absolute number of retransmits and

timeouts proportionally for all aggregates and the background traffic, we did not

see any qualitative change in the results. In other words, MPAT exhibited the

same scaling, fairness and utilization properties with bursty traffic.

2.5 Conclusions

This chapter demonstrates for the first time the viability of providing differential

services, at large scale, among a group of TCP flows that share the same bot-

tleneck link. We demonstrate this through a range of experiments on the real

47

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 116 118 120 122 124

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.16: A deeper look into Figure 2.15 at t=120 to see the effect of introducing

additonal UDP traffic.

Internet which show that an MPAT aggregate can hold its fair share of the bottle-

neck bandwidth while treating other flows fairly (either individual TCP flows or

other MPAT aggregates). We also demonstrate that within an aggregate, MPAT

allows substantial differentiation between flows (up to 95:1). This suggests that

MPAT is therefore an appropriate candidate technology for broader overlay QoS

services, both because MPAT provides the requisite differentiation and scalability,

and because MPAT can co-exist with other TCP flows and with other MPAT aggre-

gates. This result opens the door to experimentation with more easily deployable

network QoS schemes such as the overlay.

Having said that, this chapter does not make the broader conclusion that over-

lay QoS works. In order to do that, we must understand the end-to-end behavior

48

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 236 238 240 242 244

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.17: A deeper look into Figure 2.15 at t=240 to see the effect of removing

additonal UDP traffic.

of flows (TCP and otherwise) over a multihop overlay. This means among other

things that we must understand the interactions between the individual overlay

hops (be they TCP or TFRC) of the same overlay, between aggregates on dif-

ferent overlays, and between all of these and the end-to-end flow control of the

TCP connections running over the overlay. It is also important to understand how

an overlay QoS could be combined with RON-type overlay functionality used to

actually enhance performance (not just provide differentiation).

There may also be other uses for MPAT aggregation. For instance, in the back

end systems of a web service data center, MPAT could be used to provide differ-

ential service among different kinds of customers (gold, silver, bronze). This is

possible in part because MPAT only needs to be deployed at the sending end of a

49

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 60 120 180 240 300 360

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.18: This figure shows how the total bandwidth achieved by an MPAT

aggregate (N=16) adapts itself with additional TCP traffic introduced at t=120

and then removed at t=240.

TCP connection. For this to work, however, the TCP flows must share a bottle-

neck. This in turns requires that the server implementing MPAT can determine

which flows, if any, share the bottleneck. These possible uses of MPAT provide

exciting avenues for future research.

50

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 116 118 120 122 124

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.19: A deeper look into Figure 2.18 at t=120 to see the effect of introducing

additonal TCP traffic.

51

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 236 238 240 242 244

T
ot

al
 B

an
dw

id
th

 (
K

B
ps

)

Time elapsed (sec)

Figure 2.20: A deeper look into Figure 2.18 at t=120 to see the effect of introducing

additonal TCP traffic.

Chapter 3

Netmapper: A network mapping and

annotation service for distributed

applications

3.1 Monitoring the network

Network performance is a key determinant of end-to-end performance and user

experience for many applications [1, 2, 25, 38, 53]. However, managing network

performance is fundamentally hard due to the distributed and decentralized nature

of network resources. In spite of decades long research, providing better network

performance to applications still draws considerable attention. The various pro-

posed solutions range from ATM to RSVP to Intserv to Diffserv and many others

[13, 14, 15, 16]. While these have not resulted in a completely satisfactory solu-

tion, we have learned that end-to-end approaches are generally more realistic and

deployable compared to those that rely on explicit network support [40].

This chapter describes a network mapping and annotation service for dis-

tributed applications sensitive to bandwidth availability, latency, or loss. Ap-

plications (or resource managers working on their behalf) are expected to use this

service to plan their network resource usage and fault response. We expose internal

network state (e.g. bandwidth available on the edges, location of bottleneck links,

etc) using only end-to-end measurements that are TCP-friendly. Knowledge of

this internal state allows trend analysis, network performance debugging, network

planning and exploitation of alternate routes, making such a service useful for both

52

53

network providers and their ISP and enterprise customers.

The system (called Netmapper) takes as input the set of end-points of a dis-

tributed application, maps out the network connectivity between them, and an-

notates each edge (to the extent possible) with available bandwidth. Netmapper

deploys end-to-end TCP probes between the end-points of an application to es-

timate the available bandwidth on various network paths. It then identifies the

bottleneck links on these paths using a novel TCP-friendly bottleneck identifica-

tion technique. Netmapper eventually annotates all the edges whose annotation

is possible given the network topology and the available end-points. The end-to-

end probes are intelligently planned so that the annotation requires a minimum

number of probes.

Stability of network performance metrics over reasonable lengths of time [43]

leads us to believe that Netmapper can provide a stable map of network perfor-

mance that can be updated on a coarse time scale. We have built Netmapper, and

tested it out on the real Internet. Our experience deploying Netmapper on the real

Internet shows that the system consumes a very small amount of bandwidth, and

converges fast even with dynamically varying network state. Both variability in

available bandwidth and shift in location of bottleneck link are slow enough that

they allow our system to converge, and maintain a consistent graph.

The rest of the paper is organized as follows: We discuss some of the related

work and motivation for building a network monitoring service in Section 3.2. We

summarize the primary contributions of our monitoring system in Section 3.3. We

describe various algorithms to annotate a network graph with available bandwidth

in Section 3.4. Section 3.5 presents a detailed performance evaluation of Netmapper

using experiments over the real Internet. We conclude in section 3.6 by describing

54

a set of applications that are using our system.

3.2 Motivation and related work

Many other research efforts have attempted to provide network monitoring services

to applications [5, 38, 40, 51, 55], that they can query and take appropriate action.

However, these efforts have not closed the loop between monitoring and using

the collected data to set end-to-end performance control knobs, expecting the

sophistication to do so from the application. It is simply too complex, and in

some cases not possible for applications to plan and exercise these controls by

themselves. Exercising end-to-end controls for performance management requires

an application to understand the underlying network structure, monitor it, and

map its performance requirements to the setting of an end-to-end control knob such

as MPAT [?], multi-homing [60], overlay routing [5], or server selection [59]. There

is a clear motivation for abstracting away the complexity of network monitoring

and planning from the application into a service. Such a service can then also act

as the bridge between applications and network providers by providing application

traffic demand matrices to the network provider.

Several applications, such as server selection (Akamai [59], IBM Olympic host-

ing, etc.), multi-homing based route selection [60], and overlay network construc-

tion (RON [5], Narada [38], etc.) employ some form of end-to-end mechanisms

to provide better network service. However there are two main issues with these

approaches.

First, typically these end-to-end approaches treat the network as a black-box

and provide purely end-to-end metrics such as delay, loss, bandwidth estimates

agnostic of any network details. The major problem with this extreme black box

55

solution is that by completely ignoring any network path or topology information,

the underlying path sharing among different choices, common bottleneck points, or

any topologically correlated properties are hidden from any planning or provision-

ing of the network. Note that sharing is critical for bandwidth planning. Providing

a latency map of the network [51, 55] is not adequate for packing an application’s

bandwidth demand into the network. Bandwidth annotation is generally used

to express capacity constraints and latency annotation is used to express perfor-

mance constraints. Sharing also allows more efficient fault response compared to

topology-unaware monitoring of liveness between the application’s endpoints [38].

Overlay network studies also mostly treat the path between any two nodes as a sin-

gle point-to-point link. Any resource provisioning in such a scenario could lead to

bad network provisioning as many such paths may be sharing the same bottleneck

link.

Second, these approaches tightly couple the end-to-end measurement solutions

with the application/network provisioning decisions. As a result, it is often impos-

sible to utilize these solutions for any other applications, reducing their approaches

as point solutions. While the motivation for these studies is to better manage the

network from an end-to-end perspective, often these solutions fall short of becom-

ing a truly generic solution that application providers could use.

Some systems like Remos[40] require considerable support from within the net-

work using SNMP data from routers. However, such tools can only be used by

network operators (e.g., telecommunication companies) and/or on the subparts of

the network owned by them. Thus, provider customers cannot easily make use of

these approaches.

56

3.3 Our contributions

Netmapper addresses many limitations of existing monitoring solutions [38, 40, 5,

51, 55]. We briefly summarize below the contributions of our network mapping

and annotation service.

1. Netmapper gathers all the information without any additional support from

the network infrastructure itself. By conducting experiments between agents

that run on the end points, our system can derive internal information about

the network (e.g., internal link, available bandwidth at a link, locations of

bottlenecks, etc.) using end-to-end measurements. This is useful because

the provider of the service or application generally has no control over the

network and probably has limited or no access to monitoring data of the

network. For example, ISPs (such as AT&T, Sprint, etc.) typically have

network management systems that internally monitor the performance of

the network. However, the ISPs only have monitoring data for the parts of

the network they own. Moreover, this information is generally not available

to the applications running at the network endpoints.

2. Netmapper explicitly represents network topology to capture sharing proper-

ties. This makes it capable of supporting available bandwidth queries on

the network for simultaneous flows. For example, the system can answer ad-

vanced queries like “determine the available bandwidth when node 1 sends to

node 4 AND node 2 sends to node 10” which may not be correctly answered

by a system that does not consider the annotated network topology. Note

that sharing of paths can imply different answers for individual path queries

and simultaneous multi-path query.

57

3. Using purely end-to-end measurements, Netmapper provides bandwidth an-

notation of links inside the network, which is an inherently more difficult

problem compared to latency annotation. By determining such information,

decisions can be made regarding routing a client to a particular server (e.g.,

which network paths to take and/or servers to which the client should be

directed, etc.) that has the best network connectivity, the most bandwidth,

etc.

4. We design a novel scheme to identify the location of bottlenecks in a network

for a distributed networked application. The tool improves upon existing

methods [53, 39] for bottleneck identification. Specific contributions over

existing schemes include identifying bottlenecks with little to no impact on

the regular traffic, and matching TCP’s notion of bottleneck (as opposed to,

say link-level definitions). We show using experiments (under controlled set-

tings of the Emulab environment [56]) that existing bottleneck identification

schemes [53, 39] detect incorrect bottleneck link if the bottleneck is due to

transient congestion. This tool is described in detail in Chapter 4.

5. An advantage of Netmapper is that it is not intrusive in comparison to some

of the existing approaches [53] that use UDP-based probes to determine the

network capacity. The annotation process does not change the dynamics of

the existing flows because the procedure used is based on TCP probes.

6. We use bottleneck identification as a fundamental primitive to reduce the

total amount of probe traffic that we need to inject inside the network in

order to annotate a given graph. This also significantly reduces the number

of TCP flows that we need to open simultaneously.

58

7. We conduct extensive experiments on the real Internet (a collection of 17

nodes geographically distributed in the US that form the RON network[58]),

and show that our system converges even under dynamically changing net-

work state. Both variability in available bandwidth and shift in location of

bottleneck link are slow enough that they allow our system to converge, and

maintain a consistent graph.

3.4 Network annotation algorithms

Knowing the underlying network structure and link capacities that connect an ap-

plication’s endpoints is the key input needed for planning network resource usage.

This input is provided by Netmapper, which takes as input the set of endpoints

for a network application, and outputs an annotated graph representing the net-

work connectivity and link capacities between these endpoints. Netmapper uses

pairwise (layer-3) traceroutes between the endpoints to map out the network con-

nectivity. It then annotates the edges of this graph, to the extent possible, with

their available bandwidth and latency. The term “available bandwidth” refers to

the amount of bandwidth that an application can get by opening one or more

TCP flows. Note that available bandwidth as described herein is different from

raw bandwidth of a link, or bandwidth obtained by a UDP flow. Assuming that

we can get the latency annotation using per-hop delays reported by traceroute, we

will focus on bandwidth annotation in the remaining part of this section.

