
Programming for Pervasive Computing Environments

Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson,
Steven Gribble, Tom Anderson, Brian Bershad, Gaetano Borriello, David Wetherall

University of Washington
one@cs.washington.edu

Technical Report UW-CSE-01-06-01

Abstract

Pervasive computing provides an attractive vision for
the future of computing. Computational power will be
available everywhere. Mobile and stationary devices
will dynamically connect and coordinate to seamlessly
help users in accomplishing their tasks. However, for
this vision to become a reality, developers must build
applications that constantly adapt to a highly dynamic
computing environment. To make the developers’ task
feasible, we introduce a system architecture for perva-
sive computing, calledone.world . Our architecture pro-
vides an integrated and comprehensive framework for
building pervasive applications. It includes a set of ser-
vices, such as service discovery, checkpointing, migra-
tion, and replication, that help to structure applications
and directly simplify the task of coping with constant
change. We describe the design and implementation of
our architecture and present the results of an evaluation,
which includes two case studies.

1 Introduction

In this paper, we explore how to build applications for
pervasive computing environments. Pervasive comput-
ing [17, 47] calls for the deployment of a wide variety of
smart devices throughout our working and living spaces.
These devices are intended to react to their environment
and coordinate with each other and network services.
Furthermore, many devices will be mobile and are ex-
pected to dynamically discover other devices at a given
location and continue to function even if they are dis-
connected. The overall goal is to provide users with uni-
versal and immediate access to information and to trans-
parently support them in their tasks. The pervasive com-
puting space can thus be envisioned as a combination
of mobile and stationary devices that draw on power-
ful services embedded in the network to achieve users’
tasks [15]. The result will be a giant, ad-hoc distributed

system, with tens of thousands of people, devices, and
services coming and going.

The key challenge for developers is to build appli-
cations that adapt to such a highly dynamic environ-
ment and continue to function, even if people and de-
vices are roaming across the infrastructure and if the net-
work provides only limited services. However, existing
approaches to building distributed applications, includ-
ing client/server or multitier computing, are ill suited to
meet this challenge. They are targeted at smaller and less
dynamic computing environments and lack sufficient fa-
cilities to manage constant change. As a result, devel-
opers of pervasive applications have to expend consid-
erable effort towards building necessary systems infra-
structure instead of focusing on the actual applications.

To mitigate this situation, we introduce a system ar-
chitecture for pervasive computing, calledone.world .
Our architecture is based on a simple programming
model and provides a set of services that have been
specifically designed for large and dynamic computer
networks. Our architecture does not introduce funda-
mentally new operating system technologies or services;
rather, the goal is to provide an integrated and compre-
hensive framework for building pervasive applications.
By usingone.world , application developers can focus on
the actual application logic and on making their appli-
cations adaptable. We have validated our approach by
setting up competing teams of developers building the
same applications, with one team using Java-based tech-
nologies and the other usingone.world .

This paper is structured as follows. In Section 2
we motivate our work and introduce our approach to
building pervasive applications. Section 3 provides
an overview of our architecture. Section 4 describes
one.world ’s design and implementation in detail. In Sec-
tion 5 we present an evaluation of our architecture, in-
cluding the results of our validation case study. Sec-
tion 6 discusses future work and Section 7 reviews re-
lated work. Finally, Section 8 concludes this paper.

2 Motivation and Approach

From a systems viewpoint, the pervasive computing
space presents the unique challenge of a large and highly
dynamic distributed computing environment. This sug-
gests that pervasive applications really are distributed
applications. Yet, existing approaches to building dis-
tributed systems do not provide adequate support for
pervasive applications and fall short along three main
axes.

First, many existing distributed systems seek to hide
distribution and, by building on distributed file systems
or remote procedure call (RPC) packages, mask remote
resources as local resources. This transparency simpli-
fies application development, since accessing a remote
resource is just like performing a local operation. How-
ever, this transparency comes at a cost in service avail-
ability and failure resilience, because it encourages a
programming style in which the unavailability of a re-
source or a failure is viewed as an extreme case. But
in an environment where tens of thousands of devices
and services come and go, the unavailability of some re-
source is a frequent occurrence.

Second, RPC packages and distributed object sys-
tems compose distributed applications through program-
matic interfaces. Just like transparent access to re-
mote resources, composition at the interface level sim-
plifies application development. However, composi-
tion through programmatic interfaces also leads to a
tight coupling between major application components
because they directly invoke each other through their in-
terfaces. As a result, it is unnecessarily hard to add new
behaviors to an application. Extending a component re-
quires interposing on the interfaces it uses, which is un-
wieldy for interfaces with numerous or complex meth-
ods. Furthermore, extensions are limited by the degree
to which extensibility has been designed into the appli-
cation’s interfaces.

Third, distributed object systems, such as Le-
gion [32] or Globe [44], encapsulate both data and func-
tionality within a single abstraction, namely objects. Yet
again, encapsulation of data and functionality extends a
convenient programming paradigm for single-node ap-
plications to distributed systems. By encapsulating data
behind an object’s interface, objects limit how data can
be used and complicate the sharing, searching, and fil-
tering of data. In contrast, relational databases define a
common data model that is separate from behaviors and
thus make it easy to use the same data for different and
new applications. Furthermore, objects as an encapsula-
tion mechanism are based on the assumption that code
and data layout change more frequently than an object’s
interface, an assumption that may be less valid for a
global distributed computing environment. Increasingly,

Separate
data and

functionality

Adaptable
applications

Compose
dynamically

Expose
change

Programming for change

Figure 1: Overview of our approach. The three principles
guide the design of our system architecture and make it
feasible for application developers to program for change,
resulting in adaptable applications.

common data formats are specified by industry groups
and standard bodies, such as the World Wide Web Con-
sortium, and evolve at a relatively slow pace. In contrast,
application vendors compete on functionality, leading
to considerable differences in application interfaces and
implementations and a much faster pace of innovation.

