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Abstract

In Smullyan’s classic book, First-Order Logic [21], the notion of a Boolean valuation is central in
motivating his analytical tableau proof system. Smullyan shows that these valuations are unique if they
exist, and then he sketches an existence proof. In addition he suggests a possible computational procedure
for finding a Boolean valuation, but it is not related to to the existence proof.

A computer scientist would like to see the obvious explicit recursive algorithm for evaluating proposi-
tional formulas and a demonstration that the algorithm has the properties of a Boolean valuation. Ideally,
the algorithm would be derived from the existence proof. It turns out to be unexpectedly difficult to find
a natural existence proof from which the algorithm can be extracted, and it turns out that the implicit
computational content of Smullyan’s argument is not found where one might expect it.

We show that using the notion of a very dependent function type, it is possible to specify the Boolean
valuation and prove its existence constructively so that the natural recursive algorithm is extracted and
is known to have the mathematically required properties by virtue of its construction. We illustrate all
of these points using the Nuprl proof development system [9].

1 Introduction

1.1 Computational Aspects of Logic

Propositional logic can be developed in a purely noncomputational way, stressing the completeness theorem
and various properties of truth sets, satisfiability, and compactness. Often these topics are cast in a way
that motivates them for the corresponding treatment of predicate logic where they cannot be treated com-
putationally. Raymond M. Smullyan adopts this purely mathematical, noncomputational approach [21]. He
stresses mathematical elegance and connections to natural proof styles.

Propositional logic can also be presented in a completely computational way in which the formulas are
given by a recursive data type, evaluation is a recursive function over this type, and the principle theorem
is that validity and satisfiability of propositional formulas is decidable [6]. Indeed, the Satisfiability problem
(SAT) in computing theory deals with deep computational questions about the algorithms arising in this
approach.

We contrast these approaches as “pure” and “computational.” We are interested in exploring how the
two approaches can be simultaneously presented, thus providing the best of each. We show that this can be
done, but not as straightforwardly as one might expect.

∗This material is based upon work supported in part by the National Science Foundation under Grant No. 9812360.
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1.2 Algorithm Development

Computer scientists are not only interested in developing fast algorithms for a problem, they also want to
know the properties of these algorithms, including knowing what problems they solve.

One interesting way to develop an algorithm and its properties together is to synthesize the algorithm
from an existence proof [8, 2, 18, 19, 10, 12, 16, 17]. This is a common practice in computational mathematics,
and computer scientists have automated the practice for a large class of formal theories. There are systems
such as Coq [1], Nuprl [9], and MetaPRL [15, 13], which automatically synthesize algorithms from proofs.
The process is called the extraction of an algorithm [2]. Programs developed this way are known to be
correct-by-construction [12, 20].

The practice of algorithm synthesis from constructive proofs is derived from a more general idea that
proofs can be viewed as programs [8, 3]; that is, they have computational content which can be systematically
extracted.

The method of programming with proofs has achieved considerable success as a means of reliable pro-
gramming [5]. Several sophisticated algorithms have been developed in this way [7, 11], including protocols
for distributed systems [4].

Experience has shown that proofs have unexpected computational content, and it has shown that some-
times the expected content is deeply hidden in the proof. This work will show both features.

2 Preliminaries

We cast our account of formulas and Boolean valuations in the Nuprl proof development environment [9].
All of the definitions (ABS), theorem statements (STM), proofs (PRF), and rules (RULE) are taken directly from
the system.

2.1 Formulas

Our account of formulas is most closely related to Smullyan’s final scheme (“of a radically different sort”)
for defining formulas [21, p. 7], in that formulas are not strings to be parsed, but are recursively structured
from their immediate subformulas:

ABS: form

form() ==
rec(form.$pvar:$v:N +

$pnot:$U:form +
$pand:$U:form × $V:form +
$por:$U:form × $V:form +
$pimp:$U:form × $V:form)

The notation $l:t tags a token parameter with a term; for example, pnot labels the term $U:form and U
labels the term form. These tokens are used by abstract syntax tree tactics to label case analyses, invoke
appropriate folding/unfolding of definitions, and to generate names for introduced variables.

