
Teaching Statement

Matthew Fluet

It has been a great privilege to have been taught by several outstanding teachers. In addition to
enjoying their courses, I observed the great pleasure my teachers took in sharing their knowledge.
I have long envisioned myself in their shoes. I believe the road to successful teaching involves hard
work, self evaluation, and subsequent revision. I am excited about taking on the role of teacher
and consider such a role as a significant component of my academic career. Below, I outline some
of the principles that guide my philosophy of teaching.

My time in the classroom as a student has exposed me to several different styles of teaching. As
an undergraduate student at Harvey Mudd College, I experienced first-hand the positive impact
of small class sizes and accessible instructors. As a graduate student at Cornell University, I
was exposed to the very different teachinge style adopted by a large research university. These
experiences have left me with clear ideas about what does and doesn’t work in a classroom, both
for the students and for the teacher. From these ideas, I have identified several distinct challenges
that face an educator in computer science.

One challenge is to balance the creative and the observational aspects of a computer science
curriculum. Many students appear to approach computer science as though it were simply “learning
how to write programs.” For many students, this is the appeal – to create something. Indeed, every
artifact of the field is the result of some creative effort, whether it is physical hardware or concrete
programs or abstract algorithms. Unfortunately, I have observed that many courses in computer
science place so much emphasis on creating new artifacts (e.g., programs), that they exclude the
development of a student’s ability to observe and critically analyze existing artifacts. For example,
I cannot recall a single homework assignment before graduate school in which I was asked to look at
an existing program and draw some relevant conclusions, whereas I can recall countless homework
assignments in which I was asked to write new programs. Certainly, at the graduate level, I have
critically evaluated both my own research and that of others, but I believe that it will become
increasingly important for students to develop this ability early in their education.

The reality is that no complex scientific or engineering project is the product of a single indi-
vidual. Higher-level courses must cultivate a student’s ability to work in collaboration with others
and to organize and design their work with this collaboration in mind. A necessary precursor to
the development of these skills is the opportunity to observe the successful application of these
skills. Too often, students are charged with creating “good” artifacts (e.g., programs, algorithms),
having had little to no exposure to exemplars. Hence, I believe that introductory-level courses
should stress both “learning how to write programs” and “learning how to read programs,” as one
concrete realization of an emphasis on teaching students how to approach the subject of computer
science, an approach that balances the creative and observational aspects necessary for success in
the field.

As another example, computer science educators are challenged with determining the best use
of the technology available. As a field, we should be providing innovative usage scenarios that push

1



the boundaries of technology as an educational tool. To simply replicate the classroom experience
on the Web, with copies of lecture notes, handouts, and homework assignments, seems a limited
use of resources. While this availability of course materials begins to communicate that learning
can continue to take place at home, not just in the classroom or lab, it often remains a static form
of learning. I am interested in pursuing methods to extend this learning experience to include more
dynamic components; for example, by providing opportunities for students to give feedback about
readings and lectures.

Throughout my education, I have participated seminar courses conducted in varying styles:
1) an open discussion involving the the entire class, occasionally involving a written response by
students prepared ahead of time; 2) the presentation of a paper by a single student followed, time
permitting, by an open discussion; 3) small-group discussions with directed questions followed by
an open discussion. Though each style has its benefits, I consider the third style to be by far
the most effective means of running a seminar course. I prefer this style mainly because I have
observed significantly more critical thinking and student participation in this style than in either
of the others. Upon reflection, the distinct characteristic of this third style is the expression of the
instructor’s goals for the classroom episode in the form of directed questions. Simply articulating
goals more specific than “understand the paper” leads to a more dynamic exchange. I believe that
this lesson carries over to courses at all levels: the refinement and sign-posting of specific goals
enhances the learning experience in the classroom.

All computer science teachers assign homework, but the effectiveness of homework as a teaching
tool can vary considerably. As a student, I valued homework as a means of practicing what was
presented during class. As a grader and teaching assistant, I began to value homework as a means of
evaluating student understanding of material. However, I have observed that many teachers assign
homework without taking advantage of its role as a diagnostic tool. There is no better indication
that a class hasn’t grasped a given curricular issue than all of the students failing to solve a related
problem. When faced with this situation, a teacher often provides a solution to the problem; but,
this approach does not always address the root causes of a student’s misunderstanding. In order
to correct these misunderstandings, there are a number of actions available: examine the student
work to diagnose the misconceptions; revisit the material (not just the solution) during the next
lecture; assign a similar problem on a future homework to validate the corrected misunderstanding.
Although these actions make creating and evaluating homework assignments a challenging task, it
remains an important one. Good assignments must not only ensure that correct solutions imply
understanding, but that incorrect solutions also become opportunities for teaching and learning.

Lastly, one of my formative experiences involved my early exposure to research at the undergrad-
uate level. I attribute these early experiences with Dr. Arthur Benjamin at Harvey Mudd College
with my eventual decision to pursue a graduate degree. I look forward to providing opportunities
for undergraduates to be exposed to research in the field of programming languages.

I would be interested in teaching not only the standard courses in programming languages
and theoretical computer science, including compilers, programming languages, data structures
and algorithms, complexity, and logic, but also an introductory programming course or a software
engineering course. At the masters or graduate level, I would be interested in teaching courses on
advanced compilation techniques and semantics of programming languages. I hope to run graduate
seminars in these areas; possible topics include advanced functional programming and language-
based security.

2


