CrossTFX Tutorial

Emin Gün Sirer and Robert Burgess

This tutorial will show you everything you need to know about CrossT_EX. It assumes basic familiarity with BiBT_EX. You should have CrossT_EX installed.

CrossTEX is a modern bibliography typesetting tool that works in conjunction with LATEX. It first builds an object hierarchy based on the bibliography database. Then it parses the text at hand to determine which objects are being cited. Then it formats these objects according to the style selected in the document, as modified by the command line options. It then produces a references section that LATEX can incorporate into the original document.

1 Quick start

First, make sure CrossTeX is installed. Then, where you used to type:

```
$ latex paper # Generate the .aux file
$ bibtex paper # Generate the .bbl file
$ latex paper # Incorporate the bibliographic information
$ latex paper # Get the labels right

Instead use:

$ latex paper # Generate the .aux file
$ crosstex paper # Generate the .bbl file
$ latex paper # Incorporate the bibliographic information
$ latex paper # Get the labels right
```

CrossTEX is backwards-compatible with BIBTEX and supports the standard abbrv, alpha, full, and plain bibliography styles.

2 Defining Objects: Inside the .xtx file

2.1 Objects

Everything in CrossTeX is an object. Every object has a *key* that can be used to refer to it, and *fields* containing values. Here are some objects:

```
@month{sep, name = "September"}
@location{rio, name = "Rio de Janeiro, Brazil"}
```

```
@author{egs, name = "Emin {G\"un} Sirer"}

@article{mypaper,
   author = egs,
   title = "This is My Paper",
   journal = "Journal of Improbable Results",
   address = rio,
   year = 2018,
   month = sep
}
```

The first line defines a month object, henceforth known as sep, that has a single field called name, which consists of the string "September". From here on, other objects can simply refer to sep wherever a month is called for, and they will be referring to this object. The second line defines a location object named rio, while the third line defines an author object whose name requires complicated LATEX punctuation to format properly. The final entry defines an article, published in Rio de Janeiro in September. Note how it refers to the previous objects by their keys. The fields of mypaper end up as though it had been defined thus:

```
@article{mypaper,
    author = "Emin {G\"un} Sirer",
    title = "This is My Paper",
    journal = "Journal of Improbable Results",
    address = "Rio de Janeiro, Brazil",
    year = 2018,
    month = "September"
}
```

Objects can be given multiple keys, as well. Take for example the following author:

```
@author{rama, name="Venugopalan Ramasubramanian"}
```

However, Rama uses Venu and Arun as names for his alter egos. So we can define his object as follows:

```
@author{rama = arun = venu, name="Venugopalan Ramasubramanian"}
```

Thereafter, the following are equivalent.

```
author = "rama and egs"
author = "arun and egs"
author = "venu and egs"
```

2.2 Representation

Every kind of object, such as month, location, author, and article, knows how to convert itself into a string suitable for inclusion in the references section of a scholarly publication. For example, when mypaper referred to sep in the example, the actual value assigned was "September". Some objects, such as mypaper itself, will produce entire bibliography entries when referred to. In fact, when generating bibliographies, crosstex simply prints out the string representations of all the objects cited in the document. Each object takes note of options passed into CrossTEX and generates a string representation accordingly.

Simple, named objects, such as month, location, author, and others, have two forms: A long form and a short form. The object sep could be defined:

```
@month{sep,
  name = "September",
  shortname = "Sept."
}
```

By default, long names are used when generating bibliographic entries. If, however, the option --short month were given, the same month object would be shown as "Sept." instead of "September". If only a name (no shortname) is specified, or, conversely, if only a shortname but no name is specified, the name given will be used in all cases. All named objects follow this pattern.

However, because person names are so complicated, author objects are somewhat magical. If --short author is specified, authors will be represented with initials and a last name—the object egs would be represented "E. G. Sirer". If a shortname field is explicitly given for an author, that takes precedence and can be used for special cases. By default, CrossTeX is aware of many kinds of names and can correctly handle suffixes and last name modifiers such as Jr., Sr., III, IV, von, van, de, bin, and ibn. Just write the names out in full in their natural order, and CrossTeX will render them properly, including such entries as:

```
@author{rvr, name = "Robbert van Renesse"}
@author{ldv, name = "Louis de Vargas, III"}
```

The author field is also somewhat special. Users of BibTeX are familiar with specifying multiple authors as follows:

Having looked up the rather non-trivial escape sequence to get the umlaut correct, and having made sure that all names are spelled correctly, there is no need to repeat or cut-and-paste the same information over and over again. The following sequence has the same effect as the previous one, and is much easier to maintain:

In all other contexts, string literals and object references are quite different: month = sep refers to the sep object, which carries additional fields and is rendered differently depending on the context and options, while month = "sep" always generates the literal string "sep".