Netmapper must utilize end-to-end probe flows to annotate links inside the

network. The extent to which Netmapper is able to annotate links depends upon

the set of endpoints available to it for running probe traffic. As more endpoints

become available from a set of applications, Netmapper is able to refine the anno-

59

tation with more detail. The key challenge is to minimize the number of probes

needed to annotate the whole graph.

3.4.1 Basic idea behind annotating a link

To understand Netmapper’s operation, we must first understand the fundamental

method to annotate internal links of a graph when we only know the bandwidth

on a given set of paths in the graph. The way to annotate a link in the network

with its capacity is to saturate the link such that no more traffic can be driven

through it. The capacity of the link is then simply the amount of traffic that is

being driven through it at saturation. The indication of saturation is that the

total amount of bandwidth achieved at the receivers of the flows being driven

through the link, is less than the total amount of traffic that senders are able to

transmit. Probe flows can thus be orchestrated in a way that links of the network

are successively annotated. The goal in the selection of these flows should be to

minimize the overall amount of probe traffic in the network. Note that the share

of network bandwidth of a set of TCP probe flows, and hence their intrusiveness,

is proportional to the number of simultaneous flows. So, we also need to minimize

the number of simultaneous probe flows in the network. In this section, we describe

various algorithms to annotate each edge of the graph with available bandwidth.

3.4.2 Naive algorithm

A naive way to annotate a graph is to try sending as much traffic as possible

through each edge. In other words, for each edge e of the graph, we find the set

of paths that go through the edge (denoted by P (e)). We run a TCP flow along

all these paths simultaneously, and annotate the edge e with total bandwidth that

60

e1, e3, e7D4SP4

e1, e3, e6D3SP3

e1, e2, e5D2SP2

e1, e2, e4D1SP1

EdgesDstSrcPath

List of end-to-end paths
for the topologyS

D1 D2 D3 D4

e1(10)

e2(20) e3(15)

e4(20) e5(5) e6(5) e7(20)

Topology

Figure 3.1: Example topology used to show how the improved algorithm with

bottleneck identification reduces the amount of probe traffic needed to annotate a

graph, as compared to a naive scheme.

all the TCP flows get. The cost of this algorithm (in terms of the number of TCP

flows) is equal to sum total of the number of paths going through each edge of the

graph. We call this as the naive algorithm, since it tries to pump the maximum

possible flow through each edge in order to annotate it.

Figure 3.1 shows an example of a directed graph with a tree structure, consisting

of single source S, and four destinations D1, D2, D3 and D4. The figure also shows

the actual link capacities in the graph. Figure 3.2 shows the steps that the naive

algorithm would take to annotate the graph. We consider all edges in the graph,

in order of the increasing number of paths that go through the edge. Thus, we

start by annotating edges e4, e5, e6 and e7, since there is only one path that goes

61

S

D1

Step1:
Annotate edge e4
by opening a flow
along path P1

D2

Step2:
Annotate edge e5
by opening a flow
along path P2

S

D3

Step3:
Annotate edge e6
by opening a flow
along path P3

S

D4

Step4:
Annotate edge e7
by opening a flow
along path P4

S
10

10

10

10

10

5

5

5

10 10

10

10

(a)

S

D1 D2

Step5:
Annotate edge e2 by
opening a flow along
paths P1 and P2
simultaneously

D3 D4

Step6:
Annotate edge e3 by
opening a flow along
paths P3 and P4
simultaneously

Step7:
Annotate edge e1 by
opening a flow along
paths P1, P2, P3 and
P4 simultaneously

10

5 5 1010

10 10

S

D1 D2 D3 D4

10

5 5 1010

10 10

(b)

Figure 3.2: Annotation steps with naive algorithm for the topology in Figure 3.1.

The annotation requires a total of seven steps, three of which drive multiple probe

flows simultaneously into the network.

62

through each of these edges. We next consider edges e2 and e3, each of which has

two paths going through it. Finally, we annotate edge e1, which has all the four

paths traversing through it.

Assuming the naive algorithm picks edge e4 in the first step, we start with a

probe between S and D1 in step1. The path bandwidth is 10, which means at least

10 units of bandwidth is available on edges e1, e2 and e4. No more information

can be gathered from this path. We annotate each of the three edges e1, e2 and

e4 with 10 units of bandwidth. The algorithm next tries to annotate edge e5 in

step2, opening a probe between S and D2. This gives a bandwidth of 5, since the

minimum bandwidth amongst the edges e1, e2 and e5 is 5 units. This allows us to

annotate edge e5 with 5 units. Note that the annotation of edges e1 and e2 remains

unchanged at 10 units. Similarly, the algorithm proceeds through steps 3 and 4

(shown in Figure 3.2(a)) to annotate edges e1, e3, e6 and e7. Running a probe

between S and D3 (step3) yields 5, which annotates e3 and e6 with 5. Running a

probe between S and D4 (step4) yields 10, which annotates e1, e3 and e7 with 10.

Next, the algorithm tries to annotate edges e2 and e3, since there are two paths

that go through each of these edges. In step5, we try to annotate edge e2, which

has two flows along paths P1 and P2 passing through it. We know the amount of

bandwidth that each of these two flows get when we run them individually (10 and

5 respectively). So, the maximum amount of traffic than can be pumped through

the edge e2 is 15. However, current annotation of the edge is only 10. In order

to find the actual bandwidth of the edge e2 in the range of [10, 15], we must run

the two flows simultaneously. Running both flows together yields 10. The two

flows go through edges e1 and e2, and hence we annotate both these edges with 10.

Similarly, in step6, the algorithm tries to annotate edge e3. The two flows going

63

through the edge, viz P3 and P4, get bandwidth of 5 and 10 units respectively

when run independently. The maximum flow through the edge e3 can be up to 15.

Running both flows together yields 10, hence edges e1 and e3 are annotated with

10 as well.

Finally, edge e1 must be tested for saturation, which has four paths P1, P2, P3

and P4 going through it. Current annotation for the edge is 10. We know that

we can get 10 units of traffic by opening P1 and P2 simultaneously. We also get

10 units by opening P3 and P4 simultaneously. So, if we try to open all the four

flows P1, P2, P3 and P4 simultaneously, we could get up to 20 units of bandwidth.

Running the four flows together yields 10 as the final annotation for edge e1. The

total number of steps taken by the algorithm are 7, 3 of them requiring driving

multiple probe flows simultaneously into the network.

3.4.3 An improved algorithm with bottleneck identifica-

tion

Netmapper uses a powerful primitive that can significantly reduce the number of

probes and amount of probe traffic required by the basic algorithm. This primitive

is bottleneck identification. By identifying the location of bottleneck on a path,

we are not only able to annotate the bottleneck link in one step, we also eliminate

a number of probe steps proportional to the size of the subgraph connecting the

bottleneck link with various destination nodes. For this, we have developed a novel

scheme to identify the location of bottlenecks in a network that we describe in de-

tail in Chapter 4. The tool improves upon existing methods [53, 39] for bottleneck

identification. Specific contributions over existing schemes include identifying bot-

tlenecks with little to no impact on the regular traffic, and matching TCP’s notion

64

of bottleneck (as opposed to, say link-level definitions).

At each step, a network link may be annotated with an equality (=), represent-

ing that the link has been saturated, or an inequality (>), representing that the

link’s annotation could be further refined using subsequent steps in the algorithm.

The equality results when the link was fully saturated in some measurement step

in the algorithm. Inequalities indicate that the link has not been fully saturated

during any measurement, and hence more capacity in the link could be available.

The final annotation of the network, at the end of the algorithm’s execution, could

include both equalities (=) and inequalities (>). The final state of the network

represents the maximum information that can be derived about the network’s an-

notation from end-to-end measurements.

We illustrate this point using the example graph shown in Figure 3.1. The steps

involved in annotation using the improved algorithm with bottleneck identification

are shown in Figure 3.3. As in the case of naive scheme, we consider edges in

increasing order of the number of paths that go through the edge. In step1, we try

to annotate edge e4 by starting a flow from S to D1. We identify edge e1 as the

bottleneck, with a path bandwidth of 10 units. This means that the bandwidth

on edge e1 is equal to 10, while that on edges e2 and e4 is greater than 10. Thus,

we annotate edge e1 as “=10”, and edges e2 and e4 with “>10”. By identifying

edge e1 as the bottleneck link, we have been able to annotate it by opening only a

single TCP flow, as opposed to the naive scheme, where we had to open four flows

in order to annotate the edge. More importantly, this also significantly reduces

the steps to annotate other parts of the graph, as we shall see shortly.

In step2, we start a flow from S to D2 to annotate edge e5. This gives edge e5

as the bottleneck, with a bandwidth of 5 units. We annotate edge e5 as “=5”, and

65

Step1:
Annotate edge e4
by opening a flow
along path P1

S

D1 D2 D3 D4

=10

>10

>10

Step2:
Annotate edge e5
by opening a flow
along path P2

S

D1 D2 D3 D4

=10

>10

>10

=5

(a)

Step3:
Annotate edge e6
by opening a flow
along path P3

S

D1 D2 D3 D4

=10

>10

>10

Step4:
Annotate edge e7
by opening a flow
along path P4

S

D1 D2 D3 D4

=10

>10

>10

=5=5 =5

>5

=5

>10

>10

(b)

Figure 3.3: Annotation steps for improved algorithm with bottleneck identification

for the topology in Figure 3.1. The annotation requires only four steps (down from

seven steps taken by the naive scheme), each requiring only one probe flow.

66

leave the annotations for edges e1 and e2 unchanged. Similarly, in step3 and step4

(shown in Figure 3.3), by running a single probe from S to D3 and D4 respectively,

we annotate links e6 and e7 completely.

Next we consider edge e2 which has a current annotation of “>10”. Due to e1

being bottlenecked at 10, there is no way to pump more than 10 units into the

edge e2, hence, we cannot update its annotation any further. The same holds true

for edge e3 as well. We already know the final annotation for edge e1. This gives

us the complete annotation for the whole graph in just 4 steps (down from 7 steps

taken by naive algorithm), each requiring only one probe flow.

3.4.4 The general case

The complete algorithm for the general case can be simply stated as follows. When

we identify a link as the bottleneck, with capacity C, we consider all paths of which

the link is a part, and annotate each edge on such paths with C up to the point

where another path is incident on this path. The rationale is that for edges in this

part of the path, there is no way to drive more traffic into the edge than C. Since

IP routing from a source to a set of destinations has a tree structure, this yields

a significant reduction in the probe traffic that needs to be generated to annotate

links downstream from a bottleneck link.

As an instance, consider the graph shown in Figure 3.4. If we identify edge e1

as bottleneck for some end-to-end path, with capacity C, we can annotate edges e2,

e3, e4 and e5 with C, since we cannot pump more traffic than C into these edges.

However, for the edges e6 and e7, we can transmit traffic through two sources S1

and S2. So, we need to check if edges e6 and e7 have higher available bandwidth

than C by running simultaneous probes from the two sources.

67

S

D1
D2

D3 D4

e1(10)

e2(20) e3(15)

e4(20) e5(5) e6(5) e7(20)

S1

Figure 3.4: Example showing that when we identify a link as the bottleneck, we

annotate each edge on all paths of which the link is a part, up to the point where

another path is incident on this path.

S1 S2 S3 S4

D1 D2 D3 D4

e1 e2 e3 e4

e5 e6

e7

e8 e9

e10 e11 e12 e13

Topology

e4, e6, e7, e9, e13D4S4P8

e4, e6, e7, e9, e12D3S4P7

e3, e6, e7, e9, e12D3S3P6

e3, e6, e7, e8, e11D2S3P5

e2, e5, e7, e9, e12D3S2P4

e2, e5, e7, e8, e11D2S2P3

e1, e5, e7, e8, e11D2S1P2

e1, e5, e7, e8, e10D1S1P1

EdgesDstSrcPath

List of end-to-end paths
for the topology

Figure 3.5: Topology and list of end-to-end paths used to illustrate the improved

algorithm using bottleneck identification for the general case.

