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Abstract

In emerging application domains, such as thin client computing
and hypertext systems with embedded objects (e.g. the World
Wide Web), the process of downloading application code is in the
critical path of users. We observe that in these domains,
compliance with existing standards and minimizing the impact on
the clients is crucial. We argue that the fundamental problem for
mobile code is that the units of code distribution in networked
object systems, such as Java, are not suited for efficient utilization
of network bottlenecks. In this paper, we propose a separate
optimization step, between compilation and loading, whereby
application code is restructured to more effectively use the
available network bandwidth for program download. We have
designed and implemented such an optimization step as a binary
rewriting service for Java applets and applications. Our
implementation does not require any modifications to existing Java
virtual machines, compilers or clients. We have found that
restructuring of Java applications can improve program startup
times by up to 30%.

1. Introduction

Recent increases in network connectivity, emergence of standard Internet protocols and the evolution of the World
Wide Web towards an embedded object model have fostered mobile code. Systems based on mobile code, such as
virtual machines like Java [Lindholm&Yellin96], Inferno [Inferno] and OmniWare [Adl-Tabatabai et al. 96], and
embedded object systems like ActiveX [Brockshmidt 94], inherently require that clients fetch applications over the
network prior to their execution. In such systems, the time spent transferring application code is a significant source
of user-perceived delays for typical applications, especially on networks with medium to low (less than 1 Mb/sec)
bandwidths.

In order to decrease time spent loading mobile code, to speed up network applications and to reduce user-wait time,
mobile code systems need to be designed to maximize the effective bandwidth of the network. We define the
effective bandwidth to be the portion of the raw link bandwidth that is used to transfer the bits that affect the
computation performed on the client. Any code that is transferred to the client, but not used in computation,
contributes to parasitic loss of network capacity. Surprisingly, state of the art commercial virtual machines and
mobile code systems pay little attention to optimizing network transfers and to developing binary distribution
formats that maximize effective network bandwidth. For instance, the ActiveX distribution model stipulates that an
entire application be packaged as a single unit of transport and shipped as a monolithic dynamically-linked library,
while the user waits for the entire library to download before commencing computation. Java offers two separate
modes of transport, one in which the whole application is shipped as a single unit, and another where entire object
implementations are fetched at first reference to any method or field of the object. Even in the latter case, where
lazy object loading filters out unused object definitions, roughly 10-30% of all downloaded code is never invoked.



Fundamentally, the problem is that the units of code distribution in these systems are not suited for efficient
bandwidth utilization. The granularity at which code is transferred in all of these systems corresponds either to
source-derived logical abstractions, such as classes, or artifacts of the compilation and linking process, such as
object files. These coarse units of code transfer fail to capture or to imitate the dynamic execution path for an
application.  A client must request the complete class implementation even when it requires only a single method
from the class during the entire execution. The resulting transfer of unneeded code and data incurs runtime costs,
which include:

• Delays in program startup and execution from transfer of unused code,

• Increased memory consumption from storing unused code components,

• Interference with other threads of execution which share or serialize on common resources during code
download.

To help solve these problems, we have developed a practical approach for restructuring mobile code in the context
of the Java virtual machine. We propose a separate optimization step, between compilation and loading, whereby
application code is split up into smaller transfer units, based on a profile, to more effectively use the available
network bandwidth for program download. Our approach uses binary rewriting to repartition application
components at method granularity such that frequently used, related code units are grouped together, while less
frequently used methods are factored out into chunks that can be transferred separately and independently. This
repartitioning is performed late in the software distribution chain, after the code has been released but before it has
been shipped to the users. The server uses profiling to discover common application paths, and repartitions the
application through binary rewriting to make these paths execute faster. The primary advantage of our approach is
its practicality and simplicity. We do not require any changes to the Java virtual machine, client software, or the
Java compiler, yet achieve up to 28% improvement in application performance over 28.8 Kb/sec links.

The benefits of profile-driven code restructuring include:

• Reduced transfer time: Applications download only those components that affect their execution,
conserving bandwidth and reducing latency.

• Reduced resource requirements on the client: Client memory that would be dedicated to holding unused
code can be used for other purposes.