2.3 Under the hood: References

Referring to an object, as in month = sep, assigns the stringified value of the object sep, in this case "September", to the month field of the object. In addition, it triggers something else to happen after all the fields have been assigned: Any required or optional fields in the referring object that do not yet have values will try to inherit them from the referenced object sep, if it has them. The actual month objects defined in the included dates.xtx, for example, define monthno fields in addition to their names. This value will be pulled along into objects that refer to months, enabling such objects to be sorted by month number easily. Power-users of BIBTEX will note that this mechanism is essentially equivalent to the crossref field in BIBTEX. The main difference here is that CrossTEX supports this mechanism in a uniform manner across all object fields.

This can be combined with a new, advanced feature of CrossTeX, conditional fields, to greatly simplify object specifications. Here is an example:

```
@conference{nsdi,
   shortname = "NSDI",
   longname = "Symposium on Networked System Design and Implementation",
   [year=2006] address=SanJose, month=may,
   [year=2005] address=Boston, month=may,
   [year=2004] address=SF, month=mar,
}
```

This is a simple conference object whose short name is "NSDI" and long name is "Symposium on Networked System Design and Implementation". In addition, it carries some conditional fields; that is, fields that are included in the object only if they match the data in the referring context. For instance, if the year field of the referring object is equal to 2006, the nsdi object additionally has the fields address=SanJose, month=may. In a different year, a different conditional might be triggered. Any, all, or none of the conditionals mentioned may be appropriate (although obviously in this case, the year can only have one value).

By itself, conditional fields are not very useful; their value in simplifying object references becomes apparent when they are used in context. Look at the following reference:

```
@inproceedings{credence,
  title = "Experience with an Object Reputation System for Peer-to-Peer Filesharing",
  author = "kwalsh and egs",
  booktitle = nsdi,
  year = 2006
}
```

Conditional fields defined in the nsdi object will define the address and month fields of the conference based on the reference, and the resulting credence object will know that it occurred in San Jose in May through inheritance. This allows paper citations to avoid common errors by allowing all conference dates and locations to be defined in one place, and inherited correctly, without typos, by all papers that appeared at that conference.

If one wanted to override field inheritance for whatever reason, it would suffice to specify, say, a different month for the **credence** object. Only those fields that are missing in the referring context are inherited. Thus explicitly assigned information has precedence.

2.4 Including other databases

Obviously, re-inventing sep and SanJose in every database would be exhausting. Instead, similar objects can be collected together—for example, the standard CrossTeX distribution provides dates.xtx, which defines English month names, and locations.xtx, which defines all locations at which a major computer science conference was held in the recent years. Such modules can be includes with the @include primitive. For example, here is a complete .xtx file based on the standard CrossTeX distribution:

```
@include conferences-cs
@author{egs, name = "Emin {G\"un} Sirer"}
@author{kwalsh, name = "Kevin Walsh"}
@inproceedings{credence,
   title = "Experience with an Object Reputation System for Peer-to-Peer Filesharing",
   author = "kwalsh and egs",
   booktitle = nsdi,
```

```
year = 2006
}
```

This will search for conferences-cs.xtx or conferences-cs.bib and include it in the appropriate place before parsing the rest of the file. CrossTEX by default looks in a standard system directory and the directory containing the database or document being processed; additional search paths can be specified with the --dir option. The standard conferences-cs.xtx begins:

```
@include dates
@include locations
```

Thus, the credence object has access to well-defined locations, dates, and conference names.

On startup, crosstex will read in the database standard, which in the distribution pulls in the dates database and some information to help accurate formatting of titles. Having the dates available by default is necessary for backwards compatibility with BIBTEX; the administrator may also edit the standard database in order to automatically include additional important files such as an institution-local bibliography.

It is possible for the same object to be defined multiple times under the same key (sometimes, this is inevitable when there are multiple bibliographic databases involved maintained by different entities). By default, CrossTEX will silently ignore such definitions as long as all versions of the object are identical. When two separate objects defined under the same key are not identical, it points to an inconsistency in the bibliographic database, which will cause CrossTEX to issue a warning. Passing CrossTEX the --strict flag will force it to issue such warnings even when the objects are identical, to help facilitate people who might want to maintain databases free of duplicate entries.