A particularly useful definition is form cases which simultaneously discriminates and destructs an ele-
ment of the form() type:

ABS: form cases

form_cases(z;
v.pvar_f[v];
U.pnot_f[U];
U,V.pand_f[U; V];
U,V.por_f[U; V];
U,V.pimp_f[U; V]) ==

case z
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of inl(z) => pvar_f[z]
| inr(z) => case z

of inl(z) => pnot_f[z]
| inr(z) => case z

of inl(z) => pand_f[z.1; z.2]
| inr(z) => case z

of inl(z) => por_f[z.1; z.2]
| inr(z) => pimp_f[z.1; z.2]

Definitions for injections into the form() type, tactics for induction (structural, size, and depth), and
decidability theorems for equality and membership in the form() type are all generated automatically from
a succinct description of the desired abstract syntax.

2.2 Subformulas

With this definition of the type of formulas in place, we are able to follow Smullyan fairly closely in his
definition of immediate subformula and subformula, which is:

The notion of immediate subformula is given explicitly by the conditions:

I0: Propositional variables have no immediate subformulas.

I1: ¬X has X as an immediate subformula and no others.

I2 − I4: The formulas X∧Y , X∨Y , X ⇒ Y have X, Y as immediate subformulas and no others.

The notion of subformula is implicitly defined by the rules:

S1: If X is an immediate subformual of Y , or if X is identical with Y , then X is a subformula
of Y .

S2: If X is a subformula of Y and Y is a subformula of Z, then X is a subformula of Z.

The above implicit definition can be made explicit as follows: Y is a subformla of Z iff (i.e., if
and only if) there exists a finite sequence starting with Z and ending with Y such that each term
of the sequence except the first is an immediate subformla of the preceding term.[21, p. 8]

We formulate the immediate subformula concept as a relation between two formulas, satisfied when the
first is an immediate subformula of the second:

ABS: IsImmedSubForm

IsImmedSubForm(X;Z) ==
form_cases(Z;

v.False;
U.X = U ∈ form();
U,V.(X = U ∈ form()) ∨ (X = V ∈ form());
U,V.(X = U ∈ form()) ∨ (X = V ∈ form());
U,V.(X = U ∈ form()) ∨ (X = V ∈ form()))

This slightly simplifies the use of the immediate subformula concept, avoiuding an unnecessary detour into
membership in a list of immediate subformulas.

The implicit definition of subformula is difficult to analyze, as S2 can be applied an arbitrary number
of times by applying S1 with equal formulas. Hence, we choose a definition that enforces a strict chain of
immediate subformulas from X to Z:

3



ABS: IsSubForm ml

IsSubForm(X;Z) ==r
(X = Z ∈ form()) ∨
((¬(X = Z ∈ form())) ∧ (∃Y:form(). (IsImmedSubForm(Y;Z) c∧ IsSubForm(X;Y))))

We also define set types (i.e., comprehension types) corresponding to the sets of immediate sub- and
sub-formulas of a given formula:

ABS: ImmedSubForm, SubForm

ImmedSubForm(X) == {A:form()| IsImmedSubForm(A;X)}
SubForm(X) == {A:form()| IsSubForm(A;X)}

2.3 Valuations, Extensions and Boolean Valuations

Smullyan defines valuations and extensions as follows:

Now we consider, in addition to the formulas of propositional logic, a set {t, f} of two distinct
elements, t, f as truth-values. For any set S of formulas, by a valuation of S, we mean a function
v from S into the set {t, f} – i.e., a mapping which assigns to every element X of S one of the
two values t, f .

If S1 is a subset of S2 and if v1, v2 are respective valuations of S1, S2, then we say that v2 is an
extension of v1 if v2, v1 agree on the smaller set S1.[21, pp. 9–10]

For convenience, we identify Smullyan’s set {t, f} with the Nuprl type of Booleans, B. There is little
advantage to defining a specific abstraction for valuations; Nuprl’s function type suffices. We therefore only
define the ValuationExtension abstraction and prove that it is well-formed:

ABS: ValuationExtension

ValuationExtension(S1;f1;S2;f2) == ∀X:S1. f1 X = f2 X ∈ B

STM: ValutionExtension wf

∀S1:U. ∀f1:S1 → B. ∀S2:U. ∀f2:S2 → B.
((S1 ⊆r S2) ⇒ (ValuationExtension(S1;f1;S2;f2) ∈ P))

Note that the subset relation is placed in the well-formedness theorem, rather than in the abstraction.
This seems more in the spirit of Smullyan’s definition, although the alternative could be used with little
complication.