68

S1

D1

=5

>5

>5

>5

>5

Path P1:
S1 ----> D1

S1

D1 D2

=5

Path P2:
S1 ----> D2

=9

>9

>9

>9

>9

Step1 Step2

S1

D1 D2

=5

Path P3:
S2 ----> D2

>9

>9

>9

S2
=4

=9

>9

Step3

(a)

S1

D1 D2

=5

Path P4:
S2 ----> D3

>9

>9

>9

S2
=4

D3

>4

>4

=9

>9

S1

D1 D2

=5

Path P5:
S3 ----> D2

>9

S2
=4

D3

>4

>4

S3
=20

=9
>20

>20

>20

>20

Step4 Step5

S1

D1 D2

=5

Path P6:
S3 ----> D3

>9

S2
=4

D3

>4

S3
=20

=9
>20

>20

>20

>20

=16

Step6

(b)

Figure 3.6: First six steps for the pre-processing stage of the improved algorithm

with bottleneck identification on the topology shown in Figure 3.5. Continued to

Figure 3.7

69

S1

D1 D2

=5

Path P7:
S4 ----> D3

>9

S2
=4

D3

S3
=20

=9
>20

>20

>20

>20

=16

S4

=13

>13

S1

D1 D2

=5

Path P8:
S4 ----> D4

>9

S2
=4

D3

S3
=20

=9
>20

>20

>20

>20

=16

S4

=13

>13

D4
=10

Step7 Step8

Figure 3.7: Steps 7 and 8 for the pre-processing stage of the improved algorithm

with bottleneck identification on the topology shown in Figure 3.5. Continued

from Figure 3.6

70

Figure 3.11 shows the pre-processing stage of the improved algorithm for deter-

mining annotated network topology between network endpoints. The system takes

a set of network endpoint addresses as input, for which we need to obtain an anno-

tated network topology. The system starts by running layer-3 traceroute between

each pair of endpoints to obtain an un-annotated network topology. The topolog-

ical map of the network includes constraints on routing and exposes path sharing.

The edges of the resulting topological map are then annotated with available band-

width information. We initialize the annotation of each edge in the un-annotated

topology as “>0”.

For each pair of endpoints, we open a TCP flow in order to determine the

available bandwidth “B” and the location of bottleneck link on the network path

connecting the endpoints. We update the annotation of each edge in the network

path with the maximum of its current annotation and “B”. We annotate the edge

identified to be the path bottleneck with maximum available bandwidth “=B”.

We illustrate this with the help of a sample topology shown in Figure 3.5 with

four sources and four destinations. The figure also shows the list of end-to-end

paths. Note that in practice, there could be a path from each source to each

destination. But for the ease of illustration, we consider only a subset of the

paths. Figure 3.6 and Figure 3.7 show the pre-processing stage of the algorithm

for the given topology.

In step1, we open a TCP flow along the path P1 from source S1 to destination

D1. We identify edge e10 as the bottleneck, with a bandwidth of 5 units. This

means that we have been able to saturate the edge e10 with 5 units of bandwidth,

and hence, we annotate it with “=5”. For all other edges on the path, viz, e1, e5,

e7 and e8, we annotate them with “>5”, since these edges have at least five units

71

of bandwidth available. In step2, we start a TCP flow along path P2, and identify

edge e5 as bottleneck with 9 units of bandwidth. We annotate edge e5 with “=9”.

We also update the annotations of edges e1, e7 and e8 from their current annotation

of “>5” to “>9”. Similarly, in steps 3 to 8, we open a single TCP flow along a

given end-to-end path, identify the location of bottleneck link and bandwidth, and

update the annotations of various edges.

The annotation of the network topology obtained in the pre-processing stage is

further refined until it cannot be further refined. Figure 3.12 shows the recursive

stage of the algorithm for determining annotated network topology. The algorithm

starts at the innermost loop and iterates over all the edges in the graph to determine

if annotation of any edge can be further refined. If it is determined that annotation

of an edge can be further refined, then the variable “changed” is set to true, and

we proceed further. Otherwise the method terminates when an iteration over all

edges does not change the annotation of any edge.

In the next step, for each edge e that has an inequality (“>”) annotation, the

amount of data that can be sent through the edge e is determined from the various

paths that feed into the respective edge e. Note that the maximum amount of

traffic which can be driven through an edge e depends not only on its own available

bandwidth, but also on the available bandwidth of other edges in the graph through

which a subset of the flows (that go through the edge e) pass. Given the capacity

constraints of other edges in the graph, we find the maximum amount of traffic that

can be driven through the edge. We define this as “maxflow computation”, and

refer to it as “maxflow”(M). For this, we construct the sub-graph Ge spanned by

all the paths that go through the edge e. Figure 3.8 shows few sample sub-graphs

for various edges in the topology shown in Figure 3.5.

72

S1

D1 D2

=5

Subgraph spanned by paths
P1 and P2 is used to calculate
the maxflow through edge e1.

>9

=9

>20

>20

>20

Edge e1:

D3

>20

>20

=16

S4

=13

>13

D4
=10

Edge e4

Subgraph spanned by paths
P7 and P8 is used to calculate
the maxflow through edge e4.

(a)

S1

D2

>9

S2
=4

S3
=20

=9
>20

>20

>20

>20

Subgraph spanned by paths
P2, P3 and P5 is used to
calculate the maxflow
through edge e11.

D2 D3

S3
=20

>20

>25

>25

=25
=16

S4

=13

>16

D4
=10

Edge e6

Subgraph spanned by paths
P5, P6, P7 and P8
is used to calculate
the maxflow through edge e6.

(b)

Figure 3.8: Examples showing the subgraph spanned by paths through a given

edge. This is used to calculate the Maxflow through the edge.

73

D2 D3

S3
=20

>20

>25

>25

=25
=16

S4

=13

>16

D4
=10

Edge e6

D*

S*

D2 D3

S3
=20

>20

>25

>25

=25
=16

S4

=13

>16

D4
=10

Edge e6

Subgraph spanned by
paths P5, P6, P7 and P8.

We add two new
nodes S* and D* in
the subgraph to
calculate maxflow
through the edge e6

Figure 3.9: Example showing how we add two new nodes in the subgraph, in order

to calculate the max-flow edge e6.

Most of the standard max-flow algorithms [65] calculate the maximum amount

of traffic between a given pair of source and destination nodes. In order to make

our system compatible with the these algorithms, we introduce two new nodes S∗

and D∗ in the subgraph Ge described above. We add edges from the new node S∗

to all sources in the graph Ge, and edges from all destinations in the graph to the

new node D∗. We assign infinite capacity to these new edges, so that they do not

become bottlenecks in any max-flow computation. Figure 3.9 shows an example of

the two new nodes added to the subgraph spanned by paths that go through the

edge e6. Assume that we know the available bandwidth (using only edges in the

set P (e)) through all edges in the graph Ge other than the edge e. We calculate

the maximum possible flow that we can send from S∗ to D∗ using the standard

max-flow algorithm [65].

Note that if the value of maxflow computation M is equal to the current an-

74

notation of the edge e, then we cannot update the annotation of the edge any

further. So, we leave the edge e unchanged, and proceed to the next edge. This

is an advantage of the bottleneck identification scheme. For example, if all flows

going through the current edge e also pass through another common edge in the

graph that has already been saturated (identified as bottleneck), then we know

the maximum amount of traffic that can be pumped through the edge. If this is

equal to the current annotation of the edge, then we leave the edge e unchanged.

This is illustrated in step9 of Figure 3.10, where we are trying to annotate edge e1.

Using the subgraph shown in Figure 3.8(a), we see that the maxflow through edge

e1 is 9 units. However, we have already annotated the edge with “> 9”, hence,

we cannot refine its annotation any further by running flows along the paths P1

and P2 simultaneously. Next consider the step10 shown in the same figure, where

we are considering to refine the annotation of edge e4. The maxflow through the

edge is 16, which is more than its current annotation. Hence, we open a TCP flow

along the paths P7 and P8 simultaneously in order to annotate edge e4.

If the maxflow M is greater than the current annotation, we choose a subset

of paths S that pass through edge e such that bandwidth of the paths is greater

than or equal to M. We later describe in Section 3.4.6 on how to pick the subset S

that contains minimum number of flows. Next we activate the paths in the set S,

i.e., we start TCP flows between the paths in order to drive an amount of traffic

M through the edge e. We measure the total throughput achieved by all the TCP

flows, and also identify the location of bottleneck link. If the total throughput

T is less than the maxflow computation, we mark edge e as a bottleneck, and

annotate it with “=T”, indicating that the edge has been saturated. Otherwise

the edge e is still not saturated. If the total throughput T is greater than the

75

current annotation, we update the annotation for edge e to be “>T”.

This is illustrated in Step11 and Step12 of Figure 3.10(b). We are trying to

annotate edge e11 in Step 11, which has three paths P2, P3 and P5 going through

it. We calculate the maxflow through edge e11 as 29. However, we do not need

to activate all the three flows in order to pass a flow of 29. We can achieve this

by opening only two flows, viz along the paths P2 and P5. Similarly, in step 12,

we can achieve the maxflow of 36 by activating only three of the four end-to-end

flows, viz, along paths P5, P7 and P8.

In this manner, the algorithm in Figure 3.12 iterates over all edges with anno-

tations of inequalities. At the end of loop, if any annotation was refined, we iterate

through all the steps again. Otherwise, the algorithm terminates and delivers the

current network annotation as output.

3.4.5 Use of Dynamic Programming

The implementation of the naive algorithm described above is easily amenable to

dynamic programming, where the maximum amount of traffic that can be driven

into a link from a set of annotated subgraphs can be computed, and then the flows

can be activated to check if they saturate the link. Indeed this is the approach

proposed independently by [41]. However, this algorithm does not identify the

location of bottleneck links along a path, and hence generates progressively more

simultaneous flows in the network as the size of the subgraphs increases.

3.4.6 Choosing the minimum number of flows

In order to annotate a given edge e, we first calculate the maximum amount of

traffic that can be driven through it, given the capacity constraints of other edges

76

S1

D1 D2

=5

>9

S2
=4

D3

S3
=20

=9
>20

>20

>20

>20

=16

S4

=13

>13

D4
=10

Edge e4:
Maxflow = 16
Current annotation: “>13”
Open flows along paths

P7 and P8
simultaneously.

Edge e4

S1

D1 D2

=5

Edge e1:
Maxflow = 9
Current annotation: “> 9”
No need to open any flow.

>9

S2
=4

D3

S3
=20

=9
>20

>20

>20

>20

=16

S4

=13

>13

D4
=10

Edge e1:

Step9 Step10

(a)

S1

D1 D2

=5

>9

S2
=4

D3

S3
=20

=9
>20

>20

>20

>20

=16

S4

=13

>16

D4
=10

Edge e11:
Maxflow = 29

Current annotation: “>20”
Open flows along paths

P2 and P5
simultaneously.

S1

D1 D2

=5

>9

S2
=4

D3

S3
=20

=9 >20

>25

>25

=25
=16

S4

=13

>16

D4
=10

Edge e6

Edge e6:
Maxflow = 36
Current annotation: “>20”
Open flows along paths

P5, P7 and P8
simultaneously.

Step11 Step12

(b)

Figure 3.10: Partial steps for the recursive stage of the improved algorithm with

bottleneck identification on the topology shown in Figure 3.5.

77

Input: A set of network endpoint addresses.

Output: Network topology connecting the end-points,

where each edge is annotated with maximum available bandwidth.

1. Run traceroute between each pair of endpoints to derive an

un-annotated network topology.

2. Annotate each edge on the un-annotated topology with “>0”.

3. For each pair of end-points,

3a. Run a TCP flow between the end-points to identify the location of

bottleneck link, and measure the bandwidth “B” of the path.

3b. Annotate each link on this path with “>X”,

where X = the maximum of its current annotation and B.

3c. Annotate the edge identified to be the path bottleneck with “=B”.

Figure 3.11: Pre-processing stage for the improved annotation algorithm with

bottleneck identification (contd. to Figure 3.12)

in the graph that share one or more end-to-end paths going through the edge e.