Not all distributed systems are based on extensions
of single-node programming methodologies. Notably,
the World Wide Web does not rely on programmatic
interfaces and does not encapsulate data and function-
ality. It is built on only two basic operations, GET
and POST, and the exchange of passive, semi-structured
data. In part due to the simplicity of its operations
and data model, the World Wide Web has successfully
scaled across the globe. Furthermore, the narrowness
of its operations and the uniformity of its data model
have made it practical to add new services, such as
caching [10, 41], content transformation [20], and con-
tent distribution [26].

However, from a pervasive computing perspective
the World Wide Web also suffers from three significant
limitations. First, it requires connected operation for
any use other than reading pages. Second, it places the
burden of adapting to change on users, for example, by
making them reload a page when a server is unavailable.
Finally, it does not seem to accommodate emerging tech-
nologies that are clearly useful for building adaptable
applications, such as mobile code [42] (beyond Java ap-
plets and JavaScript for enlivening pages) and service
discovery [1, 3, 14].

This raises the question of how to structure systems
support for pervasive applications. On one side, extend-
ing single-node programming models to distributed sys-
tems leads to the shortcomings discussed above. On the
other side, the World Wide Web avoids several of the
shortcomings but is too limited for pervasive comput-
ing. To this end, we identify three principles that should

guide the design of a systems framework for pervasive
computing.

Principle 1 Expose change.

Systems should expose change, including failures, rather
than hide distribution, so that applications can im-
plement their own strategies for handling changes.
Leases [22] are an example of a suitable mechanism:
they make time visible throughout a system and thus
cleanly expose change. At the same time, systems need
to provide primitives that simplify the task of adequately
reacting to change. Examples for such primitives in-
clude “checkpoint” and “restore” to simplify failure re-
covery, “move to a remote node” to follow a user as she
moves through the physical world, and “find matching
resource” to discover suitable services on the network.

Principle 2 Compose dynamically.

Systems should make it easy to compose and extend ap-
plications and services at runtime. In particular, interpo-
sition on a component’s interactions with other compo-
nents as well as the outside world must be simple. Such
features make it possible to dynamically change the be-
havior of an application or add new behaviors without
changing the application itself. This is particularly use-
ful for complex and reusable behaviors, such as replicat-
ing an application’s data or deciding when to migrate an
application.

Principle 3 Separate data and functionality.

Systems need to provide a clean separation between data
and functionality, so that they can be managed separately
and so that they can evolve independently. This separa-
tion is especially important for services that search, fil-
ter, or translate large amounts of data. At the same time,
data and functionality depend on each other, for exam-
ple, when migrating an application and its data. Systems
thus need to also include the ability to group data and
functionality but must make them accessible indepen-
dently.

Common to all three principles is the realization that
systems cannot automatically decide how to react to
change, because there are too many alternatives. At
the same time, a system architecture whose design fol-
lows the three principles provides considerable support
for dealing with change. Exposing change helps with
identifying and reacting to changes in devices and the
network. Dynamic composition helps with changes in
application features and behaviors. Finally, separating
data and functionality helps with changes in data formats
and implementation. Given a system that follows these
principles, application developers can focus on making

replicator

log

/

<;><;><;>

app

<;>

<;>

<;>Environment Tuple Components

Figure 2: An example environment hierarchy. The root
environment “/” hosts one.world ’s kernel and has one
child, named “replicator”, which also contains active com-
ponents. The replicator environment in turn has two chil-
dren, named “log” and “app”. The log environment only
stores tuples, while the app environment also contains
active components.

applications adaptable instead of creating necessary sys-
tems support. This approach to building pervasive appli-
cations is illustrated in Figure 1.

3 Architecture

In our architecture, each device typically runs a single
instance ofone.world . Each suchnodeis independent of
other nodes and may be administered separately. Appli-
cations run withinone.world , and all applications run-
ning on the same node share the same instance of our
architecture. Our architecture provides the same basic
abstractions and core services across all nodes and uses
mobile code to provide a uniform and safe execution
platform.

3.1 Basic Abstractions

Our architecture relies on separate abstractions for ap-
plication data and for functionality. Applications store
and communicate data in the form oftuples and are
composed fromcomponents. Tuples are records with
named fields and are self-describing in that an applica-
tion can dynamically determine a tuple’s fields and their
types. Components implement functionality and interact
by importing and exporting event handlers. They stati-
cally declare which event handlers they import and ex-
port but are dynamically linked and unlinked.

Environmentsprovide structure and control. They
serve as containers for tuples, components, and other

environments. Each application has at least one envi-
ronment, in which it stores tuples and in which its com-
ponents are instantiated. At the same time, applications
are not limited to a single environment and may span
several, nested environments. Each node’s root environ-
ment hostsone.world ’s kernel. Environments are also
an important mechanism for dynamic composition: an
environment controls all nested environments and can
interpose on their interactions with the kernel and the
outside world. Environments thus represent a combina-
tion of the roles served by file system directories and
nested processes [6, 18, 43] in more traditional operat-
ing systems. Figure 2 shows an example environment
hierarchy.

Access to both local and remote resources is con-
trolled by leases[22]. Leases limit the time applica-
tions can access resources, such as an environment’s tu-
ple storage or a communication channel, and force ap-
plications to periodically renew their interest in the re-
sources. As a result, leases make time visible throughout
the system and cleanly expose change to applications.

3.2 Services

In pervasive computing environments, location has a
profound effect. As a user moves through the physical
world, her applications need to be continuously avail-
able. She may carry them with her on a personal device,
or they may follow her from shared device to shared de-
vice. At any location, applications need to be able to dis-
cover local resources, such as a wall display or a printer,
and interact with network services. Applications also
need to be prepared to operate in more limited environ-
ments. They need to provide access to shared data, even
if the current location does not allow network access.
Furthermore, they may have to gracefully resume after a
failure, such as a user’s only device’s batteries running
out.