• Backward compatibility: Code repartitioning using the existing class file format to transport method
code requires no modification to the JVM specification, and no changes to the clients.

Fundamentally, our approach addresses the abstraction mismatch in current state of the art mobile code systems by
decoupling the method implementations from the units of code transfer. By enabling applications to be repartitioned
at will, a greater degree of freedom is possible in code location and transfer scheduling. While we chose to do our
implementation in the context of the Java virtual machine because of its pervasiveness, our technique would apply
equally well to any other mobile code scheme that provides sufficient semantic information for executable editing.

The rest of this paper is organized as follows. The next section examines related work. Section 3 describes our
approach and implementation in detail. Section 4 quantifies the performance benefits of our approach, and Section
5 concludes.

2. Related Work

Previous work on decreasing application transfer times broadly spans traditional compiler optimizations, code
compression, overlapped I/O and lazy loading. The common thread among all but the first of these approaches is
that they require significant changes to clients to be effective, and therefore face a large implementation barrier in
the current World Wide Web with millions of already deployed browsers.

Traditional compiler techniques for reducing the static size of applications have centered on instruction selection.
Such optimizations often take place in the back end of a compiler, where the emitted instructions are selected to
reduce the memory footprint of the instruction segment using standard techniques [Aho et al. 86,Pelegri&Graham
88]. Typically employed to generate code for embedded or other memory-constrained systems, traditional space
optimizations are complementary to our approach as they reduce the initial application size.

Code compression is another field that examines the effective bandwidth of application transfers. Code
compression relies on a post compilation step to represent applications using a space-efficient encoding. Recent



work in this area has shown that grouping semantically related components of a binary together and compressing
these groups with an adaptive compression scheme can achieve large space savings. [Clausen et al. 98] shows that
factoring common code sequences can reduce code size by 30%. Slim Binaries [Franz and Kistler 97] use
predictive compression on abstract syntax trees to reduce complete application size by a factor of 3. [Ernst et al. 97]
shows that move to front encoding followed by Lempel-Ziv compression on separate streams for opcodes and
operands can reduce code size by a factor of 4.9. [Fraser&Proebsting 98] proposes customizing instruction sets for
applications using a separate, space efficient encoding for each application. All of these techniques require changes
to the clients in order to support decompression, and thus are not compatible with the millions of currently deployed
virtual machine clients. However, code compression techniques are complementary to our approach, and could be
used in conjunction.

The most direct treatment of transmission delay in mobile code appears in [Krintz et al. 98]. The authors propose
modifying Java’s execution semantics in order to overlap code transmission with execution. Such an approach
offers increased application performance by allowing I/O operations of a thread to be scheduled concurrently with
the computation of the same thread. This technique requires relaxing the execution semantics of Java, such that
methods can be executed before the class file they belong to has been transferred in full. The authors report
simulation results that this scheme can achieve 25-40% performance improvement. This technique is
complementary to ours, but requires significant changes to the Java virtual machine. Krintz et al. are exploring a
separate code repartitioning strategy substantially similar to ours.

Profile guided code positioning has previously been examined in the general context of program optimizations
[Pettis&Hansen 90]. The authors propose an optimization based on a call graph profile, where the dynamic call
graph is annotated with weights based on call frequency, and heavily weighted callees are located close to their
callers. This colocation policy is suited for whole program optimization, and may increase the transmission delays
in mobile code. [Chen&Leupen 97] provides an adaptation of this scheme, where code positioning is driven just in
time by a first-use graph derived from the execution of a program instead of a profile. Their simulation study
indicates that just in time code layout can halve the memory footprint of applications. [Lee et al. 99] propose
combining code reordering and demand paging to improve the startup of ActiveX applications. The authors show
that code reordering via binary rewriting and demand fetching of pages through the memory fault handler can
improve the startup times of x86 applications by up to 58%. Since x86 binaries lack semantic information, binary
rewriting is more difficult, and code movement is performed at the instruction level. Modifications to the memory
fault handler require changing at least the browser, and possibly the operating system, on the clients.