Note that there are various path combinations that can drive total flow equal to

the value given by max-flow algorithm described above. Our goal is to select the

minimum number of flows that can drive this traffic through the edge. All flows

through the edge e need not be activated to saturate it, since some of the paths

leading into e already get saturated upstream. So, we only need to activate enough

flows that can carry the saturated bandwidth down into e. The key is how to select

this subset of flows. One option is to pick flows greedily, in decreasing order of

their individual bandwidth when run independently. However, this scheme does

78

4. Set Changed to true.

5. While (Changed),

5a. Set Changed to false.

5b. For each edge e in the graph, not annotated with “=”,

(Let the current annotation be “> N”)

5b.i: Compute the “maxflow” M of the edge e (defined as the

maximum amount of flow that can be driven through an edge)

5b.ii: If M = N then go to step 5b.

5b.iii: Choose a subset S of the paths passing through e

whose total flow is ≥M.

5b.iv: Run a TCP flow on each of the paths in set S simultaneously.

Let the total throughput be T.

5b.v: For an edge e1 identified to be the bottleneck link

in this measurement, set the annotation of e1 to “=T”.

Set changed to true.

5b.vi: If T < M , annotate edge e with “=T”.

Set changed to true.

5b.vii: If T = M and current annotation was “>N” and N < T ,

then annotate edge e with “>T”, and set changed to true.

Figure 3.12: Recursive stage for the improved annotation algorithm with bottle-

neck identification (contd. from Figure 3.11)

79

not work, since the flows with large individual bandwidth might pass through a

common bottleneck upstream. So, if we try to run them simultaneously, we may

not be able to pass enough traffic through the edge e.

Our algorithm to select the minimum number of flows is as follows: We initialize

the subset S with flow f1 that gets maximum bandwidth when run independently.

In the next step, amongst all the flows belonging to P (e), we pick flow f2 such that

when f1 and f2 are run simultaneously, we get maximum total bandwidth, and add

it to the set S. We find this maximum total bandwidth using standard max-flow

algorithm on the subgraph spanned by edges of flows f1 and f2. In general, at any

stage, we pick the next flow such that when the new flow is run in conjunction

with the flows already in the subset S, we get the maximum increment in the total

traffic that can be driven through the edge e. We repeat this process until the set

of flows in S can saturate the edge e completely, i.e., the total bandwidth of all

flows in S when run simultaneously is equal to the max-flow of edge e.

3.4.7 Identifying bottleneck link with simultaneous flows

If we run multiple TCP flows simultaneously, all of which pass through a common

edge e, then we need to identify the location of the bottleneck link only along the

flow (denoted by fmax) that gets maximum bandwidth when run independently.

In other words, we can make edge e the bottleneck by running multiple flows

simultaneously if and only if e is the bottleneck link along the flow fmax.

To understand this, consider the graph shown in Figure 3.13. Let f1 denote

the TCP flow from S to D1, and f2 denote the TCP flow from S to D2. Let the

bottleneck bandwidth of edges e, e1 and e2 be B, b1 and b2 respectively. Without

loss of generality, assume that b1 ≤ b2. Also assume that when we run the flows

80

S

D1 D2

Edge e
Bandwidth B

Edge e1
Bandwidth b1

Edge e2
Bandwidth b2

Figure 3.13: Example showing how to identify bottleneck link with simultaneous

flows.

f1 and f2 independently, we identify edges e1 and e2 as bottlenecks respectively.

This means that b1 ≤ b2 ≤ B. Let us consider what happens when we run the two

flows f1 and f2 simultaneously.

• Case1: B > b1 + b2. In this case, the bottleneck bandwidth for common

edge e is more than the maximum amount of traffic that the two flows can

pump together. So, we cannot saturate edge e by running the two flows

simultaneously. Edges e1 and e2 will continue to be the bottlenecks for flows

f1 and f2 respectively.

• Case2: B < b1 + b2. Since b1 ≤ b2, this implies that b2 ≥ B/2, hence, edge

e will be the bottleneck for flow f2 when the two flows are run in parallel.

Note that edge e may or may not be the bottleneck for flow f1, depending

upon whether b1 is greater than B/2 or not.

This means that the available bandwidth of the edge e is less than b1 + b2 if

and only if the flow f2 gets bandwidth less than b2 when both the flows are run

81

simultaneously.

3.4.8 Estimating bandwidth for multiple TCP flows

The algorithm described above estimates the amount of bandwidth that a single

TCP flow would get on a given end-to-end path. This can easily be extended to

compute the bandwidth we would get by opening multiple TCP flows through a

given edge. For this, we maintain a rough estimate of the number of background

flows bottlenecked at a link.

Assume that raw bandwidth of the bottleneck link is C, and that there are N

background TCP flows currently going through the edge. First, we open a single

TCP flow through the edge, and label its bandwidth as B1. Assuming that all the

flows going through the edge have similar RTT, each of them would get an equal

fair share of the bottleneck bandwidth. Thus, B1 = C
N+1

. Next, we open k TCP

flows (k > 1) through the edge, and denote the average bandwidth obtained by

each of these as Bk. Assuming stationarity in the behavior of background flows,

we can say that Bk = C
N+k

. The above two equations can be solved to estimate the

number of background flows N , and raw bandwidth C. Finally, if our application

wants to open i TCP flows, we can estimate the amount of bandwidth obtained

by each as C
N+i

.

Note that this is a very rough estimation of the amount of background traffic.

Firstly, a single edge may not be the bottleneck for all the flows going through it,

since these flows may have different source/destination, and hence take different

paths in the network. In this case, we could think of N as the number of background

flows that are being bottlenecked by the edge, and C as the total bandwidth

obtained by all these N flows. The above two equations still hold true.

82

Secondly, opening more TCP flows could increase the number of flows that are

being bottlenecked at the edge. For example, consider an edge e with available

bandwidth of 10 Mbps. Assume that there is another edge e1 on the path with

available bandwidth of 9 Mbps. If we open multiple TCP flows, the available

bandwidth on the edge e reduced to 8 Mbps. So, all the flows that were earlier

being bottlenecked on the edge e1 will start getting bottlenecked on edge e. In

practice, we assume that N is usually big enough that this effect is not very

pronounced.

3.5 Experimental Results

We conducted extensive experiments on the real Internet to study the behavior

of Netmapper. We used a collection of 17 nodes geographically distributed in the

US that form the RON network [58]. Table 3.1 gives a list of nodes (along with

their IP address and geographical location) that we used in various experiments of

Netmapper. In order to have shared paths, we picked source nodes located on the

West Coast, and destination nodes near the East Coast.

The primary goal of our experiments is to see how the system behaves under

dynamically changing network state. The two main parameters that affect network

dynamics are variability in available bandwidth, and shift in location of bottleneck

link along a path. In order to understand the behavior of Netmapper under the

dynamics of real Internet, we performed an extensive study on how quickly the

available bandwidth and location of bottleneck link along a given path change

with time. We also study how the modified annotation algorithm reduces the

amount of traffic that we need to inject inside the network in order to annotate a

given graph.

83

Table 3.1: Information about various nodes used for the Netmapper experiments.

No. Name IP Address City State

S1 ana1-gblx 64.215.37.170 Anaheim CA

S2 digitalwest 65.164.24.58 Los Angeles CA

S3 ucsd 132.239.17.240 La Jolla CA

S4 msanders 205.166.119.19 San Mateo CA

S5 utah 155.98.35.100 Salt Lake City UT

S6 cybermesa 65.19.5.18 SantaFe NM

D1 nyu 216.165.108.39 New York NY

D2 webair 209.200.18.252 New York City NY

D3 cornell 128.84.154.59 Ithaca NY

D4 cmu 128.2.185.85 Pittsburgh PA

D5 mit-main 18.7.14.168 Cambridge MA

D6 roncluster1 18.31.0.181 Cambridge MA

D7 vineyard 204.17.195.103 Boston MA

D8 coloco 199.34.53.174 Laurel MD

D9 mvn 66.232.160.65 Mount Vernon IL

D10 chi1-gblx 64.215.37.86 Chicago IL

D11 umich 141.212.113.77 Ann Arbor MI

84

A brief summary of our experimental results is as follows:

1. Bandwidth variation: Using a 30-day long trace on 72 different paths on

the Internet, we show that average bandwidth along a given path remains

bounded by a factor of 2 over a period of 1.5-2 hours with high probability.

2. Bottleneck variation: Using a similar experimental setup as above, we

have shown that the location of a bottleneck link along a path does not change

at a very fast rate. The average length of time over which the bottleneck

link along a path remains constant is 2-3 hours with high probability.

3. Fast-converging algorithm: Our experience in deploying Netmapper on

the real Internet shows that it converges even under widely varying network

dynamics. Both variability in available bandwidth and shift in location of

bottleneck link are slow enough that they allow our system to converge, and

maintain a consistent graph.

In order to eliminate short-term variations in bandwidth/bottleneck, we show

using experiments that it is sufficient to average 3-6 samples of bandwidth

and bottleneck location along each path. We also validate the bandwidth

annotations of Netmapper by comparing with a naive algorithm that most

accurately estimates the true state of the network.

4. Consistency across time: We ran the netmapper algorithm on a given

set of nodes for a period of 30 days, and studied how the resulting graph

annotations change with time. We see that the relative change in resulting

annotations is less than 0.5 with more than 80% probability.

5. Reduced load on the network: We show that our modified annotation

algorithm reduces the total amount of probe traffic (as compared to a naive

85

algorithm) by approximately 50%, and significantly reduces the number of

TCP flows that we need to open simultaneously.

This section is organized as follows: Section 3.5.1 studies the variation in avail-

able bandwidth on a path as a function of time. Section 3.5.2 shows how frequently

the location of the bottleneck link along a path changes with time. Section 3.5.3

shows how the Netmapper algorithm behaves under the dynamics of the real In-

ternet. Section 3.5.4 tests the consistency of our results over time. Section 3.5.5

shows how our improved annotation algorithm (using dynamic programming and

bottleneck identification as a fundamental primitive) reduces the amount of probe

traffic that we need to inject inside the network in order to annotate a given graph.

Note that we could not use Planet-lab testbed for these experiments because

we require special privileges on the nodes. We need unconstrained TCP send/recv

windows in order to make sure that bottleneck is inside the network. We use a

modified version of traceroute (that sends all the ICMP probes in parallel) in order

to detect the location of bottleneck links, as will be discussed later in Chapter 4.

Finally, our goal is to test the system under the dynamics of the real Internet. Most

inter-node paths on Planetlab use Internet-2 and Abilene, giving us a fairly over-

provisioned network with less variability compared to the Internet, thus stressing

our techniques less.

3.5.1 Variability in bandwidth

On a short time scale, Paxson et al. have shown [43] that bandwidth just changes so

quickly that it is not possible to model it. However, we show that over a bigger time

scale (order of few minutes to an hour), taking an average over few samples bounds

the relative change in available bandwidth over a small time interval (typically, 1-

86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Average Length of Change-Free Region (hours)

CDF for average length of Change-Free Region for bandwidth variation

Ratio = 1.2
Ratio = 1.5

Ratio = 2
Ratio = 3
Ratio = 4

Figure 3.14: CDF for average length of Change-Free Region amongst 72 paths on

the Internet for bandwidth variation.

2 hours) with very high probability. Paxson et al. [43] have also conducted such

studies in the past, and reported similar results. But most of those studies are 5-8

years old. We performed similar experiments again to ensure that the stationarity

properties of bandwidth variability hold true today.

We took 72 different paths on the Internet. On each path, we found the avail-

able bandwidth by running a TCP flow, transferring 256K of data in each sample.

We took one bandwidth sample on each path every 3 minutes. We combine every

three consecutive samples into one bin using the average.