Since these requirements are shared between perva-
sive applications,one.world provides a set of services
that serve as common building blocks and directly help
developers in making their applications adaptable.Mi-
gration provides the ability to move or copy an envi-
ronment and its contents to another node. It affects an
entire application, because both components and stored
tuples are moved or copied.Remote event passing(REP)
provides the ability to send events to remote receivers,
including receivers located by service discovery.Repli-
cation makes stored tuples accessible on several nodes
at the same time, even if the nodes are not currently
connected. Finally,checkpointingcaptures the execu-
tion state of an environment tree and saves it as a tuple,
thus making it possible to later revert the environment
tree’s execution state.

Operation Argument Explanation
put Tuple Write the tuple.
read Query Read a single tuple.
listen Query Read several tuples as

they are written.
query Query Query for several tuples

from storage.
delete ID Delete a tuple from

storage.

Table 1: The structured I/O operations. Operation speci-
fies the structured I/O operation. Argument specifies how
tuples are selected for that operation. Explanation de-
scribes the operation.

4 Design and Implementation

In this section, we describe the design and implementa-
tion of one.world in detail. We first present our archi-
tecture’s facilities for data management in Section 4.1,
followed by events and components in Section 4.2, and
the environment hierarchy in Section 4.3. We conclude
this section with a discussion of the current status of our
Java-based implementation in Section 4.4.

4.1 Data Management

Data management inone.world is based on tuples. Tu-
ples define a common data model, including the type
system, for all applications and thus make it easy to store
and exchange data. They are self-describing, mutable
records with named and optionally typed fields and can
be nested within each other. All tuples have an ID field
specifying a globally unique identifier [31] (GUID) to
support symbolic references and a metadata field to sup-
port application-specific annotations.

Structured I/Olets applications store tuples in envi-
ronments and communicate tuples across the network
on top of UDP and TCP. It exposes a common inter-
face to storage and communications, which is summa-
rized in Table 1. Operations are atomic so that their
effects are predictable. Operations on storage can op-
tionally use transactions to group several operations into
one atomic unit. Queries forread, listen, andqueryoper-
ations support comparisons with the value of a field, in-
cluding the fields of nested tuples, comparisons with the
declared or actual type of a tuple or field, and negations,
disjunctions, and conjunctions. To use structured I/O,
applicationsbind to tuple storage or a communications
end-point and then perform operations on the bound re-
source. All bindings are controlled by leases.

We chose tuples instead of byte strings for I/O be-
cause tuples preserve the structure of data. Tuples obvi-
ate the need for explicit marshalling and unmarshalling

of data and enable system-level query processing. Since
they provide well-defined data units, they also make it
easier to share data between multiple writers. We chose
tuples instead of XML because tuples are simpler and
easier to use. The structure of XML-based data is less
constrained and also more complicated, including tags,
attributes, and name spaces. Furthermore, interfaces to
access XML-based data, such as DOM [30], are rela-
tively complex.

We chose an I/O mechanism that distinguishes be-
tween storage and communications instead of a unified
tuple space abstraction [9, 21, 49] because such a mech-
anism better reflects how applications store and com-
municate data. In particular, applications often modify
stored data. For example, a personal information man-
ager needs to be able to update stored contacts and ap-
pointments. Structured I/O lets applications overwrite
stored tuples by simply writing a tuple with the same
ID as the stored tuple. In contrast, tuple spaces support
the addition of new tuples, but existing tuples cannot be
changed. Furthermore, exchanging tuples through a tu-
ple space imposes too high a performance overhead for
some applications, such as streaming audio and video.
Communications through storage also provide a seman-
tic mismatch for these applications, because data should
be delivered right away and not be retained in storage.

While structured I/O only provides access to local tu-
ple storage, replication makes tuples accessible to appli-
cations on multiple nodes, even if the nodes are discon-
nected. one.world ’s replication layer is patterned after
Gray et al.’s two-tier replication model [23]. A mas-
ter node owns all data and replicas have copies of that
data. Replicas can either be connected or disconnected.
In connected mode, updates are final and performed di-
rectly on the master. In disconnected mode, updates are
tentative and logged on the replica. When a replica be-
comes connected again, it synchronizes with the master
by replaying its log against the master and by receiving
updates from the master. The replica may then discon-
nect again or continue in connected mode.

We chose two-tier replication over Bayou’s epidemic
replication model [37, 40] for two reasons. First, two-
tier replication is easier to explain to users. Tentative
updates may only change once, during synchronization,
and not repeatedly. Second, two-tier replication avoids
system delusion [23]. Delusion occurs when large num-
bers of replicas reconcile with each other repeatedly in
the absence of a master and consequently diverge further
and further from each other.

The implementation of replication is not part of
one.world ’s kernel and makes extensive use of its core
primitives. A replica is structured as shown in Figure 2
(with the log environment also containing active com-
ponents). The replicator interposes on the application’s

access to tuple storage. It logs updates in the log envi-
ronment when in disconnected mode and forwards them
to the master using REP when in connected mode. On
reconnection of a disconnected node, the log is sent to
the master by migrating a copy of the log environment.
Similarly, updates are sent from the master to the replica
by migrating an environment containing such updates.

Our implementation has two important additional
features over two-tier replication as described in [23].
First, it allows for continuous operation during synchro-
nization, thus improving usability. Second, the mas-
ter and its replicas can migrate to different nodes with-
out disrupting operation. Migrating the master is useful
when, for example, upgrading the computer the master
is running on; migrating a replica is useful for applica-
tions that follow a user as she moves through the physi-
cal world.