2.5 Extending objects

Occasionally it is useful to add information to an object that already exists. For example, say you have a paper to cite that appeared in USENIX 2006, but the system database only has the following information about the USENIX conference:

```
@conference{usenix = usenixg,
    shortname = "USENIX",
    longname = "USENIX Annual Technical Conference",
    [year=2005] address=Anaheim, month=apr,
    [year=2004] address=Boston, month=jun,
    [year=2003] address=SanAntonio, month=jun,
    [year=2002] address=Monterey, month=jun,
    [year=2001] address=Boston, month=jun,
    [year=2000] address=SanDiego, month=jun,
```

```
[year=1999] address=Monterey, month=jun,
  [year=1996] address=SanDiego, month=jan,
}
```

Obviously, the best solution is to add the following line to the entry in the system conferences database:

```
[year=2006] address=Boston, month=may,
```

However, you may not have permission to edit the database. Now there are two options: Cut-and-paste the usenix object into some local database with a new name so there is no conflict, or put the address and month directly into the paper's entry. Neither one is a good solution. What you want is to be able to extend the usenix object even though it is in another database you can't edit.

Enter the @extend primitive. The following solves the example:

```
@extend{usenix,
   [year=2006] address=Boston, month=may,
}
```

An @extend entry looks just like an object definition. However, rather than defining a new object, the object with the specified key is re-built with the information provided, inheriting its old fields with lower priority so that extended fields take precedence.

It is possible to create new aliases along the way. Simply list aliases in the exact same syntax as for object definition; all the aliases listed must either be a new, unused alias or refer to the same unique object. After the object is extended, all the aliases mentioned will be handles to refer to the newly-extended object. This can be useful for defining shorter, easier-to-remember names for database objects.

2.6 Default fields

When databases get exceptionally long and many elements have very similar fields—e.g., they are all in the same conference or have the same informative category field—you can make use of another special CrossTeX command, @default. For example, here is the beginning of the usenix.xtx database:

@include conferences-cs

```
= {http://www.usenix.org/publications/library/proceedings/usenix04/t
ech/general/ruan.html},
  bibsource = {DBLP, http://dblp.uni-trier.de}
@inproceedings{DBLP:conf/usenix/CantrillSL04,
            = {Bryan Cantrill and
               Michael W. Shapiro and
               Adam H. Leventhal},
  title
            = {Dynamic Instrumentation of Production Systems},
  booktitle = usenixg,
            = 2004,
  year
  pages
            = \{15-28\},
            = {http://www.usenix.org/publications/library/proceedings/usenix04/t
ech/general/cantrill.html},
  bibsource = {DBLP, http://dblp.uni-trier.de}
}
   With @default, it could be shortened:
@include conferences-cs
@default booktitle = usenixg
@default year = 2004
@default bibsource = {DBLP, http://dblp.uni-trier.de}
@inproceedings{DBLP:conf/usenix/RuanP04,
  author
            = {Yaoping Ruan and
               Vivek S. Pai},
            = {Making the "Box" Transparent: System Call Performance as
  title
               a First-Class Result},
 pages
            = \{1-14\},
            = {http://www.usenix.org/publications/library/proceedings/usenix04/t
ech/general/ruan.html},
@inproceedings{DBLP:conf/usenix/CantrillSL04,
  author
            = {Bryan Cantrill and
               Michael W. Shapiro and
               Adam H. Leventhal},
  title
            = {Dynamic Instrumentation of Production Systems},
            = \{15-28\},
 pages
            = {http://www.usenix.org/publications/library/proceedings/usenix04/t
ech/general/cantrill.html},
}
. . .
```

Later in the file are entries with different years. A new @default command takes precedence over the first:

```
Qdefault year = 2003
@inproceedings{DBLP:conf/usenix/PadioleauR03,
  author
            = {Yoann Padioleau and
               Olivier Ridoux},
  title
            = {A Logic File System},
  pages
            = \{99-112\},
            = {http://www.usenix.org/events/usenix03/tech/padioleau.html},
@inproceedings{DBLP:conf/usenix/DouglisI03,
            = {Fred Douglis and
  author
               Arun Iyengar},
  title
            = {Application-specific Delta-encoding via Resemblance Detection},
  pages
            = \{113-126\},
            = {http://www.usenix.org/events/usenix03/tech/douglis.html},
```

As with field values inherited from references objects, field values inherited from default definitions have lower precedence. Any object that explicitly assigns a value to a field will override any default definitions in effect at that point in the bibliography.

2.7 Comments

Comments in CrossTeX can be accomplished in a number of ways. Simple comments that last until the end of the line are introduced with a % character. For example:

```
@include conferences-cs % Because we need nsdi later on
```

More involved, potentially multi-line comments appear as their own kind of primitive:

```
@comment "This is a database for...
Yadda yadda...
Now I've said enough."
```

This syntax can also take advantage of the {...} form of strings in order to comment out whole objects or sets of objects, since braces are counted and matched correctly so that embedded strings don't accidentally end the comment.

```
@comment {
    @inproceedings{bad,
     title = "Some paper we want to temporarily comment out",
     author = "Somebody and Somebody Else",
     ...
    }
}
```

3 Citing References

Once you have defined your objects in the .xtx file, you may refer to them in your .tex file. Such references are known as citations, and are accomplished with the \cite command in LATEX. CrossTeX supports two kinds of citations, both backwards compatible with standard LATEX citations.