We define a Change-Free Region (CFR) as the time-interval in which ratio of

maximum bandwidth to minimum bandwidth remains less than some pre-specified

parameter (named as ρ). Figure 3.14 shows the average length of CFR for various

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Median Length of Change-Free Region (hours)

CDF for median length of Change-Free Region for bandwidth variation

Ratio = 1.2
Ratio = 1.5

Ratio = 2
Ratio = 3
Ratio = 4

Figure 3.15: CDF for median length of Change-Free Region amongst 72 paths on

the Internet for bandwidth variation.

values of ρ (referred to as “ratio=1.2”, “ratio=1.5”, etc in the figure). We see

that with 65% probability, average bandwidth remains within a factor of 2 over a

period of length 1.5-2 hours.

Since average value gets affected by some really large values of CFR, we also

plot the CDF for median length of CFR along each path in Figure 3.15. Similarly,

Figure 3.16 shows the CDF for maximum length of CFR along each path. The

results for the median value of CFR are similar to that of average CFR.

3.5.2 Shift in location of bottleneck link

The goal of this section is to study how frequently the location of the bottleneck

link along a path changes with time. Prior studies [53, 39] have shown steady-state

88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Maximum Length of Change-Free Region (hours)

CDF for maximum length of Change-Free Region for bandwidth variation

Ratio = 1.2
Ratio = 1.5

Ratio = 2
Ratio = 3
Ratio = 4

Figure 3.16: CDF for maximum length of Change-Free Region amongst 72 paths

on the Internet for bandwidth variation.

distribution of bottlenecks, but do not consider the dynamics involved in the shift

of location of bottleneck link over time. We show using experiments on the real

Internet that the location of bottleneck link shifts slow enough that it allows our

algorithm to converge.

We took 72 different paths on the Internet, and identified the location of bot-

tleneck link along each path, once every few minutes, for a period of 30 days. We

define a Change-Free Region (CFR) as the time-interval over which the location

of bottleneck link along a path does not change. We found CFRs along all the 72

paths. We plot the CDF for the average length of CFR along each path in Fig-

ure 3.17. The blue curve (labeled as “No averaging”) represents the CDF without

averaging. In order to find how averaging a number of samples helps, we tried

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(C
D

F
)

Average length of Change-Free Region (hours)

CDF for average length of Change-Free Region characterizing
 shift in location of bottleneck link along a path

Average 6 samples
Average 3 samples

No averaging

Figure 3.17: CDF for average length of Change-Free Region for shift in location of

bottleneck link along a path.

merging 3 consecutive samples (Green curve, labeled as “Average 3 samples”) and

6 consecutive samples (Red curve, labeled as “Average 6 samples”). We can see

from the figure that the average length of CFR along a path is more than 30 min-

utes with 50% probability. Taking the average of six consecutive samples increases

the average length of CFR to more than 2.5 hours with 50% probability, and more

than 100 minutes with 80% probability. Note that we have no way of validating

the shift in location of bottlenek link on the real Internet. We have validated our

bottleneck identification tool under diverse network conditions using extensive set

of experiments on the emulab [56] testbed: bottleneck due to raw bandwidth, or

due to transient congestion, multiple bottlenecks on a path, location of bottleneck

changing dynamically with time, bottleneck oscillating between two links, etc.

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Median length of Change-Free Region (hours)

CDF for median length of Change-Free Region characterizing
 shift in location of bottleneck link along a path

Average 6 samples
Average 3 samples

No averaging

Figure 3.18: CDF for median length of Change-Free Region for shift in location of

bottleneck link along a path.

Figures 3.18 and Figure 3.19 show the median and maximum length of CFR

(respectively) along each path. The results for both median and maximum value

of CFR are very similar to that of average CFR. In other words, if we average 3-6

consecutive samples of bottleneck estimation, it eliminates short-term fluctuations,

and significantly increases the length of Change-Free Region.

3.5.3 Fast converging algorithm and consistent graph

Our experience in deploying Netmapper on the real Internet shows that it con-

verges even with network dynamics. Both variability in available bandwidth and

shift in location of bottleneck link are slow enough that they allow our system to

converge, and maintain a consistent graph. We define a graph to be consistent if

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(C
D

F
)

Maximum length of Change-Free Region (hours)

CDF for max length of Change-Free Region characterizing
 shift in location of bottleneck link along a path

Average 6 samples
Average 3 samples

No averaging

Figure 3.19: CDF for maximum length of Change-Free Region for shift in location

of bottleneck link along a path.

the bandwidth annotation of each edge is less than both the total influx into the

edge, and the total outflux out of the edge. Taking the average over a few sam-

ples (typically 3-6) of bandwidth and bottleneck estimation along a path removes

most of the inconsistencies in the resulting annotated graph. Figure 3.20 shows

the final annotated graph output by Netmapper for four source nodes and eight

destination nodes. To visually simplify this, Figure 3.21 shows Netmapper results

for a single source (located at Los Angeles), and nine destinations (around the East

Coast). We can see from the figure that almost all the bandwidth annotations are

consistent, except for the edge 2–>4.

In order to determine the accuracy of Netmapper’s output, we compared the

bandwidth annotations produced by Netmapper with the output of naive algo-

92

SanDiego0

12

>2.38

LosAngeles0

87

=5.88

LaJolla0

131

>52.12

SanMateo0

180

=0.19

Boston1

Maryland1

NewYork1

nyc1

cmu1

Ithaca1CambridgeB1 CambridgeC1

25

63

>0.20

37

>0.73

27

>0.51

65

>6.33

>1.22

17

=1.04

52

>0.42

18

20

>1.04137

>1.12

=1.1223

>1.04

71

>5.77

82

83

>0.25

84

>0.24

>12.11

>1.04

>20.70

>1.37

35

>11.52

60

>10.70

66

=0.20

=0.24

51

=0.22

=0.51

=0.23

56

>4.97

57

=0.21

>10.69

70

>0.20

106

=6.33

>0.19

>0.20

>0.21 119

>4.97

>0.19

>10.09

127

>6.20 >12.21 >6.33

125

=6.01 128

>5.02

223

>0.19

116

>4.97 >6.01

>5.02

101

>6.33

88

>12.54

115

>12.54

89

=1.33

97

>5.88

>6.06

>6.33 =4.97

=12.54

>5.88

178

>5.66 >11.27

133

>1.12

163

=11.22

164

>11.41

152

>4.82

=11.27

146

=5.60

147

>23.23

=4.28 >11.22 >34.38

=5.15

=4.82

>0.17

>11.22

>1.12

203

197

>0.17

199

>0.17

201

>0.17

182

>0.19191

>0.19

>0.17

183

>0.19

>0.19

>0.12

>0.19>0.19 >0.17

>0.17

>0.19

>0.19

>0.19

Figure 3.20: Final annotated graph output by Netmapper for four source nodes

(around West Coast) and eight destination nodes (around East Coast).

93

LosAngeles

1

>43.61

NewYork

nyc

Ithaca

Boston

CambridgeB CambridgeA

Illinois

Umich

Chicago

=10.58

2

>27.04

3

>13.67

4

>22.28

5

>5.55

=3.70

6

=7.31

7

>5.55

9

>4.13

>5.55

=12.49 =1.15

11

>4.13 10

>5.55

=4.13 =5.55

8

>6.22>4.74

>5.55

>7.31=6.22

Figure 3.21: Final annotated graph output by Netmapper for single source node

and eight destination nodes.

94

LosAngeles

1

>55.19

NewYork

nyc

Ithaca

Boston

CambridgeB CambridgeA

Illinois

Umich

Chicago

>11.77

2

>34.17

3

>12.55

4

>23.43

5

>15.74

>4.63

6

>18.82

7

>6.08

9

>6.05

>6.08

>12.55 >1.39

11

>6.05 10

>6.08

>6.05 >6.08

8

>6.33>5.26

>6.08

>7.61>11.13

Figure 3.22: Final annotated graph output by Naive algorithm for single source

node and eight destination nodes.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Relative change in bandwidth

Comparing the accuracy (relative change)
 of improved annotation algorithm versus a naive scheme.

Figure 3.23: Validating the accuracy (relative change) of bandwidth annotations

output by our improved algorithm (using bottleneck identification), with reference

to the naive scheme.

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Absolute difference in bandwidth (Mbps)

Comparing the accuracy (absolute difference)
 of improved annotation algorithm versus a naive scheme.

Figure 3.24: Validating the accuracy (absolute difference) of bandwidth annota-

tions output by our improved algorithm (using bottleneck identification), with

reference to the naive scheme.

97

rithm, which is the best estimator for the actual network state. Recall that the

naive algorithm (See Section 3.4.2) annotates each edge by simultaneously run-

ning a TCP flow along all the paths that go through the edge. Figure 3.23 shows

the Cumulative Distribution Function (CDF) for relative change in bandwidth be-

tween the output of Netmapper and naive scheme. We can see that the bandwidth

annotation on each edge is very close (within 30% with 75% probability). This

much variation is inherent due to the short-term fluctuations in available band-

width, and shift in location of bottleneck link. We show later in Section 3.5.4

that relative change between the output of Netmapper at two different times is

less than 0.3 with approx. 75% probability. As a sample illustration, Figure 3.21

and Figure 3.22 show the graphs output by Netmapper and the naive algorithm

respectively for a system with 1 source and 9 destinations. Bandwidth annotations

for most of the edges are very close, except for edges 4->6, 6->8 and 2->5.

Note that on an average, there are more bottleneck links closer to the source.

We believe this is because most of the regular nodes on the Internet are provi-

sioned asymmetrically (with downlink bandwidth significantly higher than uplink

bandwidth). We also ran the Netmapper experiments on nodes that form part

of IBM Intra-grid network, we found that more bottleneck links were closer to

the destination. IBM nodes were provisioned in “server” style, with higher uplink

bandwidth than downlink.

3.5.4 Consistency across time

Our next goal is to test the consistency of Netmapper results over time. In other

words, if we run Netmapper on the same set of nodes at two different times, how

similar do the resulting graphs look ? We ran the netmapper algorithm on a graph

98

with four sources (nodes S1..S4 shown in Table 3.1), and eight destinations (nodes

D1..D8 shown in Table 3.1) for a period of 30 days (once per day), and performed a

pair-wise comparison of the resulting graphs. We classify each edge into one of the

three classes. The first class (labelled as both edges inequality) consists of edges that

were annotated with inequality information in both the graphs. In other words,

we could not saturate these edges even by running the maximum possible traffic

through them. Second class (labelled as both edges bottleneck) consists of edges

that were identified as bottleneck in both the graphs. If an edge was identified

as bottleneck in only one of the two graphs, we classify it into the third category

(labelled as one bottleneck). We compare the resulting graphs along the following

parameters:

(a) We computed relative change in bandwidth annotation of an edge across two

different graphs. Figure 3.25 shows the CDF for the relative change in band-

width across all pairs of graphs (amongst 30 days, approx 900 comparisons)

for all the three categories of edges defined above. We see from the figure

that if an edge has been identified as a bottleneck in both the graphs, the

relative change in its bandwidth annotation is less than 0.5 with 83% proba-

bility. This probability increases to 89% for edges that could not be saturated

in either of the two graphs. We believe this is due to the large amount of

available bandwidth on these edges, and we have not been able to saturate

them using our limited number of flows. On the other hand, this proba-

bility decreases to 66% for edges that were identified as bottleneck in one

graph, but not the other. This could be because of relatively high variability

in bandwidth across these edges. We also compared the Netmapper graphs

that were a fixed time period apart, and found results to be very similar to

99

that of comparing all the graphs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Relative change in bandwidth

Comparing different kind of edges across all graphs

Both edges inequality
Both edges bottleneck

One bottleneck

Figure 3.25: CDF for the relative change in bandwidth annotation of a link at two

different times.

(b) Figure 3.26 shows the CDF for absolute difference in bandwidth annotation of

a link across two different graphs. The trends are very similar to the relative

change in bandwidth. Probability that difference in bandwidth annotations

is less than 1Mbps is 78%, 82% and 61% for first, second and third category of

edges respectively. We see that if an edge has been identified as a bottleneck

in only one of the two graphs, then there is a higher chance that its absolute

bandwidth differs by more than 1 Mbps.