4.2 Events and Components

Control flow in one.world is expressed through asyn-
chronous events that are processed by event handlers.
Events are simply tuples. In addition to the ID and meta-
data fields common to all tuples, events have a source
field referencing an event handler. This event handler
receives notification of exceptional conditions during
event delivery and processing as well as the response for
request/response interactions. Furthermore, all events
have a closure field. For request/response interactions,
the closure of the request is returned with the response.
Closures are useful for storing additional state needed
for processing responses and thus can simplify the im-
plementation of event handlers. Event handlers imple-
ment a uniform interface with a single method that takes
the event to be processed as its only argument. Event
delivery has at-most-once semantics, both for local and
remote event handling.

Application functionality is implemented by compo-
nents, which import and export asynchronous event han-
dlers. Components are instantiated within specific envi-
ronments and, in their constructors, declare which event
handlers they import and export. They can be linked
and unlinked at any time. An application’s main compo-
nent has a static initialization method that instantiates its
components and performs the initial linking. While the
application is running, it can instantiate additional com-
ponents and relink and unlink components as needed.

To implement asynchronous event handling,
each environment provides a queue of pending
〈event handler, event〉 invocations as well as a pool of
one or more threads to perform such invocations. When
sending an event between components in different en-
vironments, the corresponding event handler invocation
is automatically enqueued in the〈event handler, event〉

queue of the target environment. When sending an
event between components in the same environment,
the event handler invocation is implemented as a direct
method call. This default can be overridden at link-
time, so that event handlers in the same environment
use the〈event handler, event〉 queue instead of direct
invocations.

Remote event passing (REP) provides the ability to
send events to remote receivers. It supports both point-
to-point communications and service discovery, includ-
ing early and late binding [1], as well as anycast and
multicast, through only three simple operations:ex-
port, send, and resolve. The export operation makes
an event handler accessible from remote nodes through
a symbolic descriptor. The resulting binding between
the event handler and descriptor is leased. Furthermore,
when exporting an event handler for service discovery,
the binding is propagated to the discovery server for the
local network. Thesendoperation sends an event to pre-
viously exported event handlers by using an exported de-
scriptor or discovery query as the remote address. When
using late binding, the event is routed through the dis-
covery server, where the discovery query is resolved.
Otherwise, the event is sent directly to the node export-
ing the targeted event handler. Finally, theresolveoper-
ation looks up event handlers on the discovery server.

We chose to use asynchronous events instead of syn-
chronous invocations for three reasons. First and fore-
most, asynchronous events provide a natural fit for per-
vasive computing, as applications often need to react to
real world events, such as a meeting being started or a
person leaving a room. Second, unlike threads, which
implicitly store execution state in registers and on stacks,
events make the execution state explicit. Systems can
thus directly access execution state, which is useful for
implementing, for example, event priorization or check-
pointing and migration. Finally, taking a cue from other
research projects [11, 24, 25, 36] that have successfully
used asynchronous events at very different points of the
device space, we believe that asynchronous events scale
better across different classes of devices than threads.

We chose a uniform event handling interface because
it greatly simplifies composition and interposition. For
instance, the uniform event handling interface enables
a flexible component model, which supports the linking
of any imported event handler to any exported event han-
dler. Furthermore, it makes it possible to combine point-
to-point communications and service discovery within a
simple and narrow interface to REP. At the same time,
the uniform event handling interface does not prevent
the expression of typing constraints. When components
declare the event handlers they import and export, they
can optionally specify the types of events sent to im-
ported event handlers and processed by exported event

handlers.

4.3 The Environment Hierarchy

Environments are containers for stored tuples, compo-
nents, and other environments and provide structure and
control in one.world . They provide structure by group-
ing data and functionality, and they provide control by
nesting environments within each other. At the same
time, environments always maintain a clear separation
between data and functionality and do not hide them be-
hind a unifying interface. The environment abstraction
was inspired by the ambient calculus [8]. Similar to en-
vironments, ambients serve as containers for data, func-
tionality, and other ambients. But, while ambients are
formal constructs used to reason about mobile computa-
tions, environments are actual entities in theone.world
architecture that are used to implement applications.

The grouping of data and functionality is relevant
for loading code, checkpointing, and migration. In
one.world , application code is represented as tuples and
loaded from environments. Checkpointing captures the
execution state of an environment tree, including ap-
plication components and pending〈event handler, event〉
invocations, in the form of a tuple that is stored in the
root of the checkpointed environment tree. The envi-
ronment tree can later be reverted by reading the tuple
and restoring the execution state. Finally, migration pro-
vides the ability to move or copy an environment tree,
including all execution state and stored tuples, to a re-
mote node.

Checkpointing and migration need to capture and re-
store the execution state of an environment tree. When
capturing execution state, our architecture first quiesces
all environments, that is, it waits for all threads to return
to their thread pools. It then serializes the affected appli-
cation state, notably all components in the environment
tree, and the corresponding environment state, notably
the 〈event handler, event〉 queues. When restoring exe-
cution state,one.world first deserializes all application
and environment state, then reactivates all threads, and
finally notifies applications that they have been restored
or migrated. During serialization, all references to event
handlers outside the affected environment tree are nulled
out. This includes links to components outside the tree
or event handlers providing access to structured I/O. Ap-
plications need to restore nulled out handlers themselves
by relinking or rebinding after restoration or migration.

The nesting of environments is relevant for the fol-
lowing three features. First, environments can be iso-
lated from each other and are subject to hierarchical re-
source controls for CPU slices, memory, and tuple stor-
age, similar to those described in [5, 43]. Second, logic
to control checkpointing and migration can be separated

into an outer environment, because checkpointing and
migration affect an entire environment tree. For exam-
ple, a migration agent that knows how to follow a user as
she moves through the physical world can migrateany
application, simply by dynamically embedding the ap-
plication in its environment. Third, interposition gives
an outer environment complete control over an inner
environment’s interactions with environments higher up
the hierarchy, includingone.world ’s kernel.