3.1 Plain Citations

The first type are plain citations based on an object key. Plain citations simply take a comma-separated list of object keys, and cite the objects whose keys, specified in the XTX file as the first item following the object definition, match the cited key. For instance, given the definitions above, the following are examples of plain citations:

```
Credence \cite{credence} provides a reputation
system for peer-to-peer systems. These two
papers \cite{DBLP:conf/usenix/PadioleauR03,DBLP:conf/usenix/DouglisI03}
appeared at the Usenix annual conference.
```

The key used in a plain citation must match, exactly, the key used in the object definition. The matching is case sensitive, so "foo" and "FOO" refer to different objects.

Recall that CrossTEX enables an object to appear under multiple keys. This aliasing can be done for any object and can be used anywhere in the database. The .tex file can cite any object by any one of its synonymous keys. There is a strange quirk with the use of synonymous keys stemming from a design error in LATEX, which users should keep in mind: LATEX assumes that each object has only one key, and thus citing the same object under two different keys would require it appearing twice in the references. Therefore, authors must be careful to cite each paper by only one of its aliases. Fortunately, it does not matter which alias is used in the document, so long as it is consistent, and it is easy for CrossTEX to detect when multiple aliases are being used, so an error message will appear.

Overall, there really are not that many frills to plain citations. They work exactly the way one would imagine they would. Their big drawback, however, is that you need to remember the precise key for every object you want to cite. Often, this requires browsing database files, searching for author names and

keywords in the title so you can figure out whether you named the key "credence" or "credence_nsdi04" or "nsdi04_credence". Even though the standard libraries that come with CrossTEX follow the uniform naming rule from the DBLP database, figuring out the uniform name still requires knowing the authors and the year, which often requires a Google search. To make the citation process even easier and simpler, CrossTEX supports a second kind of citation, where the user need not recall the object key precisely.

3.2 Constrained Citations

The second kind of citation that CrossTeX supports is known as a constrained citation. Constrained citations enable the user to cite a paper by specifying pieces of information about the reference that uniquely identify it. For instance, suppose you want to reference that paper I wrote in 1999 on how to split up virtual machines, and you remember that it appeared at SOSP. You could search your database for some partial terms that appear in the entry (e.g. 1999, sosp, sirer), copy the key for the entry, and issue a plain citation using that precise key. This is what many BIBTeX users do without thinking. But it is a lot of pointless boring work, and computers were supposed to automate boring tasks. That's where constrained citations come in.

A constrained citation begins with an exclamation point, and specifies a series of colon-separated terms that identify the reference being cited. Some examples of constrained citations are:

```
\cite{!author=sirer:title=virtual:year=1999}
\cite{!author=sirer:title=virtual:title=machines:year=1999}
\cite{!author=sirer:author=walsh:year=2006}
```

Colons separate constraints. Each constraint identifies a field that the reference must have, as well as a string that should appear somewhere within that named field.

Each string in a constrained citation is checked for a partial match in the corresponding field. So "author=smith" will match both "Smith" and "Smithson."

Sometimes, there are multiple constraints that apply to the same field. Specifying the same field multiple times, as in the second and third examples above, is perfectly acceptable, but gets tedious. So CrossTEX provides a way to specify multiple constraints for the same field; every word separated by a "-" sign is treated as a separate constraint. So the examples above can be shortened down to:

```
\cite{!author=sirer:title=virtual:year=1999}
\cite{!author=sirer:title=virtual-machines:year=1999}
\cite{!author=sirer-walsh:year=2006}
```

Multiple constraints within a given field are not ordered and can appear anywhere in the string, so "virtual-machines" will match "virtual machines," as well as "machines virtual," and even "building a machineshop virtually."

Several shorthands make constrained citations even easier to specify by providing defaults for fieldnames. If the fieldnames are missing, the first constraint defaults to "author." The second constraint defaults to "title" if the value is not numeric; if it is, it defaults to "year." Finally, the last constraint defaults to "year." So the examples above can be shortened even further:

\cite{!sirer:virtual:1999}
\cite{!sirer:virtual-machines:1999}
\cite{!sirer-walsh:2006}

Two caveats are worth remembering about constrained citations. First, the citation needs to be uniquely identifiable. If the constraints you specified match more than one object, CrossTeX will print an error and identify the matching objects. You can then specify more constraints until you have nailed down the reference you had in mind or switch to a plain citation. Second, due to a limitation in LaTeX mentioned above for plain citations, referring to the same paper through different constraints (e.g. "!sirer:virtual:1999" and "!sirer:virtual-machines:1999") will cause an error so the paper does not appear twice in the references section. For each paper, you should figure out the constraints you had in mind and stick to them throughout your document.