3. Approach

Our goal is to decrease transmission delays and to increase effective bandwidth for mobile Java code. In addition,
we restrict our implementation to operate on unmodified Java virtual machines, to be transparent to the application
programmer, and to be amenable to automation. Without these properties, new optimization techniques would have
difficulty in being adopted into the millions of currently deployed existing Java virtual machines and hundreds of
thousands of Java applications.

Our approach is based on repartitioning Java applications into modules that utilize network bandwidth more
effectively. Existing Java virtual machines use two separate techniques for distributing application code, both of
which limit the effective bandwidth. The first technique uses classfiles to store and distribute code
[Lindholm&Yellin96]. Each class file contains the interface and implementation for a single object type. The client
JVM requests classes lazily as they are required during execution, and thus avoids transferring unused classes, but
may download unused code within a class. The second technique for distributing code bundles all classfiles for an
application into a single unit. The client then pays up-front to download all of the code for the application in one
transmission. Execution commences after all of the bundled classes are linked into the JVM. In a 1997 survey we
performed of publicly available, indexed applets on the Internet, the second technique was less popular by a few
orders of magnitude. We attribute this to the high user-interface latency necessitated by this approach. Overall, both
of these techniques suffer from the same problems; namely, the units of code transfer do not correspond to the
execution path of an application, and indiscriminately bundle unrelated code into a single transfer unit.

We address these shortcomings through profile-driven code repartitioning. Essentially, we decouple method
implementations from class files, thereby enabling distribution of code in units that best utilize available network
bandwidth. We specifically focus on optimizing application startup time, as it is the most visible and limiting
source of delays in the user-interface.



Our implementation consists of two phases. The first phase generates a first-use graph by collecting a profile of the
methods used by the application. This profile is generated automatically either by inserting tracing code into
method entry points or by placing every method of a class in a separate classfile and tracing the client request
stream on the server side. We picked the latter approach, because security constraints in clients or in network
proxies may prohibit the application from transmitting the profile back to the server. The server initially places
every method in a separate class using the splitting technique described below, and then simply concatenates the
client request stream to generate a time-sorted graph of used methods. This graph identifies the unused methods in a
class, which are partitioned out in the second phase of optimization.

Figure 1 illustrates how code partitioning is performed in our implementation. In order to decrease startup latency,
we identify all unused methods based on the profile, and place their implementation in separate classfiles. The
original methods are replaced with stubs that forward method invocations to appropriate separated implementations.
More specifically, an unused method M in class C is relocated into a new final class C$M. Its signature is
modified, if necessary, to make it a static method and possibly to take an extra first argument corresponding to the
old this pointer. C.M is replaced with a proxy that simply invokes C$M.M with the original arguments, including
the object instance pointer. The access modifiers for fields in class C are modified to grant access to C$M. Name

conflicts for newly created classes are minimized, though not completely eliminated, by using the inner-class
naming convention in Java. New names are derived from the original class name using a special separator, and Java
convention dictates that classes introduced dynamically into the system from other packages will not share the same
prefix.

Code repartitioning schemes are highly dependent on the verifier implementation found on the clients, because the
verifier determines the class fetching policy. Verifiers may fetch classes that make up an application eagerly or
lazily. In eager verification, the transitive closure of all classes referenced by the initial class is downloaded onto
the client at startup, and the whole set is verified all at once. Lazy verification, on the other hand, enables the client
to defer the transfer of classes by delaying portions of verification to execution time. In the example in Figure 1, an
eager verifier would fetch both the class C and C$M at startup, negating any performance gains from code
repartitioning. A lazy verifier, on the other hand, will note that the class C$M is not needed to prove the correctness
of class C unless method M is actually invoked, and will therefore avoid transferring C$M. The JVM specification
explicitly leaves the style of verification, and the timing of verification exceptions, undefined to enable the transfer
optimizations supported by lazy verification. Consequently, JVMs deployed in latency and bandwidth-limited
settings as well as JVMs that cannot make assumptions about the quality of their network connections, such as all
major browsers, exclusively use lazy verification. Our code-partitioning scheme takes advantage of the ubiquity of
lazy verification by assuming the existence of a verifier that does not eagerly load classes.