To an application, an environment appears to be a
regular component. Each environment imports an event
handler called “main”. This event handler must be
linked to an application’s main component before the
application can run in the environment. It is used by
one.world to notify the application of important events,
including that the environment has been activated, re-
stored, or migrated, or that it is about to be terminated.

Each environment also exports an event handler
called “request” and imports an event handler called
“monitor”. Events sent to an environment’s request
handler are delivered to the first ancestral environment
whose monitor handler is linked. The root environ-
ment’s monitor handler is linked toone.world ’s kernel,
which processes requests for structured I/O, REP, and
environment operations. Consequently, applications use
the request handler for interacting with the kernel. Fur-
thermore, by linking to the monitor handler, an applica-
tion can interpose on all events sent to a descendant’s
request handler. For example, the replicator in Figure 2
can intercept the application’s binding request for tuple
storage by linking to its monitor handler. It can then re-
turn an event handler that not only performs structured
I/O operations on the application’s tuple storage but also
logs these operations in the log environment (see Fig-
ure 2). This use of therequest/monitor mechanismis
illustrated in Figure 3.

To enforce the nesting of environments,one.world
limits access to tuple storage and operations on environ-
ments to the requesting environment and its descendants.
When an application sends an event to its request han-
dler, the event’s metadata is tagged with the identity of
the requesting environment. Before granting access to
tuple storage or performing an operation on an environ-
ment, the kernel verifies that the requesting environment
is an ancestor of the environment being operated on.

We chose a hierarchical arrangement for environ-
ments because, while conceptually simple, it offers
considerable flexibility and power. In particular, the
request/monitor mechanism makes interposition trivial
and thus greatly simplifies dynamic composition as illus-
trated above. Furthermore, because of the uniform event
handler interface, the request/monitor mechanism is ex-
tensible; it can handle new event types without requir-
ing any changes. Finally, the same mechanism can be

app

monitor

request

main

monitor

request

main

replicator

Figure 3: Illustration of the request/monitor mechanism.
Boxes on the left represent application components and
boxes on the right represent environments. The app en-
vironment is nested within the replicator environment.
The replicator environment’s monitor handler is linked
and thus intercepts all events sent to the app environ-
ment’s request handler. The use of the main handler is
explained in the text.

used to provide security by interposing a reference mon-
itor [2] and auditing by logging an application’s request
stream. Its thus obviates the need for fixing a particular
security mechanism or policy inone.world ’s kernel.

We chose to null out references to outside event
handlers during serialization because doing so exposes
change in environments. For migration, an alternative
approach might redirect such event handlers to the orig-
inal node. However, transparently redirecting event han-
dlers creates residual dependencies and thus increases
an application’s exposure to failures, while also hiding
the cause of failures from the application. Furthermore,
we argue that nulling out event handlers does not place
an additional burden on developers, because applications
already need to be prepared to reacquire resources, for
example, to rebind a structured I/O resource because the
lease has expired.

4.4 Implementation

We have implementedone.world largely in Java, which
provides us with a safe and portable execution platform.
We use a small, native library to generate GUIDs, as they
cannot be correctly generated in pure Java. Furthermore,
we use the Berkeley DB [35] to implement reliable tuple
storage. Our architecture currently runs on Windows and
Linux PCs, and a port to Compaq’s iPAQ handheld com-
puter is under way. The implementation ofone.world it-
self has approximately 16,000 non-commenting source

statements (NCSS) with an additional 5,400 NCSS for
our replication layer. Our entire source tree, including
regression tests, benchmarks, and applications, has ap-
proximately 44,000 NCSS. A Java archive file with the
binaries forone.world including replication is 675 KB.
The GUID generation and Berkeley DB libraries require
another 485 KB on Windows systems.

The implementation currently lacks support for
transactions and class loading from environments, as
well as isolation and resource controls. The implemen-
tation of transactions and class loading from environ-
ments should be straightforward. The implementation
of isolation and resource controls can either be done in
pure Java [13, 46], albeit at some performance cost, or
by modifying the Java virtual machine [4, 5]. We plan
to implement these features in the near future. Further-
more, we believe that their absence does not impact the
overall results presented in this paper. After all, we fo-
cus on how to build adaptable applications for pervasive
computing environments and not on how to provide pro-
tection for language-based systems.

5 Evaluation

In this section, we present a thorough evaluation of
one.world . We first characterize the basic performance
of our architecture in Section 5.1. We follow with the
results of a case study on students usingone.world to
build real applications in Section 5.2. We conclude with
an evaluation of our own experiences with implementing
replication in Section 5.3. Overall, the results show that
one.world has acceptable performance and is a viable
platform for building pervasive applications. They also
suggest that our architecture requires additional support
for better structuring application code.

5.1 Basic Performance

To determine the basic performance ofone.world , we
measured the performance of microbenchmarks for tu-
ple storage, tuple communications, remote messaging,
and migration. Where applicable, we compare the re-
sults with microbenchmarks for the underlying storage
and communication services as well as related technolo-
gies, including IBM’s T Spaces 2.1.2 [49]. All mea-
surements were performed using off-the-shelf PCs, with
Pentium III 800 MHz processors and 256 MB of RAM,
running Windows 2000. The PCs are connected by a 100
Mb switched ethernet. We use Sun’s HotSpot client vir-
tual machine 1.3.0 and Sleepycat’s Berkeley DB 3.2.9.
Reported results represent the average of 100 benchmark
runs.

Test BDB Serial BDB one.world
Read 0.24 0.88 1.23
Write 25 25 25
Query 44 640 860

Table 2: Latency of storage operations in milliseconds.
Queries retrieve all stored tuples. BDB shows perfor-
mance of the Berkeley DB without serialization, and Se-
rial BDB shows performance of the Berkeley DB with se-
rialization.