Overall, constrained citations are a very convenient way to cite papers without having to look anything up. They fit naturally to the way people recall citations. The concept was entirely lifted from Norman Ramsey's nbibtex system.

3.3 Citation Appearance

How the citation itself appears is controlled by the citation style, and is controlled by options specified to crosstex either in the LATEX file or passed on the command line during invocation. The argument to the --cite-by option determines how the citations appear in the body of the text. There are three possible arguments to --cite-by.

numeric produces citations that appear like this "[1]". The numbers correspond to the location of the entry in the references section. Another option determines how the references section is sorted (e.g. in the order cited, alphabetized by author, or sorted according to any field of choice), and thus affects the particular number used to refer to a particular reference.

initials produces citations that appear like this "[WS04]". The particular rule used to derive the initials from author names is somewhat complex, but roughly speaking, the citation string consists of the first initials of the authors last names, appended with the year of publication. If there is a single author, then the first three letters of the author's last name is used instead. A paper by Sirer in 2006 would be cited as "[Sir06]" under this scheme. If there are five or more authors, the first three initials are appended with a "+" sign and the year. For instance, a paper by Aardvark, Dewey, Chethem, and Howe would be cited as "[ADCH06]", but if Aardvark and friends sign on Elvis as a coauthor, the citation string becomes "[ADC+06]". Finally, last name modifiers (such as

"van") are preserved in lower case. A paper by Sirer and van Renesse would be cited as "[SvR07]".

fullname produces citations that appear like this "[Walsh and Sirer 06]". The last names appear in full for references authored by up to two authors. A paper by Dewey, Chethem and Howe would be cited as "[Dewey et al. 06]". Fullname citations are the most readable and should be used whenever possible.

4 The References Section

CrossTEX provides many options that enable the user to control the appearance of the references within a document. This section describes various options that can be passed to the crosstex tool for achieving the precise formatting desired.

4.1 Invoking CrossTeX

In its simplest invocation, crosstex takes one or more file names, e.g. crosstex file1 file2 Each file is processed separately. Files are found in a search path containing the directory containing the file being processed and a central system directory (e.g. /usr/local/crosstex/lib); this search path can be extended with the --dir option. Extensions (.aux, .xtx, .bib) will be added if necessary to find the file. Each output will always appear in the same directory as the file processed, under the same name but with the extension changed to .bbl.

If crosstex is invoked as xtx2bib or the --xtx2bib option is given, the output extension will be .bib, and the bibliographic information will be back-converted to plain BibTeX.

If crosstex is invoked as bib2xtx or the --bib2xtx option is given, the output extension will be .xtx, and the bibliographic information will be output using CrossTeX's advanced features where possible. Currently, it is possible to use the --heading and --reverse-heading as usual to specify any number of fields to pull out with @default statements. This feature can be very convenient for converting old BibTeX databases to CrossTeX, but might lose some information if used on an already optimized CrossTeX database.

If crosstex is invoked as xtx2html or the --xtx2html option is given, the output extension will be .html; some style information will be changed as appropriate for formatting a web bibliography, and the output will be wrapped into a LATEX document and translated into HTML by piping it through hevea. Sometimes it is necessary to run this more than once to get labels right, as with LATEX; hevea will print an appropriate message if this is necessary. By default, the style used for HTML is pretty non-traditional, but can be overridden by further options: xtx2html --style plain file looks nice and tame.

A number of options can be specified to change the style of the bibliography to override or tweak that specified by a document.

4.2 Abbreviation

The --short option allows many kinds of objects to be abbreviated in the bibliography. For example, to use shortened month names ('Jan.', 'Feb.') instead of long ones ('January', 'February'), simply use the option --short month. This allows the creators of the database to specify both month names just once, refer to the relevant month objects in their entries, and the formatting of month names to be consistently chosen when the bibliography is formatted.

Anything with a name can be abbreviated this way—so a conference can be shortened from "Networked Systems Design and Implementation" to "NSDI" when under the space crunch or filled back out later with a simple option. Databases mention each name only once, and, even more importantly, what name to use is left to the document and the user and is not imposed on the database maintainer.

Objects that can be shortened include author, conference, conferencetrack, country, journal, month, state, string, and workshop.

4.3 Authors

Author names can be complicated, and are the source of much confusion in BibTeX. The same author might appear with a middle name, without a middle name, last name first, with abbreviated first names, mis-spelled, with different combinations of accents, and so forth.