Our approach conforms to all existing Java virtual machine semantics, and therefore does not require any changes
to clients. Seamless integration with existing JVMs poses some challenges, however, especially with respect to
verification. Since we repartition applications at method granularity, type-safety checking is not affected by our
repartitioning scheme. However, for method implementations in segregated classes to access the fields of the
original class, we downgrade field access modifiers from private to package access. Allowing other classes in the

Protected Class C

Private FieldF;

Void M() {… }

Void N() { … }

Protected Class C

Protected Private FieldF;

Void N() { … }

Final class C$M

Static Void M(C this) {
… }

Figure 1. An illustration of code repartitioning. Unused method M is factored out into a separate classfile,
reducing the code size of the original class. While the figure illustrates the transformation using Java source
code, the actual implementation operates directly on Java bytecodes.

Void M() {

C$M.M(this); }



package to access all the fields of the class may at first seem like a potential security hole. However, this change
does not alter the access controls on the program because it is applied only to classes that are not visible outside a
package (i.e. they are private or protected, or the program does not allow any extensions to be installed), and
because other classes within the package are verified prior to any partitioning. An alternative, more powerful,
approach is to combine code repartitioning with distributed virtual machines [Sirer et al. 98]. Distributed virtual
machines enable a verification service in a proxy to track the intended, as opposed to the modified, state of the
access control flags for each client, and impose restrictions accordingly.

Structuring the code repartitioning service as a binary rewriting service provides three advantages over traditional,
compiler based optimization schemes. Namely, binary rewriting can be applied late in the code distribution chain, is
transparent to clients and applications, and does not require programmer assistance. Further, rewriting Java virtual
machine applications at the bytecode level is particularly powerful, because high-level semantic information about
the program, such as method boundaries, is visible within the bytecode. The structure of Java classfiles, where all
jumps are PC-relative and all code is re-locatable, makes binary rewriting easy and fast to perform.

4. Performance Analysis

We examine the effects of profile-driven code repartitioning on six interactive applications. These benchmarks
consist of three traditional standalone applications, and three applets, designed to operate in the context of a web
browser. The benchmark programs were selected because they embody significant functionality and are based
primarily on a user-interface for their operation. We focus on interactive applications instead of SPEC-like
benchmarks, because performance delays are hard to mask and thus are immediately visible to the user in an
interactive domain. Table 1 summarizes the applications we used for performance analysis.

Table 1.  List of Benchmarks

Benchmark Type Description

HotJava v1.1.5 Application Internet browser

Java Studio v1.0 Application Graphical environment for Java development

Java Work Shop v2.0 Application Programming environment for Java development.

CQ Applet Calendar queue sorting algorithm demo

Net Charts Applet Chart displaying applet

Animated UI Applet Animated user interface

We first examine the behavior of these applications during their startup. We define startup to be the time between
the initial invocation of the program and the entry into the application event loop, when the application can first
start responding to user activity. Table 2 shows the total code size for the application, the total size of code loaded
to reach the main event loop, and the reductions in size after code repartitioning.

Table 2.  Benchmark Code Sizes (in bytes)

Benchmark Total Code Size Size of Startup Set Size of Repartitioned Startup Set Improvement

HotJava 1,768,144 818,762 713,578 13%

Java Studio 9,574,809 2,140,932 1,592,742 26%

Java Work Shop 5,954,310 1,241,010 885,527 29%

CQ 94,748 80,663 67,620 16%

Net Charts 1,794,306 406,166 319,390 21%

Animated UI 271,890 175,646 136,674 22%

The savings above results from Java’s use of classes as the transfer unit for distributing code. For example, Java
Work Shop contains over 400K bytes of code bundled in its startup classes that is not used to initialize the
application. The client is required to wait for these bytes to come over the network, delaying the startup of the
program unnecessarily. Reducing the startup set not only will improve startup speed, but should also result in a
reduction of memory requirements on the client that correspond to the space improvement shown in the last
column. The amount of memory saved through code repartitioning can be bigger, in terms of absolute bytes, than
shown if the client translates class files into an expanded internal or native form.