Test T Spaces one.world
Read 2.9 1.2
Write 4.5 25
Query 18 690

Table 3: Latency of storage operations in milliseconds.
Queries are by field value and match 23 tuples on aver-
age.

For tuple storage, we compare the performance of
structured I/O with that of the Berkeley DB, the under-
lying storage used by structured I/O. The Berkeley DB
benchmarks are performed both with and without seri-
alization. We also compare the performance of struc-
tured I/O with that of T Spaces, an in-memory tuple
space that uses periodic checkpointing for persistence.
The microbenchmarks read, write, and query for tuples
representing personal contacts (as might be used by a
personal information manager). All tests use a store
with 1,000 such tuples. Table 2 shows the results for
the comparison between structured I/O and the Berkeley
DB. Writes are dominated by the cost of forcing each
write to disk and thus perform the same in all cases. The
overhead for structured I/O reads and queries over the
Berkeley DB with serialization is a reasonable 40% and
is likely due to the cost of switching threads during event
delivery. Table 3 shows the results for the comparison
between structured I/O and T Spaces. Structured I/O
is in the same performance class as T Spaces for reads
and writes. Writes are slower for structured I/O because
structured I/O forces each write to disk, while T Spaces
only performs periodic checkpoints. Using similarly re-
laxed durability for structured I/O, write latency drops to
0.73 ms. Field queries perform considerably worse for
structured I/O, as we currently only index tuple IDs.

For tuple communications, we compare the perfor-
mance of structured I/O with several other communica-
tion methods. These benchmarks repeatedly send 100
bytes of data from one node to another by sending a tu-
ple containing a byte array or by sending the raw bytes.
We use 100 bytes of data because overhead is more pro-
nounced for small payload sizes. Table 4 shows the re-
sults. Structured I/O over UDP and TCP each achieve

Transport Throughput
DatagramIO 120
UDP (tuples) 160
UDP (bytes) 1,600
NetworkIO 180
TCP (tuples) 230
TCP (bytes) 9,100
T Spaces 24

Table 4: Networking throughput in kB/sec. DatagramIO
is structured I/O over UDP, and NetworkIO is structured
I/O over TCP; the corresponding rows are highlighted.

System Latency
RMI 2.8
REP 3.6

Table 5: Remote messaging latency in milliseconds.

throughput within 30% of sending tuples directly over
the underlying transport. However, this performance is
well below that of sending raw bytes over UDP and TCP.
The overhead is due to the increased space required for
serialized tuples and the low performance of Java seri-
alization. Structured I/O achieves at least five times the
throughput of T Spaces. This comparison illustrates the
effects of conflicting requirements for tuple spaces. On
one side, tuple spaces are expected to provide long-term
storage for tuples. On the other side, tuple spaces are
also used for immediate communication. Structured I/O
strikes a better balance between these requirements by
separating storage and communications but by also pro-
viding a common interface.

For remote messaging, we compare the latency of
a request/response interaction using REP and Java’s re-
mote method invocation (RMI). Both benchmarks send
an event to a remote node, where it is immediately sent
back to the sender. For RMI, the event is the only argu-
ment to the remote method and is returned as its result.
The results in Table 5 show that the performance of REP
is comparable to that of RMI, with REP suffering a 25%
performance penalty.

For measuring the performance of migration, we use

Tuple count Move Latency
0 0.39

100 0.7
1,000 2.7

10,000 23

Table 6: Migration latency in seconds. Tuple count is the
number of tuples in the migrating application’s environ-
ment.

a small application that repeatedly moves itself across a
set of nodes in a tight loop; its environment contains a
varying number of tuples. Just as with tuple communi-
cations, we use tuples with 100 bytes of data because
overhead is more pronounced for small tuples. Table 6
shows the average latency of a move from one node to
another, given a loop of three nodes. This benchmark is
hard to compare with other mechanisms because of the
uniqueness of our move primitive. However, we believe
that its performance is reasonable, given the presence of
a human waiting for a migration to complete.

Overall, the results show thatone.world ’s primitives
have reasonable performance, given the high cost of se-
rialization. We plan to add indexing to our implementa-
tion of tuple storage to improve the performance of field
queries. Furthermore, we are considering alternatives to
reduce the overhead of serialization. Options include the
use of pre-serialized objects [48] and dynamic code gen-
eration to specialize serialization.

5.2 Usability and Effectiveness

To evaluateone.world ’s usability and effectiveness for
building real applications, we conducted an experi-
ment in the form of a senior-level undergraduate project
course. After ten introductory lectures, the nine students
in the class split into two teams that developed a mu-
sic sharing system and a universal inbox. Each team
split into two subteams, with one subteam using exist-
ing Java-based technologies and the other subteam us-
ing one.world . Since both subteams implemented the
same application, this experiment lets us compare our ar-
chitecture with other approaches to building distributed
systems. The results presented here are based on weekly
meetings with the teams, end-of-term interviews, and the
teams’ final presentations and reports.

The first team developed a music sharing system,
which relies on a dynamically configured hierarchy of
directory nodes to organize searches. The Java sub-
team implemented the application in plain Java, with-
out using additional technologies. Results for the mu-
sic sharing team are incomplete; students barely com-
pleted the implementations, although they did demon-
strate working applications. The students’ experiences
suggest that our architecture’s support for queries as
part of structured I/O and for asynchronous messaging
through REP clearly simplified the implementation on
top of one.world . In contrast, the Java subteam im-
plemented querying and asynchronous messaging from
scratch.

The second team developed a universal inbox, which
integrates a home network of future smart appliances,
such as an intelligent fridge, with email access from out-
side the network. The universal inbox lets users access

human-readable email, routes control messages to and
from appliances, and provides a common data reposi-
tory for email and appliance configuration state. The
Java version uses Jini [3] for service configuration and T
Spaces [49] for storing repository data.