The definition of a Boolean valuation is Smullyan’s first “formal” definition:

Now we wish to consider valuations of the set E of all formulas of propositional logic. We
are not really interested in all valuations of E, but only in those which are “faithful” to the
usual “truth-table” rules for the logical connectives. This idea we make precise in the following
defintion.

Definition 1. A valuation v of E is called a Boolean valuation if for every X, Y in E, the
following conditions hold:

B1: The formula ¬X receives the gvalue t if X receives the value f and f if X receives the value
t.

B2: The formula X ∧ Y receives the value t if X, Y both receive the value t, otherwise X ∧ Y
receives the value f .
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B3: The formula X ∨Y receives the value t if at least one of X, Y receives the value t, otherwise
X ∨ Y receives the value f .

B2: The formula X ⇒ Y receives the value f if X, Y receive the respective values t, f , otherwise
X ⇒ Y receives the value t.

This concludes our definition of a Boolean valuation. [21, p. 10]

(Note that the set E corresponds to the form() type.) Rather than simply using the concept of a Boolean
valuation for the set of all formulas, we relativize the concept by defining partial Boolean valuation as a
valuation that satisfies B1 – B4 on all elements of a given subset of formulas:

ABS: PartialBooleanValuation

PartialBooleanValuation(S;f) ==
∀X:S.

form_cases(X;
v.True;
Y.f X = ¬b(f Y) ∈ B;
Y,Z.f X = (f Y) ∧b (f Z) ∈ B;
Y,Z.f X = (f Y) ∨b (f Z) ∈ B;
Y,Z.f X = f Y ⇒b (f Z) ∈ B)

Note that this definition does not make sense when a compound formula X is a member of the set S but
it’s immediate subformulas are not. Therefore, we define the predicate DownClosed on subsets of formulas,
which is true exactly when all subformulas of a formula X are members of the set S whenever X is a member
of the set S:

ABS: DownClosed

DownClosedForm(S) == ∀X:S. (SubForm(X) ⊆r S)

The predicate is well-formed (i.e., makes sense) whenever S is a type corresponding to a set formulas:

STM: DownClosed wf

∀S:{S:U| S ⊆r form()}. (DownClosedForm(S) ∈ P)

With this definition in hand, we can state and prove the following well-formedness theorem for the
PartialBooleanValuation abstraction:

STM: PartialBooleanValuation wf

∀S:{S:U| S ⊆r form()}.
(DownClosedForm(S) ⇒ (∀f:S → B. (PartialBooleanValuation(S;f) ∈ P)))

2.4 Existence and Uniqueness of Boolean Valuations

There are a number of ways of approaching the proof of the existence and uniqueness of a Boolean valuation
on a single formula Z given an interpretation v0 of the variables of Z. However, our final goal will always
be:

STM: Valuation Theorem

∀Z:form(). ∀v0:Var(SubForm(Z)) → B.∃!f:SubForm(Z) → B.
ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f) ∧
PartialBooleanValuation(SubForm(Z);f)

That is, we wish to show that for any formula Z and interpretation v0 of the variables of Z, there exists one
and only one function f assigning truth values to the subformulas of Z such that f is an extension of v0 and
f is a partial Boolean valuation on subformulas of Z.
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3 Four Approaches

As described above, we can consider both “pure” and “computational” approaches to the presentation of
propositional logic. While the preliminaries given in the previous section are aimed towards a computation
approach, they do not exclude the pure approach. In this section, we sketch four approaches to the proof of
Valuation Theorem and consider their advantages and disadvantages. Principally, we are concerned with
gauging the approaches along a number of different axes. Foremost, we would like an elegant proof, one that
can be presented both formally and informally. Second, we would like to extract the computational content
of the proof as an algorithm for evaluation propositional formulas, one that is recognizable as the obvious
recursive algorithm. Third, we would like to minimize the effort required to complete the proof, measured
loosely in terms of the number of inductive arguments and the complexity of the proofs.