We next examine the effect code repartitioning has on the running times of mobile applications. To quantify the
effects of profile-driven code repartitioning, we ran each of the benchmarks through different simulated network
bandwidths. Our evaluations were run on a 200 MHz Intel Pentium Pro platform with 128Mb of memory using Sun
JDK v1.1.6 with just-in-time compilation. The network delay that each class incurs was simulated by a pause in
each class’ initialization method.  The length of the pause was determined by dividing the length of the class file by
the bandwidth available from the network. We simulated a slow network instead of using an actual slow link in
order to provide the appearance of persistent connections. The Sun JDK uses separate TCP/IP connections for each
request, and TCP/IP does not sufficiently utilize the available bandwidth for short connections, thereby inflating the

performance improvement for our scheme. We compare our simulated numbers against a real slow link later in this
section and show that they are conservative.

Chart 1 summarizes the percent improvement of code restructuring on the startup times of our benchmark
applications. Eliminating the overhead from transferring unused code in class files decreases the startup delay
observed for the client. The improvements are modest, up to 4%, for a relatively high bandwidth of 1MB per
second, comparable to Ethernet speeds. For moderate to low bandwidths, the gains are markedly higher, for an
average of 25% for 28.8K baud speeds.
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We next examine the absolute startup times for applications as a function of available bandwidth. Chart 2 shows
that the relationship between network bandwidth and benchmark startup latency is non-linear. This relationship
follows a simple model dependent on a constant computational time needed to run the code (T), the size of the
bytes needed for startup (S), and the bandwidth of the network (BW):

S
Startup Latency = T +

BW

This simplified model fits our data within 10% for the bandwidth range shown. The model indicates that as
available bandwidth decreases, the transfer delay quickly becomes the bottleneck and dwarfs the computation time,
making any latency masking from available coarse grain parallelism negligible. Most of our benchmarks reach this
point between 50K to 100K bytes per second, which correspond roughly to DSL speeds, with a rapid increase in
startup latency thereafter.

Applying our model to calculate percent improvement, we find that the following equation relates the original size
of the application (OrigSize), the size of the repartitioned application (NewSize), the compute time needed to run
the code (T), and the bandwidth of the network (BW):

OrigSize – NewSize
Percent Improvement  =

(BW * T) + OrigSize

All factors in the equation are constant for a given benchmark except bandwidth. Since bandwidth is magnified by
the time the application spends computing, applications with shorter think times will exhibit greater speedup
through code repartitioning.

Finally, we compare our simulated network to a real network. We set up a 200 MHz Pentium Pro processor running
FreeBSD with 128 MB of memory as a web server. The client is a 200 MHz Pentium Pro with the same amount of
memory. The FreeBSD packet filter mechanism was used to limit the rate at which the server transmits pages. The
actual bandwidth observed on the wire was verified using bulk file transfer through the ttcp utility. We examine the
behavior of our applets across different bandwidths. The industrial applications override the ClassLoader facility in
Java, and are not amenable to automatically loading across an HTTP connection. Chart 3 shows that the results on
the simulated network are generally a conservative estimate of the results on the real network.

5. Issues

While repartitioning applications can improve execution times and reduce memory requirements in the clients, it
may also pose some problems. First, the increased activity between the client and server may increase the load on
the server. The time to create, service and tear down connections for automatically generated class files may, in
aggregate, negatively impact the load on the server. Second, small transfers over TCP/IP, with its slow-start and
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MTU discovery algorithms, are unlikely to achieve the maximum possible throughput, and may be affected
disproportionately badly by network congestion and loss. Persistent connections [Fielding et al. 97] mitigate both of
these problems by obviating the need to create and tear-down extra connections, and by aggregating sufficient
traffic for the network layer to adapt to network conditions. The extra fetch overhead per request, which consists of
request processing on the server side and a round-trip latency from the client’s perspective, may still pose problems.

6. Conclusions

The state of the art for mobile code uses units of code transfer that do not match the needs of applications. By
profiling and repartitioning application code, application startup time can be improved significantly, especially over
low-bandwidth connections. We provide a practical approach for profiling and repartitioning in the context of the
Java virtual machine that does not require any modifications to the clients, and yet achieves up to 30% reductions in
startup time for interactive applications.
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