In CrossT_EX, the database maintainer can enter the name just once in an author object and control the way it is formatted via options. The --short author option generates abbreviated author names automatically if an author doesn't have an explicitly mentioned short name, and CrossT_EX is careful to handle complicated names with accents and modifiers correctly when abbreviating or generating citation keys.

The option --last-first causes the first author in each list to be formatted 'Last, First' instead of 'First Last'. CrossTeX does the Right Thing with modifiers here, too. When author names are capitalized with --capitalize author, CrossTeX carefully works around LaTeX commands and accents to produce clean-looking names.

4.4 Capitalization

Any object that can be abbreviated with --short can be coerced to all upper case with --capitalize. For example, to cause authors to appear capitalized, issue --capitalize author.

4.5 Titles

Title case is one of the most common inconsistencies when using BibTeX. Often, some papers are cited with lower-case titles, some are all upper-case, and some follow mixed title-case. Key acronyms (e.g. BGP) and proper nouns (e.g.

Internet) are haphazardly capitalized, or not, depending on how diligent the author was when putting together the bibliographic database.

CrossTEX ensures that all titles follow the same uniform capitalization standard, even if they appear in a wild variety of styles in the database. The first letter of each word will become capitalized, the rest lower, the standard known as "titlecase". CrossTEX is very careful to ensure the titles come out looking "good"—words in StudlyCaps or ALLCAPS are retained as-is, LATEX commands and anything in math mode are protected, compound words such as "Peer-to-Peer" are split into words, capitalized correctly, and re-assembled, and additionally a list of known phrases are carefully found and formatted. For example, any appearance of a string that is (ignoring case) equivalent to "USENIX" appears as "USENIX". These phrases are found at run-time by CrossTEX in Otitlephrase commands, such as:

```
@titlephrase "USENIX"
@titlephrase "Linux"
```

The standard include files define certain common Computer Science phrases such as these, but they can appear anywhere in the .xtx file. Small words, such as "a", "an", "the", etc. are also handled specially: They are made lower-case except at the beginning of the title or after certain punctuation, such as long dashes or colons. These, too, are defined at run-time by @titlesmall commands:

```
@titlesmall "a"
@titlesmall "the"
```

Again, the standard include files define important English small words to start with.

An example title with the default might be "Aardvark: A System for Peerto-Peer BGP Routing on the Internet".

With --titlecase lower, Only the first letter of the title and those following punctuation are capitalized, the rest put into lower-case. All of the special cases for the default title-case still apply. Thus, the example title would appear "Aardvark: A system for peer-to-peer BGP routing on the Internet".

With --titlecase upper, everything, even known phrases and small words, are put into upper-case thus: "AARDVARK: A SYSTEM FOR PEER-TO-PEER BGP ROUTING ON THE INTERNET". Commands and math-mode are still protected.

Finally, to allow titles to appear as they are specified in the database, use --titlecase as-is.

4.6 Proceedings

There are a variety of styles in use when citing papers at conferences. Some people prefer to precede the conference name with "In Proceedings of the". These same people usually use "In Proc. of" when pressed for space. With

--add-proceedings, CrossTEX will generate book titles for conferences beginning with "In Proceedings of", while --add-proc uses the shorter "In Proc." and without any options, only "In" is used for papers in conferences with proceedings.

For journal articles, the usual convention is to simply put the journal name in italics following the author names, and this is the default CrossTEX and BIBTEX behavior. Some people prefer to prepend "In" to the name of the journal; this can be accomplished with the --add-in option.

BIBTEX users affect these personal preferences by modifying the bibliographic database. Such changes are potentially disruptive and can introduce errors. CrossTEX enables such stylistic changes, which do not affect the underlying data, to be affected without modifying the database, and ensures that the choice will be applied consistently throughout.

4.7 Sorting and Headings

Sorting affects the order in which references will appear in the bibliography. By default, entries will be sorted by their citation keys, or by their authors and publication dates, depending on the citation style. The --sort option provides finer control over the sort order. By specifying --sort field, the database will be stably sorted by field; later specifying --sort field2 will cause the bibliography to be sorted by field2, but the entries will still be sub-sorted by the first field. To sort in descending order, use --reverse-sort in the same way.

When processing large bibliographies, it can be nice to partition the entries into labeled categories. Specifying the --heading field option specifies a field to be used to divide the entries into sections. For example, --heading year will cause the entries to be grouped by year and given headings for each different year. (--reverse-heading will reverse the order in which the sections appear.) When converting a bibliography of personal publications to HTML, for example, it might be convenient to group by an information field such as --heading category to nicely organize the produced bibliography.

4.8 Hyperlinks

CrossTeX supports searching fields to find hyperlinks and presenting them in the references section. This is useful for any target format with hyperlinks, including PDF and HTML. Normally, no fields are treated as possible links, except when converting to HTML, when the list defaults to Abstract, URL, PS, PDF, HTML, DVI, TEX, BIB, FTP, HTTP, and RTF. A new field can be added with -1 field or --link field; --no-link clears the list in order to disable link-finding or start over.