We present these four approaches as the Mathematician, who embodies the “pure” approach, the Pro-
grammer, who embodies the computational approach without using extracts, the Formalist, who embodies
the computational approach using extracts, and the Computer Scientist, who embodies the computational
approach using very dependent function types.

3.1 The Mathematician

Smullyan adopts a purely mathematical, noncomputational approach to the proof of Valuation Theorem.
In his text, he writes:

Consider a single formula X and an interpretation v0 of X – or for that matter any assignment
v0 of truth values to a set of propositional variables which includes at least all variables of X
(and possibly others). It is easily verified by induction on the degree of X that there exists
one and only one way of assigning truth values to all subformulas of X such that the atomic
subformulas of X (which are propositional variables) are assigned the same truth values as under
v0, and such that the truth value of each compound subformula Y of X is determined from the
truth values of the immediate subformulas of Y by the truth-table rules B1 − B4. [We might
think of the situation as first constructing a formation tree for X, then assigning truth values to
the end points in accordance with the interpretation v0, and then working our way up the tree,
successively assigning truth values to the junction and simple points, in terms of truth values
already assigned to their successors, in accordance with the truth-table rules]. In particular, X
being a subformula of itself receives a truth value under this assignment; if this value is true then
we say that X is true under the interpretation v0, otherwise false under v0. Thus we have now
defined what it means for a formula X to be true under an interpretation.[21, pp. 10–11]

While Smullyan’s parenthetical remark (“[We might think . . .]”) appears to describe the obvious recursive
algorithm for computing the evaluation of a propositional formula, it is far from clear that this procedure
corresponds in any meaningful way to the main proof. In particular, Smullyan suggests proving Valuation
Theorem by induction on X; in a formal proof, we proceed as follows:

PRF: BySmullyan UniqueExistence

DIR BySmullyan_UniqueExistence
P BySmullyan_UniqueExistence

#
∀Z:form(). ∀v0:Var(SubForm(Z)) → B.

{!f:SubForm(Z) → B |
ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f)
∧ PartialBooleanValuation(SubForm(Z);f)}

BY
UnivCD THENW SubFormClean THEN
FORMInd 1 THEN PreserveL (
UnivCD THENW SubFormClean)·
# 3
.....pand case.....
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1. Q : form() → P
2. ∀Z:{Z:form()| Q Z}. ∀v0:Var(SubForm(Z)) → B.

{!f:SubForm(Z) → B |
ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f)
∧ PartialBooleanValuation(SubForm(Z);f)}

3. U : {Z:form()| Q Z}
4. V : {Z:form()| Q Z}
5. v0 : Var(SubForm(pand(U;V))) → B
` {!f:SubForm(pand(U;V)) → B |

ValuationExtension(Var(SubForm(pand(U;V)));v0;SubForm(pand(U;V));f)
∧ PartialBooleanValuation(SubForm(pand(U;V));f)}

BY

At this point, our only option is to instantiate the induction hypothesis (2) with the immediate subformulas
(U and V) of the formula under consideration. This yields a function fU (resp. fV) for computing Boolean
valuations on subformulas of U (resp. V). At this point, we can construct a witness term of the following
form:

PRF: BySmullyan UniqueExistence

λZ.if form_equalF <Z, pand(U;V)> then (fU U) ∧b (fV V)
if IsSubFormF <Z, U> then fU Z
if IsSubFormF <Z, V> then fV Z
else tt
fi

where form equalF and sfaIsSubFormF are functions extracted from proofs of the decidability of the core-
sponding propositions. In addition to being unweildy in the proofs of the resulting subgoals, these terms
yield a grossly inefficient extracted algorithm, because explicit formula equality and subformula checks are
used at every step in the recursion.

3.2 Programmer

In an alternative proof of Valuation Theorem, we can instantiate the witness for f with a recursively defined
valuation function:

CODE: Value ml

Value(v0;X)
==r form_cases(X;

v.v0 pvar(v);
A.¬bValue(v0;A);
A,B.Value(v0;A) ∧b Value(v0;B);
A,B.Value(v0;A) ∨b Value(v0;B);
A,B.Value(v0;A) ⇒b Value(v0;B))

However, we never explicitly prove that this definition is well-formed for any general choices of v0 and X.
In the proof of Valuation Theorem, we instantiate v0 and X with specific choices and, as a consequence
of completing the proof, implicitly show that this instance of the recursive function is well-formed (and
furthermore is a Boolean valuation).