The students’ experiences support our argument
from Section 2 that extending programming models for
single-node applications to distributed systems makes it
difficult to build adaptable applications. Jini relies on
Java’s RMI to access remote resources and is designed
to simplify the conversion of existing code into Jini ser-
vices. The Java subteam exploited this and originally
implemented individual services, such as the message
router or data repository, as stand-alone, single-node ap-
plications. Students subsequently “jinified” the applica-
tions and iteratively refined them as network services.
While the conversion of an application into a bare-bones
Jini service is simple, turning a minimal Jini service into
a full-blown Jini service is an arduous process. This re-
finement process involved repeatedly testing the system
to identify potential failure conditions and then adding
code to account for such conditions. Students also had
to work around the synchronous design of RMI. While
Jini includes support for remote events, they are imple-
mented as synchronous invocations through RMI and
thus expose services to possibly indefinite delays, for ex-
ample, because the service receiving an event is buggy
and hangs. The completed implementation still reflects
the difficulties of the refinement process and has rela-
tively few services, with each of these services repre-
senting a single point of failure for all users.

In contrast, theone.world subteam found our archi-
tecture’s primitives well matched to their needs. In par-
ticular, local tuple storage, REP’s support for late bind-
ing, and the signaling of exceptional conditions through
regular events simplified the implementation. As a re-
sult, the completed implementation does not require a
centralized data repository and separates each user’s
email management into an independently running ser-
vice. The biggest challenge for theone.world subteam
was managing asynchrony: the highly structured, event-
based programming model clearly exposed failures and
forced students to consider appropriate failure of recov-
ery strategies from the beginning. From a software engi-
neering viewpoint, the students found that components
required too much repetition and that event handlers
handling several types of events were not very modular.
They thus created several abstract components to avoid
code repetition and facilities for dynamic event dispatch
to make event handlers more modular. This suggests that
our architecture requires better support for avoiding code
repetition and for structuring event handlers, such as the
dispatch facilities provided by MultiJava [12].

5.3 Replication Case Study

Since our replication layer (see Section 4.1) is not part of
one.world ’s kernel, we used the process of implementing
it as a case study on how to structure applications in our
architecture. The implementation makes extensive use
of one.world ’s core features and illustrates the power of
a design that follows the three principles presented in
Section 2:

1. Expose change. The consistent use of leases
cleanly exposes change, such as a replica getting
disconnected from the master.

2. Compose dynamically. The nesting of environ-
ments makes it easy to dynamically compose func-
tionality. In particular, the request/monitor mech-
anism let us interpose replication on an applica-
tion’s tuple storage. Furthermore, we used the same
mechanism for communication between migrated
log environments and the master.

3. Separate data and functionality. The separation of
data and functionality provides considerable flexi-
bility. Since events are tuples, we directly logged
structured I/O events on the replica. Furthermore,
it was easy to support application-specific reconcil-
iation, simply by adding the corresponding compo-
nent to the log environment.

Additionally, migration and REP provide powerful
primitives that cover the spectrum between collocation
and remote interaction. On one side, we relied on mi-
gration to colocate a replica’s log with the master during
reconciliation; on the other side, we used REP during
connected operation.

Figure 4 illustrates the performance of a replica un-
der changing network conditions. We measure the per-
formance of a benchmark that repeatedly writes a tuple
in a tight loop, and use the same experimental set-up as
in Section 5.1. The replica starts in disconnected mode
and logs all updates locally. When the replica discovers
the master, it copies the log to the master and reconcil-
iation begins (1). Throughput drops while the replica is
connected to the master because updates are forwarded
to the master. After reconciliation has completed, the
master begins copying updates destined for the replica
into a separate response environment (2). After the re-
sponse environment has arrived at the replica and its
updates have been applied, the replica enters connected
mode and starts to purge old log entries (3). When purg-
ing is complete, throughput improves slightly (4). Fi-
nally, the master becomes disconnected again (5), and
the replica returns to disconnected mode (6).

0

5

10

15

20

0 50 100 150 200 250 300

1 2 3 4 5 6
T

hr
ou

gh
pu

t (
w

rit
es

/s
ec

)

Time (seconds)

Figure 4: Performance of a replica under changing network conditions. The replica starts in disconnected mode and
discovers the master at point 1. It becomes disconnected again at point 5 and re-enters disconnected mode at point 6.
The other points are explained in the text. Throughput is generally limited by structured I/O forcing each write to disk.

5.3.1 The Logic/Operation Pattern

During development ofone.world , one important con-
cern was how to write applications in the face of consid-
erable uncertainty. Since access to resources is leased,
most operations may fail and an application must be
prepared to adequately react to such failures. In our
experience, established styles of event-based program-
ming, such as state machines, are only manageable for
very simple applications. The single biggest challenge
in implementing replication was deciding how to appro-
priately react to failures and how to structure the corre-
sponding failure recovery code. After some experimen-
tation, we found the following approach, which we call
the logic/operation pattern, particularly successful.

Under the logic/operation pattern, an application is
partitioned into logic and operations, which are imple-
mented by separate sets of event handlers. Logic are
computations that do not fail, barring catastrophic fail-
ures. Operations are interactions that may fail, such as
reading a tuple or sending a remote message. The im-
plementation of operations includes all necessary failure
detection and recovery code. For example, when read-
ing a tuple, the corresponding operation rebinds if the
lease for tuple storage has expired. It also sets a timeout
and retries if the timeout expires. A failure condition is
reflected to the appropriate logic only if recovery fails
repeatedly or the failure condition cannot be recovered
from in a general way.