If any of the fields, case insensitive (e.g. --link PDF and --link pdf are equivalent), consists of a URL, it will appear at the end of the reference as a hyperlink with its label as the name of the field given to --link (e.g. the former would match the same field, but produce links labeled "PDF" and "pdf" respectively).

4.9 Abstracts and Keywords

Some detailed database entries might include a list of keywords related to the paper or even a complete abstract. By default, these fields are accepted but do not appear in the reference. With --abstract, abstracts will appear in blocks following the appropriate entries. The --keywords option invokes similar behavior for keyword lists. To explicitly set the defaults, --no-abstract and --no-keywords disable these extra blocks.

If both --link Abstract and --abstract are specified, CrossTEX tries to be intelligent: The abstract will either appear as a link or as a block, based on whether it appears to be a complete text or a link to the real abstract.

4.10 Putting the title first

Ordinarily, each entry begins with the author or editor first, then the title. A simple kind of re-ordering can be accomplished by specifying --title-head, which causes the title to come first and bold. This option can be negated with --no-title-head, but it is default only with --style html or --xtx2html.

4.11 Splitting up lines

Ordinarily, each entry takes up one logical line, which might wrap. The --break-lines option instead puts each major field (author, title, publication information, any hyperlinks, etc.) on its own line, in the same order they would have appeared on a single line. This can be combined with putting the title first with --title-head to cause the title to come on the first line all by itself, which is the default with --style html or --xtx2html. To explicitly cause entries to appear on a single logical line, use --no-break-lines.

4.12 Label appearance

By default, each entry in the references section is labeled with its citation key as it would appear in the document, e.g. "[1]" or "[WS04]". It is also possible, with the option --blank-labels, to leave entries un-labeled; this does not influence how citations appear in the document body in any way, but leaves out labels in the bibliography.

By itself, this option would probably produce a bibliography in which it is impossible to track down citations. However, it can be useful when converting a database to HTML, for example, when there is no document anyway and the labels look messy. Thus, leaving labels blank is the default with --style html or --xtx2html. To explicitly include labels, use --no-blank-labels.

4.13 Styles

Styles, such as plain, abbrv, etc., are simply collections of arguments to CrossTeX that produce the appropriate appearance, and CrossTeX is designed to make it easy to change or add styles. The style html sets a bunch of link fields and

other stylistic choices appropriate for the web, and the basic Bib TeX styles are also implemented by default:

```
abbrv is equivalent to --no-break-lines --no-blank-labels --no-title-head --no-abstract --no-keywords --short author --cite-by initials
```

```
alpha is equivalent to --no-break-lines --no-blank-labels --no-title-head --no-abstract --no-keywords --cite-by initials
```

```
full is equivalent to --no-break-lines --no-blank-labels --no-title-head --no-abstract --no-keywords --cite-by fullname --add-proceedings --add-in
```

```
unsrt is equivalent to --no-break-lines --no-blank-labels --no-title-head --no-abstract --no-keywords --cite-by number --no-sort
```

```
plain is equivalent to --no-break-lines --no-blank-labels --no-title-head --no-abstract --no-keywords --cite-by number
```

```
html is equivalent to -1 Abstract -1 URL -1 PS -1 PDF -1 HTML -1 DVI -1 TeX -1 Bib -1 FTP -1 HTTP -1 RTF --break-lines --blank-labels --title-head --abstract --keywords
```

Styles allow complex requirements to be conveniently bundled, either in the \bibliographystyle command or on the command line with --style name.

4.14 Inside the .tex file

The .tex source file never needs to know you're using CrossTEX, because it is completely backwards compatible with normal LATEX auxiliary files that note citations and styles. The \bibliographystyle{foo} command will cause the equivalent of the command-line option --style foo.

However, the **\bibliographystyle** command can cause other magic as well. Arbitrary command line options may be specified after the style name, separated by single spaces. For example:

```
\bibliographystyle{plain --add-in --add-proceedings --short author}
```

This allows documents to have fine-grained control over styling. Run-time options will still take precedence over document defaults.

4.15 Adding citations

Normally, only entries that are cited in the LATEX document appear in the references section. When processing a database directly, the default is for all entries to appear. These behaviors can be manipulated at run-time with the --cite option. It behaves exactly as a LATEX \cite command, including the use of the asterisk (--cite *, modulo shell-escaping) to cite all entries, and constrained citation. When processing LATEX documents, this adds entries to

the references; when processing databases directly, this overrides the default to cite everything and cites only the entries specifically mentioned on the command line.