Formally, we prove:

STM: ByExplicit UniqueExistence

∀Z:form(). ∀v0:Var(SubForm(Z)) → B.
{!f:SubForm(Z) → B | ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f)
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∧ PartialBooleanValuation(SubForm(Z);f)}

where we replace ∃!... with {!...}, a set type that suppresses extraneous computational content in the
extraction. Unsurprisingly, viewing the extract yields exactly the recursive proceduce Value:

PRF: ByExplicit UniqueExistence view

DIR ByExplicit_UniqueExistence_view
P ByExplicit_UniqueExistence_view

#
TERMOF{ByExplicit_UniqueExistence:o, \v:l}
BY RepeatFor 1 (RW (HigherC AnyExtractC) 0) THEN Reduce 0·
# 1
λZ,v0,X.Value(v0;X)
BY

END ByExplicit_UniqueExistence_view

While this method transparently yields the obvious recursive algorithm for the evaluation of a proposi-
tional formula, there is an implicit duplication of effort. First, we must discover the algorithm and, then, we
must prove that it has the desired properties. This results in a proof being dictated by the algorithm, rather
than the algorithm being extracted from the proof. To remedy this situation, we turn to the next approach.

3.3 The Formalist

In our third proof of Valuation Theorem, we wish to extract an algorithm from the existence proof. However,
this turns out to be rather difficult. Surprisingly, we find a formulation in terms of a theorem tantamount
to the uniqueness of a Boolean valuation rather than the existence of a valuation, the existence to be proved
afterwards.

In particular, we prove the following theorem:

STM: ByExtract Uniqueness

∀Z:form(). ∀v0:Var(SubForm(Z)) → B.
{y:B|
∀f:SubForm(Z) → B.
((ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f) ∧

PartialBooleanValuation(SubForm(Z);f))
⇒ y = f Z ∈ B)}

Intuitively, this theorem says that for any formula Z and interpretation v0 of the variables of Z, there is a
unique Boolean value y which is the value assigned to Z by any Boolean valuation f of Z under v0. We will
prove this theorem by induction on Z. Moreover, the implicitly defined computable function from Z to y is
thus a Boolean valuation that applies to any formula Z and any interpretation of the set of variables of Z.
We will extract this function automatically from the proof of ByExtract Uniqueness.

First, here is a sketch of the proof of ByExtract Uniqueness.

In the base case of the induction Z is a variable, say v. We take y = v0 v. Any Boolean valuation of
Z under v0 must equal v0 v by the definition of ValuationExtension.

Suppose for the induction case that this result is true for all immediate subformulas of Z. Consider
the structure of any Z which is not a variable.

If Z is a negation, say ¬U , then U is an immediate subformula of Z and hence there is a unique
yU ∈ B which is the value assigned to U by any Boolean valuation. Let y = not(yU ). If f is a
Boolean valuation of Z, then f(Z) = not(f(Z)) by the definition of PartialBooleanValuation,
and by the induction hypothesis, yU = f(U); hence, y = f(Z).
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If Z is U op V for any binary connective, then since U and V are immediate subformulas of Z,
by the induction hypothesis, there are unique yU and yV in B. Let y = bop(yU , yB) where bop is
the boolean operation corresponding to op.
By the definition of PartialBooleanValuation, any boolean valuation f satisfies

f(U op V ) = bop(f(U), f(V )).

By the induction hypothesis, yU = f(U), yV = f(V ). Thus, f(Z) = bop(f(U), f(V )) = y as
required.