(c) We tried to estimate the stability of our bottleneck estimation process over

time. In other words, if we identify a link as bottleneck at one time, what are

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
(C

D
F

)

Absolute difference in bandwidth (Mbps)

Comparing different kind of edges across all graphs

Both edges inequality
Both edges bottleneck

One bottleneck

Figure 3.26: CDF for the difference in bandwidth annotation of a link at two

different times.

101

the chances that we will annotate it as bottleneck again at a later time. For

this, we performed a pair-wise comparison of all 30 graphs, and computed

the number of links that were identified as bottleneck in one graph, but not

another. We found that if we identify a link as bottleneck in one graph, with

83.5% probability, we have also identified it as bottleneck in another graph.

In other words, if we could not saturate an edge at one time, there is 16.5%

chance that we may be able to saturate it at some other time.

We also computed this probability for graphs that are a fixed length of time

apart. For example, we compared graphs that are one day apart, two days

apart, and so on. Figure 3.27 plots the probability as a function of the time

interval between two runs. We see that the probability increases a little bit

over time, but remains stable (less than 25%) overall.

3.5.5 Reduction in the amount of probe traffic

Our final goal is to see how much improvement our new annotation algorithm

(using bottleneck identification as a fundamental primitive, as described in Sec-

tion 3.4) offers, as compared to a naive scheme (which runs a TCP flow along all

possible paths that go through each edge). We conducted a series of experiments

with different source/destination nodes to test this. Table 3.2 shows the list of

source/destination nodes used in various experiments. As described earlier, source

nodes are located on the West Coast, while destination nodes are located on the

East Coast (or Mid-West) in order to ensure sharing. Note that experiments 1a, 1b

and 1c have the same set of source nodes, while experiments 1a, 2a and 3a have the

same set of destination nodes. The goal is to see how adding a source/destination

node affects the amount of probe traffic.

102

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time interval between two graphs (days)

Probability that an edge is identified as bottleneck in one graph, but not another

Figure 3.27: Probability that an edge is identified bottleneck in one graph, but not

another as a function of the time interval between runs.

103

Table 3.2: List of nodes used in various experiments of Netmapper.

Expt No. of No. of List of List of

No. Sources Dests Sources Destinations

1a 3 6 S1..S3 D1..D6

1b 3 8 S1..S3 D1..D8

1c 3 11 S1..S3 D1..D11

2a 4 6 S1..S4 D1..D6

2b 4 8 S1..S4 D1..D8

2c 4 11 S1..S4 D1..D11

3a 5 6 S1..S5 D1..D6

3b 5 8 S1..S5 D1..D8

3c 5 11 S1..S5 D1..D11

4a 6 6 S1..S6 D1..D6

104

Table 3.3 compares the total number of TCP flows that we need to open using

both the improved algorithm (labeled as Netmapper) and the naive (labeled as

Naive) scheme. We see that Netmapper reduces the number of TCP flows by

45-55%, as compared to the naive scheme.

Table 3.3: Comparison of the probes for various experiments of Netmapper versus

Naive algorithm.

Expt Total No. of TCP Flows Total No. of Steps

No. Netmapper Naive Ratio Netmapper Naive Ratio

1a 53 100 0.53 28 47 0.59

1b 89 140 0.63 44 71 0.62

1c 91 188 0.48 51 84 0.61

2a 83 162 0.51 42 76 0.55

2b 97 212 0.45 49 106 0.46

2c 116 256 0.45 65 109 0.59

3a 98 201 0.48 50 80 0.62

3b 166 307 0.54 74 137 0.54

3c 175 399 0.43 93 156 0.59

4a 131 241 0.54 64 97 0.65

Note that adding a source node increases the number of TCP flows by much

larger amount, as compared to adding a destination node. This could be because in

our experiments, we find more bottleneck links closer to the source. As described

earlier, this is due to asymmetric provisioning of nodes on the Internet.

Table 3.4 shows a breakup of the number of parallel probes for each length that

105

we had to open. For example, if L3 = 5, it means that five steps required us to

open three flows in parallel. We see that with Netmapper, there is a significant

reduction in the number of parallel probes. This is really useful, since in a working

system, we often have a limit on the maximum amount of probe traffic we can

inject inside the network at a given time. The share of network bandwidth of a set

of TCP probe flows, and hence their intrusivenes, is proportional to the number

of simultaneous flows.

3.6 Conclusions

In this chapter, we have described a service called Netmapper that distributed

applications can use to monitor available bandwidth in the network. The ser-

vice uses sophisticated techniques to map out the connectivity and capacity of

the network connecting these endpoints. We describe how the network monitoring

and annotation algorithm improves upon existing monitoring solutions in several

quantifiable ways. Using the annotated network topology produced by Netmapper

as input, the application may use any end-to-end control knob (like MPAT[48],

multi-homing[60], overlay routing[5], server selection[59], etc) to manage its per-

formance. We have built Netmapper, and deployed it on a collection of nodes that

form part of the RON[5] network. Our experience testing Netmapper on the real

Internet shows that network dynamics are slow enough that they allow our system

to converge.

Applications can use Netmapper at different levels of abstraction. They can

use its annotated network representation natively to make their own decisions, or

abstract away network monitoring and control completely in Netmapper. Multiple

applications sharing a network can use Netmapper, which can also act as a resource

106

Table 3.4: Comparison for the breakup of the total number of probes for various

experiments using Netmapper and Naive algorithms.

Expt No L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

1a-Netmapper 17 3 5 1 1 1 0 0 0 0

1a-Naive 23 9 8 2 3 2 0 0 0 0

1b-Netmapper 24 10 5 1 2 0 0 2 0 0

1b-Naive 41 13 10 1 3 0 0 3 0 0

1c-Netmapper 32 8 7 1 1 1 1 0 0 0

1c-Naive 44 16 14 2 2 1 2 0 0 1

2a-Netmapper 23 9 3 4 1 2 0 0 0 0

2a-Naive 37 17 9 6 2 5 0 0 0 0

2b-Netmapper 30 8 2 5 2 0 1 1 0 0

2b-Naive 62 19 10 7 3 0 1 4 0 0

2c-Netmapper 40 13 4 5 1 1 1 0 0 0

2c-Naive 53 24 12 8 4 1 3 1 0 1

3a-Netmapper 27 12 3 3 4 1 0 0 0 0

3a-Naive 28 22 11 5 10 3 0 1 0 0

3b-Netmapper 38 14 6 6 7 0 1 2 0 0

3b-Naive 69 28 16 6 9 2 3 4 0 0

3c-Netmapper 52 24 5 6 3 1 1 1 0 0

3c-Naive 77 30 12 12 10 2 4 3 1 0

4a-Netmapper 34 14 7 1 4 4 0 0 0 0

4a-Naive 36 24 14 10 5 7 0 1 0 0

107

broker when multiple applications contend for network resources.

Currently we are interfacing two applications with Netmapper. One is a peer-

to-peer voice conferencing service, which stresses our algorithms both in terms of

managing bandwidth and latency for the application. We are driving this study

using actual traces from a production voice conferencing service. The second appli-

cation is peer-to-peer network gaming to reduce game server hosting costs, where

gaming peers are selected on the basis of network performance between them.

This study is also being driven using traces from a production gaming service.

The characteristics of these applications are significantly different, allowing us to

demonstrate the broad applicability of Netmapper as a network monitoring ser-

vice for different kinds of applications. Ultimately we plan to deploy a pilot of the

service over the real Internet as part of a production application deployment.

Chapter 4

Tneck: A tool to identify bottlenecks

4.1 Bottleneck Identification

In this chapter, we describe our bottleneck identification mechanism, which is a

component of the network mapping and annotation algorithm discussed in Chap-

ter 3. Bottleneck identification is a method to identify which link on a network

path has the least available bandwidth. The term “available bandwidth” refers

to the amount of bandwidth that an application can get by opening one or more

TCP flows. Note that available bandwidth as described herein is different from raw

bandwidth of a link, or bandwidth obtained by a UDP flow. Using this technique,

if a certain edge e in a network path is identified to be the bottleneck link, it is

annotated with “=B” as edge e is the constraining link in the end-to-end path and

the bandwidth of the end-to-end path is B. Our goal is to identify the bottleneck

link faced by one or more TCP flows along a network path, without perturbing

other traffic sharing the same path. The key challenge in bottleneck identification

is that we can only rely on end-to-end measurements to isolate an internal network

property.

An interesting approach to the problem, known as BFind [53] was to correlate

an increase in the traffic rate of a flow with an increase in the per-hop delay

reported along its path by traceroute, and identify the hop showing the maximum

increase in delay as the bottleneck link. A key limitation of the approach is that it

uses a congestion insensitive UDP flow to ramp up the traffic on a path. Though

UDP is the only viable choice when we have control over only one of the endpoints

of the path, several undesirable properties result from this choice. Firstly, since the

108

109

UDP flow is congestion insensitive, it may push away background traffic from the

bottleneck link, especially TCP flows with small windows. This causes the probe

flow to “open up” the bottleneck, potentially leading to incorrect identification of

the bottleneck. Secondly, as mentioned in Chapter 3, we attempt to annotate a

network with the bandwidth available to a TCP flow, assuming that the application

will use network-friendly TCP or TFRC flows. A link being the bottleneck for a

TCP flow depends upon several complex factors, for instance RTTs and window

sizes of the background TCP traffic. Hence, in general, the bottleneck for a UDP

flow may not be the bottleneck for a TCP flow. Finally, a collection of UDP probes

can be extremely intrusive to other traffic in the network, and may even flood the

network.

TReno [45] tries to adapt its probe traffic to network congestion by using the

Additive Increase Multiplicative Decrease (AIMD) algorithm. However, TReno

uses ICMP packets as probe packets, and hence converges very slowly (since ICMP

packets are sent on the slow path of the router).

4.1.1 TCP-based bottleneck estimation

A more desirable solution is to use TCP’s own bandwidth ramp-up to induce and

detect a bottleneck in the network. Figure 4.1 illustrates our scheme for detecting

the location of bottleneck link along a network path. The TCP protocol between

a sender and receiver connected over a network path operates by increasing the

sending rate, thus probing for available bandwidth in the network. When the

TCP protocol detects a packet loss, the sending rate is decreased and the probing

process is repeated by increasing the sending rate.

The intuition behind developing a TCP-friendly variant of BFind [53] is derived

110

Bottleneck identification

Per-hop delays (reported by traceroute)
identify where queues build up

� bottleneck

Sender
Receiver

TCP sending
rate

Increase in sending rate leads to queuing,
and hence increased delay, at the bottleneck.

Figure 4.1: TCP-based identification of the bottleneck link along a path.

from TCP Vegas [46]. TCP Vegas reacts proactively to impending congestion by

reacting to an increase in RTT before incurring a loss event. The premise is

that there is a stable, detectable increase in queuing delay before a loss occurs.

When the sending rate is increased, the delay experienced by packets at each link

increases. However, the property of the bottleneck link on a path is that it shows

the highest increase in delay. This delay can be measured by running the traceroute

utility on the path together with the TCP flow, as traceroute reports the per-hop

delay experienced by packets. Thus, our system utilizes traceroute and TCP in

conjunction in order to infer the bottleneck link on a network path. We refer to

this tool as Tneck, which stands for Tcp-friendly bottleNECK estimation.

To implement Tneck, we start by measuring the latency of each link along the

111

Standard traceroute takes 10-15 RTTs to finish
one round, and may miss out the “high queueing
delay” period.

W
in

do
w

 S
iz

e

Time

Traceroute samples

Figure 4.2: This figure shows how using standard traceroute may not provide

accurate information about the queues being built at the bottleneck link.

path using traceroute. We call this as base latency for the link. We take a number

of traceroute samples (typically five), and record the minimum latency on each

link as its base latency. Note that base latency intuitively represents propagation

delay of the link. Next, we open a TCP connection between the two end-points.