4.16 Manipulating crosstex

Numerous options help control or debug crosstex itself. The --version option will cause crosstex to print out its version and exit. To get a list of all supported options and brief descriptions, use --help or -h.

Two options change the level of error reporting. By default, only errors that will definitely change the appearance of the bibliography are produced. With --strict, more warnings, such as for unknown fields or other problems, will be printed. With --quiet, on the other hand, no errors or warnings will appear at all.

The --dump option provides very detailed debugging. Processing will continue exactly as normal, but at the end, any kinds of objects specified to --dump will be listed as output. For example, to list all the author objects defined in a bibliography foo, crosstex --dump author foo would process foo and print a list.

Two additional, non-object dumps are permitted. With --dump file, crosstex will print a trace of the path to every database it processes; this allows one to examine whether it is choosing the right files based on the search path and explore what standard databases are being automatically pulled in. The various title phrases and small words that control title capitalization can be dumped with --dump titlephrase.

5 Extending CrossT_EX

CrossTEX is designed to be easy to extend with very trivial knowledge of Python. Before continuing, it is very important to have a look at the standard object types and fields in Appendix A, which are already supported by CrossTEX. New objects or fields are defined by editing the file crosstexobjects.py, which is typically installed in /usr/local/crosstex/lib.

To create a new field for a particular object type, find its definition (e.g., the section defining the string object begins class string). Most objects already define some fields; simply copy that syntax for your own field.

Fields are defined as optional or required by assigning them the values OPTIONAL and REQUIRED, respectively. To make an optional field required or a required field optional, simply assign it the new value in the class where you want the change.

To create an entirely new class *foo* which is identical to a current one named *bar*, add the following to the end of crosstexobjects.py.

```
class foo(bar):
    pass
```

If *foo* should have different required or optional fields form *bar*, define them as noted above. (The pass is only necessary if the body of the class definition is empty, e.g. it does not set the values of any fields.)

If you are more advanced at Python programming and want to change the behavior of objects, simply look at the ones that exist. The string value of an object is obtained, appropriately enough, from its __str__ method, should you want to change the appearance of any objects. Similarly, every object has access to an _options member containing the options set on the command line.

Happy hacking!

A Standard object types

These are the kinds of objects CrossTEX knows about by default. For information about extending this notion, see Extending CrossTEX in Section 5.

```
string REQUIRED: name and/or shortname (longname is an alias for name.)
RELEVANT ARGUMENTS: --short
```

author As string, except: OPTIONAL: address, affiliation, email, institution, organization, phone, school, url

state As string, except: OPTIONAL: country

country As string.

location OPTIONAL: city, state, country

month As string.

journal As string.

newspaper As journal.

misc OPTIONAL: abstract, address, affiliation, annote, author, bib, bibsource, booktitle, category, chapter, contents, copyright, crossref, doi, dvi, edition, editor, ee, ftp, howpublished, html, http, institution, isbn, issn, journal, key, keywords, language, lccn, location, month, monthno, mrnumber, note, number, organization, pages, pdf, price, ps, publisher, rtf, school, series, size, title, type, url, volume, year RELEVANT ARGUMENTS: --cite-by, --titlecase, --link, --abstract, --keywords

article As misc, except: REQUIRED: author, title, journal, year RELE-VANT ARGUMENTS: --add-in

newspaperarticle As article, except: (newspaper is an alias for journal)

book As misc, except: REQUIRED: author and/or editor, title, publisher, year

```
booklet As misc, except: REQUIRED: title
```

inbook As misc, except: REQUIRED: author and/or editor, title, chapter and/or pages, publisher, year

 $\begin{array}{ll} \text{incollection } As \, \text{misc}, \, \text{except: } REQUIRED: \, \text{author}, \, \text{title}, \, \text{booktitle}, \, \text{publisher}, \\ \text{year} \end{array}$

inproceedings As misc, except: REQUIRED: author, title, booktitle, year RELEVANT ARGUMENTS: --add-proceedings, --add-proc

manual As misc, except: REQUIRED: title

thesis As misc, except: REQUIRED: author, title, school, year

mastersthesis As thesis.

phdthesis As thesis.

patent As misc, except: REQUIRED: author, title, number, month, year

proceedings As misc, except: REQUIRED: title, year

collection As proceedings.

techreport As misc, except: REQUIRED: author, title, institution, year

unpublished As misc, except: REQUIRED: author, title, note

conference As string, except: OPTIONAL: address, crossref, editor, institution, isbn, key, keywords, language, location, month, publisher, url, year

conference As conference, except: Optional: conference

workshop As conferencetrack.

rfc As misc, except: REQUIRED: author, title, number, month, year

url As misc, except: REQUIRED: url OPTIONAL: accessyear, accessmonth