Completing this proof in Nuprl is relatively straightforward. We can automatically extract the computation
content (i.e., the evaluation algorithm) of this proof and view it:

PRF: ByExtract Uniqueness view

DIR ByExtract_Uniqueness_view
P ByExtract_Uniqueness_view

#
TERMOF{ByExtract_Uniqueness:o, \v:l}
BY RepeatFor 2 (RW (HigherC AnyExtractC) 0) THEN Reduce 0·
# 1
λZ.rec_ind(Z;f,x.form_cases(x;

v.λv0.(v0 pvar(v));
X.λv0.(¬b(f X v0));
X,Y.λv0.((f X v0) ∧b (f Y v0));
X,Y.λv0.((f X v0) ∨b (f Y v0));
X,Y.λv0.(f X v0 ⇒b (f Y v0))))

BY
END ByExtract_Uniqueness_view

This is recognizable as the recursive algorithm for the evaluation of a propositional formula, although this
extract needlessly passes the interpretation v0 at each recursive call. (Note that the rec ind term describes
a recursive procedure over the formula Z, where the recursive procedure is bound to the variable f in the
second subterm.)

In the proof of Valuation Theorem, we instantiate the witness with the extracted algorithm:
TERMOF{ByExtract Uniqueness:o, \v:l}. The disadvantage of this proof is that must explicitly manipu-
late the extraction term.

3.4 The Computer Scientist

In our final proof of Valuation Theorem, we advocate using Jason Hickey’s very-dependent function type
[14, 15] to combine the specification and the witness. In particular, we form the following very-dependent
function type:

ABS: RFunctionValue

RFunctionValue(X;v0) ==
{f | A:SubForm(X)

→ {form_cases(A;
v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z)):B}}
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We interpret {f | x:A → B} as the type of functions with domain A and range type B[f;x] on argument x,
where f is the function itself. That is, this is a type of very dependent functions whose range type depends
on calls to the function itself. Hence, RFunctionValue(X;v0) is the type of functions from subformulas
of X to a Boolean value equal to the evaluation of the function on immediate subformulas and combined
with the appropriate Boolean operator. We use a singleton type to lift value of the Boolean valution to a
type. Note that RFunctionValue(X;v0) is a type, not a term; that is, RFunctionValue(X;v0) cannot be
presented as the witness function in the proof of Valuation Theorem. Rather, any inhabitant of the type
RFunctionValue(X;v0) suffices as a witness in the proof of Valuation Theorem. Hence, we proceed in the
development of Valuation Theorem as follows.

First, we must prove that RFunctionValue is a type: We expect this proof to be straightforward, but
there are a few subtle difficulties. The proof begins in a standard manner, giving a well-founded ordering
for the very-dependent function domain (i.e., formulas under the IsImmedSubForm relation):

STM: IsImmediateSubForm well founded2

∀Z:form(). WellFnd{i}(SubForm(Z);x,X.IsImmedSubForm(x;X))

However, we quickly arrive at this point:

PRF: RFunctionValue wf

1. X : form()
2. v0 : Var(SubForm(X)) → B
3. A : SubForm(X)
4. f : {f | A:{z:SubForm(X)| IsImmedSubForm(z;A)}

→ {form_cases(A;
v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z)):B}}

` {form_cases(A;
v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z)):B} ∈ U

The difficulty here is that in order to prove that the singleton is indeed a type, we must prove that the
singleton value is indeed an element of the Boolean type. However, to prove that the form cases(A;...)
term is a member of the Boolean type, we must in turn prove that f B is a member of the Boolean type
whenever B is an immediate subformula of A. Thus, we attempt to cut in a proof of ∀B:ImmedSubForm(A).
(f B ∈ B). Attempting to use very-dependent function elimination yields that f B is a member of the
singleton type {form cases(B;...):B}. Unfortunately, the rule for dependent set membership elimination
is the following:

RULE: dependent set memberEquality

H ` a1 = a2 ∈ {x:A| B}
BY dependent_set_memberEquality !parameter{i:l} y ()
H ` a1 = a2 ∈ A
H ` !subst(B; x.a1)
H y:A ` !subst(B; x.y) = !subst(B; x.y) ∈ U

Thus, trying to apply this rule to the hypothesis f B ∈ {form cases(B;...):B}, yields as the second
sub-goal, the requirement to prove that the form cases(B;...) term is a member of the Boolean type.

10



As one can see, we have not made any real progress, as this will immediately require cutting in a proof of
∀C:ImmedSubForm(B). (f C ∈ B).