As TCP ramps up its congestion window, we start running traceroute to sample

the latency on each link. We find the increase in delay on each link as compared to

the base latency. This increased delay is primarily caused by the increased queuing

delay. We mark the link that shows maximum increase in delay as the bottleneck

link. We wait for four consecutive samples during which we see the increased delay

before marking a given link as bottleneck.

112

W
in

do
w

 S
iz

e

Time

Traceroute samples

Parallel traceroute sends all the ICMP packets
with increasing TTL together, and gets all the
link latencies in single RTT.

Figure 4.3: This figure shows how the modified (parallel) traceroute can capture

link latencies very quickly and frequently.

4.1.2 Need for parallel traceroute

As we know from standard queuing theory, significant increase in queuing delay

occurs in a narrow range of high utilization (for a very small time interval). Hence,

one must respond to the increased delay within a small number of RTTs. Thus, in

order to identify bottlenecks in conjunction with TCP, traceroute must be able to

sample the increased delay quickly. To get its result, however, standard traceroute

can take time proportional to the number of hops in the path times the RTT. It

starts by sending ICMP packets with Time-To-Live (TTL) value of 1, waits for

the reply, then sends packets with TTL of 2, and so on. Figure 4.2 shows how

standard traceroute could miss information about the queues being built at the

bottleneck link.

In order to quickly sample the increased queuing delay, we modify standard

113

traceroute to send multiple ICMP packets with increasing TTL values simultane-

ously. We refer to this as parallel traceroute. This allows us to get the per-hop

delays in one RTT. Figure 4.3 shows how parallel traceroute provides the sampling

frequency needed for bottleneck identification to work with TCP.

4.2 Experimental results

There has been a lot of work done recently on detecting bottlenecks. The work

that is most closely related to our tool is BFind [53] and Pathneck [39]. The two

key distinguishing features of our tool Tneck, as compared to BFind and Pathneck

are as follows. First, Tneck sends TCP packets as probing traffic, as opposed to

UDP traffic. Second, Tneck uses parallel traceroute while BFind and Pathneck use

standard traceroute.

In order to understand how these fundamental differences manifest themselves

in the real world, we implemented Tneck on the Linux operating system, and con-

ducted extensive experiments with Tneck over the real Internet using the IBM

IntraGRID [63] nodes, and the RON nodes [58] as the endpoints. The IBM Intra-

GRID is a network of nodes for Grid computing that has over 50 nodes spread all

over the world. The RON network consists of 20 nodes all over the U.S. We also

performed an extensive set of experiments on the Emulab [56] testbed to validate

our tool under diverse network conditions: bottleneck due to raw bandwidth, or

due to transient congestion, multiple bottlenecks on a path, location of bottleneck

changing dynamically with time, bottleneck oscillating between two links, etc.

114

2 Mbps 1 Mbps
A B

C D

R1 R2 R3

Figure 4.4: Emulab topology used to show that existing tools detect an incorrect

bottleneck link if the bottleneck is due to transient congestion.

4.2.1 Bottleneck due to transient congestion

We conjecture that both BFind and Pathneck incorrectly identify the bottleneck

link if the bottleneck is due to transient congestion, and not due to raw bandwidth.

The intuition being that BFind uses a congestion insensitive UDP flow to ramp up

the traffic on a path. To validate this, we setup the topology shown in figure 4.4 on

Emulab[56]. Nodes A, B, C and D are end-hosts, while R1, R2 and R3 are interme-

diate routers. Unless explicitly shown in the figure, all links have bandwidth of 100

Mbps. We open two long-running TCP flows from C to D. A TCP flow between A

and B has R1-R2 as the bottleneck link, since 1/3rd of the link bandwidth (0.67

Mbps) is available to all 3 flows. However, running BFind[53] between A and B

reports R2-R3 as the bottleneck, because it pushes away the traffic of the 2 TCP

flows between C and D on the link R2-R3, occupying more than its fair share of

0.67 Mbps on R2-R3. The Pathneck tool also suffers from a similar problem if it

sends its packet train at a rate higher than the available bandwidth.

115

4.2.2 Effect on background traffic

The fact that Tneck opens a TCP flow between the two end-points makes our tool

non-intrusive to the background flows. Tneck induces much less probe traffic inside

the network, as compared to BFind. This also allows us to keep Tneck running

over a long period of time. We ran both Tneck and BFind over the real Internet,

and found that due to the aggressive nature of UDP flows, BFind converged to

a bottleneck at a probe bandwidth 3-4 times higher than the TCP-based variant.

In many cases, BFind was not able to converge to a bottleneck because either

standard traceroute was not able to sample the induced increase in delay, or it

pushed away most of the competing background traffic. In fact, during one of

our BFind experiments, two of the IBM IntraGRID nodes in Europe were taken

off the network by AT&T since their network surveillance system classified the

excessive bandwidth being consumed by the UDP traffic as worm-like behavior by

the endpoints!

4.2.3 The role of TCP and parallel traceroute

After deploying both Tneck and BFind on the real Internet, we found that our

tool Tneck can identify bottleneck links on paths where BFind does not. This is

especially true if the RTT between the two end-hosts is very large, for example

between New York and China. We believe that this is primarily due to the fact

that Tneck uses parallel traceroute. BFind does not see the increased delay for

sufficient number of traceroute samples, and hence misses out the bottleneck link.

We also observed that many routers which usually respond back to ICMP packets,

stop doing so when we send too many UDP packets. Due to this, BFind often

does not report any bottleneck link. Tneck, however, gets all the ICMP responses

116

back (since it uses TCP packets), and hence identifies a bottleneck link. Even if

both Tneck and BFind detect the same bottleneck link, our tool Tneck converges

faster.

4.2.4 Limitations of Tneck

The biggest drawback of Tneck is that it requires control at both source and

destination. Both BFind and Pathneck require control at only one of the end-

points. However, if all the end-points are part of a distributed application (as

is the case with our Netmapper system described in Chapter 3), we believe it is

reasonable to assume control over both ends.

Tneck would not be able to identify the bottleneck link if the underlying TCP

flow is limited by its receive window. Similarly, BFind would not converge if the

available bandwidth on the path is more than the maximum rate at which BFind

sends its UDP traffic. There are other drawbacks of our bottleneck estimation tool

(in general, any tool that relies on the latency information reported by traceroute).

Firstly, traceroute sends ICMP packets, and many routers simply ignore all the

ICMP packets (or, at least do not send a response back for the ICMP packets

whose TTL expires). Due to this, traceroute output does not report latency for

some of the links, and hence tools like Tneck and BFind do not identify a bottleneck

link. Secondly, ICMP packets lie on the slow path of intermediate routers. Note

that the physical path taken by ICMP packets is same as that taken by UDP and

TCP packets. The only difference is that most routers give lower priority to ICMP

packets (i.e., drop ICMP packets with higher probability, or delay the response to

ICMP packets). This leads to inaccuracy in the latencies reported by traceroute.

117

4.3 Conclusions

In this chapter, we described a novel scheme to identify the location of bottlenecks

in a network for a distributed networked application. The tool improves upon

existing methods [53, 39] for bottleneck identification. Specific contributions over

existing schemes include identifying bottlenecks with little to no impact on the

regular traffic, and matching TCP’s notion of bottleneck (as opposed to, say link-

level definitions). We show using experiments (under controlled settings of the

Emulab environment [56]) that existing bottleneck identification schemes [53, 39]

detect incorrect bottleneck link if the bottleneck is due to transient congestion.

We used the bottleneck identification tool as a key primitive in the network

annotation algorithm described in Chapter 3. The applicability of the tool is broad

enough that end-users can use it to estimate the performance of the network path

to a given destination, while ISPs can use it to quickly locate network problems,

or to guide traffic engineering both at the interdomain and intradomain level.

Chapter 5

Conclusions and future work
In this chapter, we summarize our contributions, and point out directions for fu-

ture research, both in addressing the limitations of this work, and in pursuing new

avenues. Network performance is the key determinant of end-to-end performance

and user experience for various applications[1, 2, 25, 38, 53]. However, most ap-

plications do not have explicit mechanisms to manage the network performance.

We endeavored in this thesis to develop techniques for exposing the network as a

managed resource to applications without requiring any explicit support from the

network elements like routers, gateways, ISPs, etc. As part of this broad initiative,

we have built systems to monitor (Netmapper, Tneck) and control (MPAT) the

network from end-hosts, and tested them on the real Internet.

In Chapter 2, we described MPAT, the first truly scalable algorithm for fairly

providing differential services to TCP flows that share the same bottleneck link.

The TCP protocol state at an end-system captures rich information about the state

of the network, such as flow’s fair share of network bandwidth at its bottleneck,

network delays, loss characteristics, and so on. While an individual flow’s TCP

state information may have limited value, the combined state of a large number

of TCP flows can be a rich indicator of the state of the network. Internet servers

typically have a very large number of TCP connections active simultaneously.

Grouping these connections logically into flows that share a bottleneck link or a

path can provide a comprehensive view of the internal network state, at the ends

of the network. Managing this aggregate congestion state provides us a level of

control within the network, without having control mechanisms implemented inside

118

119

the network.

Unlike known schemes, our approach preserves the cumulative fair share of

the aggregated flows even where the number of flows in the aggregate is large.

Specifically, we demonstrated, primarily through experiments on the real Inter-

net, that congestion state can be shared across more than 100 TCP flows with

throughput differentials of 95:1. This is up to five times better than differentials

achievable by known techniques. Indeed, MPAT scalability is limited only by the

delay-bandwidth product of the aggregated flows. With this tool, it is now possible

to seriously explore the viability of network QoS through overlay network services.

The next goal is to build some real-world applications that can benefit out of

this work. The two killer applications that we have in mind are the enterprise

network and grid applications. Companies like IBM need to give more bandwidth

to gold-customers as compared to best-effort customers in the enterprise network.

Grid applications have lot of background transfers (like file system backup) that

need less bandwidth. We would like to look more generally at problems associ-

ated with designing an overlay network to provide general QoS service to a wide

community of users (the QISP model discussed in Chapter 1).

We would also like to look more at the problem of how to provide differential

QoS from a single server. For this, we need to develop some novel techniques for

detecting whether multiple connections to a single server share the same bottleneck

link in the network or not. Schemes like negative delay/loss correlation have been

proposed in the literature, but are not very effective in a generalized setting. For

the proposed service differentiation scheme, we intend to analyze, both analytically

and empirically, the impact of aggregating flows with widely varying RTTs.

As of now, our system MPAT can provide bandwidth apportionment only

120

among long-running TCP flows. Most of the traffic on the Internet consists of

web traffic that has short-running TCP flows. In order to integrate MPAT into

real-world applications, we plan to develop mechanisms to benefit short flows. One

possible approach we are investigating is to map multiple short flows into a single

long flow, or to use a higher value of initial congestion window (known as warm

start).

Our current implementation of MPAT requires us to make changes at the server

side. We are looking to develop a middle box that could possibly be placed near

the gateway router, or firewall box of the site. The goal is that we deploy our

MPAT system at these middle boxes, and all the server machines inside a site

remain unchanged. This will ease out the deployment of our system in the real

world, especially in enterprise settings. Our approach is to have the middle box

maintain multiple congestion windows and do the bandwidth apportionment. The

middle box could in turn control the individual senders by advertising different

value of receiver window size.

In Chapter 3, we described a network mapping and annotation service for

distributed applications sensitive to bandwidth availability, latency, or loss. Ap-

plications (or resource managers working on their behalf) are expected to use this

service to plan their network resource usage and fault response. We expose internal

network state (e.g. bandwidth available on the edges) using only end-to-end mea-

surements that are TCP-friendly. Knowledge of this internal state allows trend

analysis, network performance debugging, network planning and exploitation of

alternate routes, making such a service useful for both network providers and their

ISP and enterprise customers.

The system (called Netmapper) takes as input the set of end-points of a dis-

121

tributed application, maps out the network connectivity between them, and an-

notates each edge (to the extent possible) with available bandwidth. Netmapper

deploys end-to-end TCP probes between the end-points of an application to es-

timate the available bandwidth on various network paths. It then identifies the

bottleneck links on these paths using a novel TCP-friendly bottleneck identifica-

tion technique. Our scheme to identify the location of bottleneck links (described

in Chapter 4) improves upon existing methods for bottleneck identification, which

detect an incorrect bottleneck link if the bottleneck is due to transient network

congestion. Netmapper eventually annotates all the edges whose annotation is

possible given the network topology and the available end-points. The end-to-

end probes are intelligently planned so that the annotation requires a minimum

number of probes. We have built Netmapper, and tested it out on a network of

machines that form the RON network. Our system consumes very small amount

of bandwidth, and converges fast even with dynamically varying network state.

Currently, we are interfacing three applications with MPAT and Netmapper.

One is a peer-to-peer voice conferencing service, which stresses our algorithms

both in terms of managing bandwidth and latency for the application. The sec-

ond application is a distributed network gaming service that needs network-aware

placement and mapping of servers to clients. The third one is a distributed data

mining application in grid computing. All these studies are being driven by traces

from production conferencing and gaming services. The characteristics of these

applications are significantly different, allowing us to demonstrate the broad appli-

cability of MPAT and Netmapper as part of a network performance management

service for different kinds of applications.

BIBLIOGRAPHY

[1] V. Padmanabhan, Addressing the Challenges of Web Data Trans-

port, Ph.D. Thesis, University of California at Berkeley, Sept 1998.
http://www.cs.berkeley.edu/ padmanab/phd-thesis.html

[2] H. Balakrishnan and H. S. Rahul and S. Seshan, An Integrated Congestion Man-

agement Architecture for Internet Hosts, in Proceedings of ACM SIGCOMM,
pages 175-187, Sept 1999.

[3] J. Crowcroft and P. Oechslin Differentiated End-to-End Internet Services using

a Weighted Proportional Fair Sharing TCP, ACM Computer Communication
Review, 28(3):53-69, July 1998.

[4] V. Padmanabhan and R. Katz, Addressing the Chal-

lenges of Web Data Transport, Unpublished, Jan 1998.
http://www.research.microsoft.com/ padmanab/papers/thesis-paper.pdf

[5] D. Andersen and H. Balakrishnan and M. Kaashoek, and R. Morris, Resilient

Overlay Networks, in Proceedings of 18th ACM SOSP, Oct 2001.

[6] V. Padmanabhan, Coordinating Congestion Management and Bandwidth Shar-

ing for Heterogeneous Data Streams, in Proceedings of NOSSDAV’99, Basking
Ridge, NJ.

[7] P. Gevros and F. Risso and P. Kirstein, Analysis of a method for differential

TCP service, in Proceedings of IEEE GLOBECOM, pages 1699-1708, Dec 1999.

[8] L. Subramanian and I. Stoica and H. Balakrishnan and R. Katz, OverQoS: An

Overlay Based Architecture for Enhancing Internet QoS, First Symposium on
Networked Systems Design and Implementation (NSDI), March 2004.

[9] J. Touch, TCP Control Block Interdependence, RFC-2140, April 1997.

[10] D. Andersen and D. Bansal and D. Curtis and S. Seshan and H. Balakrishnan,
System Support for Bandwidth Management and Content Adaptation in Internet

Applications, in Proceedings of the 4th Symposium on Operating Systems Design
and Implementation, pages 213-226, Oct 2000.

[11] 3rd Generation Partnership Project 2 (3GPP2), Quality of Service: Stage 1

Requirements, 3GPP2 S.R0035, www.3gpp2.org

[12] A. Bestavros and O. Hartmann, Aggregating Congestion Information Over

Sequences of TCP Connections, In BUCS-TR-1998-001, Boston University, Dec
1998.

[13] L. Berger, RSVP over ATM Implementation Guidelines, RFC 2379, Aug 1998.

[14] L. Zhang and S. Deering and D. Estrin and S. Shenker and D. Zappala, RSVP:

A new resource ReSerVation Protocol, IEEE Network, 7:8-18, Sept 1993.

122

123

[15] R. Braden and D. Clark and S. Shenker, Integrated services in the Internet

architecture: an overview, RFC 1633, June 1994.

[16] S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang and W.
Weiss, An architecture for differentiated services, RFC 2475, Oct 1998.

[17] E. Rosen and A. Viswanathan and R. Callon, A Proposed Architecture for

MPLS, Internet Draft, draft-ietf-mpls-arch-00.txt, July 1997.

[18] A. Akella and S. Seshan and H. Balakrishnan, The Impact of False Sharing on

Shared Congestion Management, in Proceedings of ACM SIGCOMM Computer
Communication Review, Jan 2002.

[19] J. Padhye and J. Firoiu and J. Kurose, Modelling TCP Throughput: A Simple

Model and its Empirical Validation, in Proceedings of ACM SIGCOMM, pages
303-314, Aug 1998.

[20] J. Semke and J. Mahadavi and M. Mathis, Automatic TCP Buffer Tuning, in
Proceedings of ACM SIGCOMM, pages 315-323, Aug 1998.

[21] H.T. Kung and S.Y. Wang, TCP Trunking: Design, Implementation and Per-

formance, in Proceedings of 7th International Conference on Network Protocols
(ICNP’99), pages 222-231, 1999.

[22] S. Savage, Sting: a TCP-based network measurement tool, in Proceedings of
USENIX Symposium on Internet Technologies and Systems (USITS), Oct 1999.

[23] S. Floyd and M. Handley and J. Padhye and J. Widmer, Equation-based Con-

gestion Control for Unicast Applications, in Proceedings of ACM SIGCOMM,
pages 43-56, Aug 2000.

[24] P. Pradhan and T. Chiueh and A. Neogi, Aggregate TCP congestion control

using multiple network probing, in Proceedings of ICDCS 2000, pages 30-37,
April 2000.

[25] H. Balakrishnan and V. Padmanabhan and S. Seshan and M. Stemm and R.
Katz, TCP behavior of a busy web server, in Proceedings of IEEE INFOCOM,
pages 252-262, March 1998.

[26] A. Venkataramani and R. Kokku and Mike Dahlin, TCP NICE: A mechanism

for background transfers, in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 329-344, Dec 2002.

[27] C. Jin, D.X. Wei and S.H. Low, FAST TCP: Motivation, Architecture, Algo-

rithms, Performance, to be published in Proceedings of IEEE Infocom, March
2004.

[28] The Daytona User-Level TCP Stack, Reference hidden for anonymity.

124

[29] D. Chiu and R. Jain, Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks, Journal of Computer Networks
and ISDN Systems, 17(1):1-14, June 1989.

[30] V. Jacobson, Congestion Avoidance and Control, in Proceedings of ACM SIG-
COMM, pages 314-329, Aug 1988.

[31] H. Y. Hsieh and K.H. Kim and R. Sivakumar, On Achieving Weighted Service

Differentiation: an End-to-end Perspective, in Proceedings of IEEE IWQoS,
June 2003.

[32] P. Gevros, Internet Service Differentiation using Transport Options: the case

for policy-aware congestion control, in ACM Workshop on Revisiting IP QoS
(RIPQoS), Aug 2003.

[33] B. Davie, Deployment experience with Differentiated Services, in ACM Work-
shop on Revisiting IP QoS (RIPQoS), Aug 2003.

[34] P. Hurley and J.-Y. L. Baudec and P. Thiran and M. Kara, ABE: Providing a

Low-Delay Service with Best Effort, IEEE Network Magazine, Special Issue on
Control of Best-Effort Traffic, 15(3):60-69, May 2001.

[35] C. Dovrolis and P. Ramanathan, A case for Relative Differentiated Services

and the Proportional Differentiation Model, IEEE Network, 13(5):26-34, Sept
1999.

[36] T. Nandagopal and K.W. Lee and J. R. Li and V. Bharghavan, Scalable Ser-

vice Differentiation Using Purely End-to-End Mechanisms: Features and Limi-

tations, in Proceedings of IEEE IWQoS, June 2000.

[37] D. Lin and R. Morris, Dynamics of Random Early Detection, in Proceedings
of ACM SIGCOMM, pages 127-137, Sept 1997.

[38] Y. Chu, S. Rao, S. Seshan and H. Zhang, Enabling Conferencing Applications

on the Internet Using an Overlay Multicast Architecture, SIGCOMM 2001.

[39] N. Hu, L. Li, Z. Mao, P. Steenkiste, J. Wang, Locating Internet Bottlenecks:

Algorithms, Measurements, and Implications, Sigcomm 2004.

[40] N. Miller and P. Steenkiste, Collecting Network Status Information for

Network-Aware Applications, INFOCOM 2000.

[41] S. Ganguly, A. Saxena, R. Izmailov, S. Datta and S. Roy, Path Induced Con-

struction of Available Bandwidth Map for an Overlay Network, unpublished.

[42] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt and L. Zhang, IDMaps:

A global internet host distance estimation service, IEEE Transactions on Net-
working, Oct 2001.

125

[43] Y. Zhang, N. Duffield, V. Paxson and S. Shenker, On the constancy of internet

path statistics, IMW 2001.

[44] Y. Chen, D. Bindel, H. Song and R. H. Katz, An Algebraic Approach to

Practical and Scalable Overlay Monitoring, SIGCOMM 2004.

[45] M. Mathis and J. Mahdavi, Diagnosing Internet Congestion with a Transport

Layer Performance Tool, INET 1996.

[46] L. Brakmo, S. O’Malley, and L. Peterson, TCP Vegas: New techniques for

congestion detection and avoidance, SIGCOMM 1994.

[47] J. Jannotti, D. Gifford, K. Johnson, F. Kaashoek, and J. O’Toole, Overcast:

Reliable Multicasting with an Overlay Network, OSDI 2000.

[48] M. Singh, P. Pradhan and P. Francis, MPAT: Aggregate TCP Congestion

Management as a Building Block for Internet QoS, ICNP 2004.

[49] D. Clark, J. Wroclawski, K. Sollins and R. Braden, Tussle in Cyberspace:

Defining Tomorrow’s Internet, SIGCOMM 2002.

[50] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, Internet Indirection

Infrastructure, SIGCOMM 2002.

[51] Y. Chen, D. Bindel, H. Song and R. H. Katz, An Algebraic Approach to

Practical and Scalable Overlay Monitoring, SIGCOMM 2004.

[52] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, Measuring ISP

Topologies with Rocketfuel, Sigcomm 2002.

[53] A. Akella, S. Seshan and A. Shaikh, An Empirical Evaluation of Wide-Area

Internet Bottlenecks, IMC 2003.

[54] N. Hu, L. Li, Z. Mao, P. Steenkiste, J. Wang, Locating Internet Bottlenecks:

Algorithms, Measurements, and Implications, SIGCOMM 2004.

[55] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt and L. Zhang, IDMaps:

A global internet host distance estimation service, IEEE Transactions on Net-
working, Oct 2001.

[56] Emulab test-bed. http://www.emulab.net

[57] Planetlab test-bed. http://www.planet-lab.org

[58] RON test-bed http://www.datapository.net

[59] http://www.akamai.com

[60] A. Akella, B. Maggs, S. Seshan, A. Shaikh and R. Sitaraman, A Measurement-

Based Analysis of Multihoming, SIGCOMM 2003

126

[61] S. Savage, Sting: a TCP-based network measurement tool, USITS 1999.

[62] S. Chen, K. Nahrstedt, An Overview of Quality-of-Service Routing for the

Next Generation High-Speed Networks: Problems and Solutions, IEEE Network
Magazine, Dec 1998.

[63] https://intragrid.webahead.ibm.com

[64] M. Kodialam, T. Lakshman and S. Sengupta, Online Multicast Routing with

Bandwidth Guarantees: A New Approach using Multicast Network Flow, SIG-
METRICS 2000.

[65] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