Various (complicated) solutions suggest themselves. We may be able to construe some inductive proof that
simultaneously proves RFunctionValue(X;v0) ∈U and ∀f:RFunctionValue(X;v0). ∀A:SubForm(X). (f
A ∈ B). Yet, this is unsatisfactory for two reasons. First, the very-dependent function type should incoro-
prate the inductive argument. Second, the essential difficult is not with the very-dependent function type,
it is with the subset type. In the cut proof of ∀B:ImmedSubForm(A). (f B ∈ B), we arrive at this point:

PRF: RFunctionValue wf

1. X : form()
2. v0 : Var(SubForm(X)) → B
3. A : SubForm(X)
4. f : {f | A:{z:SubForm(X)| IsImmedSubForm(z;A)}

→ {form_cases(A;
v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z)):B}}

5. B : ImmedSubForm(A)
6. f B ∈ {form_cases(B;

v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z)):B}

` f B ∈ B

Arguing from semantics at this point suffices: given that f B is a member of a subset of the Boolean type,
then f B must be a member of the Boolean type. However, no primitive rule allows us to make this inference.
To complete our proof, we add the following rule:

RULE: dependent set memberEqualityInv

H ` a1 = a2 ∈ A
BY dependent_set_memberEqualityInv x B ()
H ` a1 = a2 ∈ {x:A| B}

Next, we show that RFunctionValue(X;v0) is inhabitted:

STM: RFunctionValue inhab

∀Z:form(). ∀v0:Var(SubForm(Z)) → B. RFunctionValue(Z;v0)

The proof of RFunctionValue inhab is very similar to the proof of RFunctionValue wf, and again requires
the use of the dependent set memberEqualityInv rule.

Finally, we show that an inhabitant of RFunctionValue(X;v0) is a Boolean valuation on the subformulas
of X:

STM: RFunctionValue Existence

∀Z:form(). ∀v0:Var(SubForm(Z)) → B.
{f:SubForm(Z) → B|
ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f) ∧
PartialBooleanValuation(SubForm(Z);f)}

11



Once again, we expect this to be straightforward, but there are a few subtle difficulties. The proof
begins in a standard manner: appeal to RFunctionValue inhab to choose an arbitrary inhabitant of
RFunctionValue(X;v0) and supply this element as the witness term. This yields two sub-goals:

PRF: RFunctionValue

1. Z : form()
2. v0 : Var(SubForm(Z)) → B
3. f : RFunctionValue(Z;v0)
` f ∈ SubForm(Z) → B

and

PRF: RFunctionValue

1. Z : form()
2. v0 : Var(SubForm(Z)) → B
3. f : RFunctionValue(Z;v0)
` ValuationExtension(Var(SubForm(Z));v0;SubForm(Z);f)

∧ PartialBooleanValuation(SubForm(Z);f)

The proof of the second subgoal is remarkably simple, as the very-dependent function type is al-
most exactly the specification of PartialBooleanValuation. As we have seen before, well-formedness
goals asking to show f A ∈B for subformulas of Z occasionally arise, which are handled by the
dependent set memberEqualityInv rule.

The first subgoal, however, is troublesome. We would like to apply the functionExtensionality rule;
however, the rule is stated as follows:

RULE: functionExtensionality

H ` f = g ∈ (x:A → B) ext t
BY functionExtensionality !parameter{i:l} (y:C → D) (z:E → F) u ()
H u:A ` (f u) = (g u) ∈ !subst(B; x.u) ext t
H ` A = A ∈ U
H ` f = f ∈ (y:C → D)
H ` g = g ∈ (z:E → F)

It is impossible to apply this rule to the first subgoal, because the “function type” we would like to supply
as the type of f is a very-dependent function type, not a normal function type. Hence, it doesn’t match the
argument slots (y:C → D) and (z:E → F).

Two potential solutions suggest themselves. The first is the introduction of a libralized function exten-
sionality rule:

RULE: functionExtensionalityLiberal

H ` f = g ∈ (x:A → B) ext t
BY functionExtensionalityX !parameter{i:l} u ()
H u:A ` (f u) = (g u) ∈ !subst(B; x.u) ext t
H ` A = A ∈ U

This change is advocated by Stuart Allen (see http://www.cs.cornell.edu/Info/People/sfa/Nuprl/
NuprlPrimitives/Xycomb_typing2_doc.html), and corresponds to defining the function type simply in
terms of application, not syntactic form of the function term.

A second solution is to preserve the definition of the function type, but assert that every very-dependent
function type is also a “normal” function type. One possible rule is the following:

12



RULE: rfunctionFunction

H f:{g | x:A → B}, J ` f = f ∈ (x:A → !subst(B; g.f))
BY rfunctionFunction #$i
No Subgoals

This rule says that given a term f of very-dependent function type, f is also a term of the function type
corresponding to the “unrolling” of the very-dependent function type. Various other rules also suggest
themselves, but the above was sufficient for our purposes. We can justify this rule by examining the
rfunction lambdaFormation rule:

RULE: rfunction lambdaFormation

H ` {f | x:A → B} ext λy.(Y (λg.b))
BY rfunction_lambdaFormation !parameter{i:l} u v R g y z ()
H ` A = A ∈ U
H ` R = R ∈ (A → A → U)
H ` ↓WellFnd{i}(A;u,v.R u v)
H y:A, g:{f | x:{z:A| z R y} → B} ` !subst(B; x.y; f.g) ext b

which shows that every term of very-dependent function type is in fact a lambda term. (A variation of this
approach is taken in the MetaPRL system, where the dependent function type is defined in terms of the
very dependent function type (ignoring the function argument in the range type), just as the independent
function type is defined in terms of the dependent function type (ignoring the domain argument in the range
type).)

Finally, we can view the computational content of the proof using very dependent function types:

PRF: RFunctionValue Existence view

DIR RFunctionValue_Existence_view
P RFunctionValue_Existence_view

#
TERMOF{RFunctionValue_Existence:o, \v:l}
BY RepeatFor 2 (RW (SweepUpC AnyExtractC) 0) THEN Reduce 0·
# 1
λZ,v0,A.
(Y
(λf.form_cases(A;

v.v0 pvar(v);
Y.¬b(f Y);
Y,Z.(f Y) ∧b (f Z);
Y,Z.(f Y) ∨b (f Z);
Y,Z.f Y ⇒b (f Z))))

BY
END RFunctionValue_Existence_view

Once again, this is recognizable as the recursive algorithm for the evaluation of a propositional formula,
where Y is the recursive Y-combinator. Note that in this proof, we merely replicated the specification in the
definition of RFunctionValue using the very dependent function type.

4 Conclusion

We have given a formal account of an important first step in the development of propositional logic, namely
the existence and uniqueness of Boolean valuations. While the result is far from novel, we have cast the
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problem in a subtly different light than most textbook presentations. Many textbooks, and Smullyan’s in
particular, stress a “pure” approach; however, such a presentation is disadvantageous to programmers, who
are equally concerned with the implementation and efficiency of the underlying evaluation algorithm.

Therefore, we sought a presentation of the proof that would be satisfactory to all parties interested in the
result: mathematicians, who are more comfortable manipulating “pure” functions than algorithm descrip-
tions; programmers, who want to verify the correctness of an efficient evalution algorithm; and formalists,
who subscribe to the “correct-by-construction” principle and wish to extract the evaluation algorithm from
the appopriate existence proof. We feel that the proof using the very-dependent function type provides the
best balance among these various criteria. To be certain, the proof is susceptible to some criticism from each
party, but is more mutually acceptable than any of the other proofs. For the mathematician, no “exotic”
algorithmic terms need to be manipulated; instead (accepting the isomorphism between a very-dependent
function type and the function type corresponding to it’s unrolling), we need only manipulate functions. For
the programmer and the formalist, we extract the expected evaluation algorithm directly from the existence
proof.

While there were some difficulties with the proof using very-dependent functions, we feel that they
are symptomatic of the relative infancy of the very-dependent function type (e.g., lack of tactic support),
rather than pointing to fundamental issues with the type constructor. On the contrary, we feel that the
very-dependent function type will prove a natural method for proving the existence (and hence, admitting
algorithm extraction) of functions satisfying a specification given by a recursive definition. We hope to report
on these results in future work.

References

[1] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Eduardo
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