Event handlers for logic and operations can easily
be composed with each other. Figure 5, for exam-
ple, illustrates a structuring reminiscent of an if-then-
else construct. Other possible structurings include go-
tos and loops. More importantly, the sequence of logic
and operations in the figure itself constitutes an opera-
tion and can be used just like a basic operation. The

while (! success)
 if (expired lease)
 acquire lease;
 set timeout;
 put tuple;
send result;

if (out of seqNo)
 alloc seqNo;
 write seqNo;
else
 write log;

write log;

Done

write log

write log

write seqNo

Figure 5: An example of the logic/operation pattern,
which writes a log record and, if necessary, also allocates
additional sequence numbers. Boxes represent logic;
the pseudo-code shows how operations are invoked by
logic. Arrows represent operations, which include nec-
essary failure recovery code. The call-out illustrates the
implementation of the operations.

logic/operation pattern thus approximates a function call
in traditional programming languages and provides pro-
grammers with a familiar framework for building com-
plex applications inone.world . At the same time, use of
the logic/operation pattern does not relieve developers
from deciding on appropriate failure recovery strategies
and correctly implementing an application’s logic.

6 Future Work

Future work onone.world will focus on three areas: the
core architecture, support for debugging, and applica-
tions. As discussed in Section 4.4, our implementation

currently lacks support for transactions and class load-
ing from environments, as well as isolation and resource
controls. We plan to implement these features in the near
future and also add support for indexing to tuple storage
(see Section 5.1). More importantly, having identified
the logic/operation pattern as a viable way to structure
applications in our architecture, we will integrate it into
the core architecture. We will also build a library of
common operations that can be parameterized by failure
recovery strategy.

While debugging distributed applications is difficult
enough, debugging applications inone.world is even
harder due to its asynchronous programming model and
inadequate support for tracing application events. Our
architecture logs unhandled events, including a stack
trace, and provides a runtime option to log all kernel
events. Additionally, both we and the students in our
case study have made extensive use of the debug-by-
printf approach to log relevant application events. How-
ever, instrumenting applications to log events is cum-
bersome. Furthermore, analyzing event logs is hard be-
cause, in an asynchronous system, events may be re-
ordered and causal relationships may not be obvious
from the log. Therefore, we plan to add better debugging
support toone.world . The request/monitor mechanism
lets us easily interpose a debugger on an application,
and events can already be annotated with metadata, mak-
ing it possible to track causal relationships even across
nodes.

Finally, to gain more experience with our architec-
ture, we plan to build additional applications. We will
focus on applications that actually enhance our own pro-
ductivity, for example, by better integrating our comput-
ing environments at home and at work. Furthermore, we
plan to collaborate with other researchers and support
them in building their own pervasive applications on top
of one.world . To this end, we distribute source releases
of our architecture and will hold workshops. One re-
search group is already usingone.world to implement a
pervasive environment for a biology laboratory.

7 Related Work

one.world relies on several technologies that have been
successfully used by other systems. The main differ-
ence is that our architecture integrates these technolo-
gies into a simple and comprehensive framework tar-
geted at the pervasive computing space. Leases have
been used to control write access to cached files [22],
access to remote resources in general [3], and even the
lifetime of stored objects [21]. Starting with Linda, tu-
ple spaces have been used to enable coordination be-
tween loosely coupled services [9, 21, 49]. The Informa-

tion Bus provides similar functionality based on a pub-
lish/subscribe paradigm [34]. While it nominally uses
objects, exchanged information is represented by self-
describing data objects, which are similar to tuples in
one.world . Asynchronous events have been used across
a wide spectrum of systems, including networked sen-
sors [25], embedded systems [11], user interfaces [38],
and large-scale servers [24, 36]. Finally, several projects
have investigated the use of service discovery to simplify
the configuration of distributed systems [1, 3, 14].

A significant number of projects have explored mi-
gration in distributed systems [33]. Notable examples
include migration at the operating system level, as pro-
vided by Sprite [16], and at the programming language
level, as provided by Emerald [27, 39]. In these sys-
tems, providing support for a uniform execution envi-
ronment across all nodes and migration of application
and execution state has resulted in considerable com-
plexity. In contrast, many mobile agent systems, such as
IBM’s aglets [29], avoid this complexity by implement-
ing what we call “poor man’s migration”. They do not
provide transparency and only migrate application state
by serializing and deserializing an agent’s objects. Be-
cause of its programming model,one.world can strike a
better balance between the complexity of fully featured
migration and the limited utility of poor man’s migra-
tion. While one.world does not provide transparency, it
does migrate an application’s persistent data. Further-
more, its use of asynchronous events greatly simplifies
the migration of execution state.

Several efforts, including Globe [44], Globus [19],
and Legion [32], are exploring an object-oriented pro-
gramming model and infrastructure for wide area com-
puting. They share the important goal of providing
a common execution environment that is secure and
scales across a global computing infrastructure. How-
ever, by extending models for distributed computing
originally developed for small and relatively static com-
puter networks, these systems are too heavyweight and
not adaptable enough for pervasive computing environ-
ments. Furthermore, as argued in Section 2, we believe
that their reliance on objects to encapsulate data and
functionality is ill-advised.

Several other projects are exploring aspects of sys-
tems support for pervasive computing. Notably, In-
Concert, the architectural component of Microsoft’s Ea-
syLiving project [7], provides service composition in a
dynamic environment by using location-independent ad-
dressing and asynchronous event passing. The Paths sys-
tem [28] allows diverse services to communicate in ad-
hoc networks by dynamically instantiating mediators to
bridge between the services’ data formats and protocols.

8 Conclusions

In this paper, we have identified three principles for
structuring systems support for pervasive computing en-
vironments. First, systems need to expose change, so
that applications can implement their own strategies for
handling changes. Second, systems need to make it easy
to compose applications and services dynamically, so
that they can be extended at runtime. Third, systems
need to separate data and functionality, so that they can
be managed separately and so that they can evolve inde-
pendently.

We have introduced a system architecture for per-
vasive computing, calledone.world , that adheres to
these principles. Our architecture uses leases to ex-
pose change. It uses nested environments as well as
late binding to dynamically compose applications. It
cleanly separates data and functionality: tuples repre-
sent data and components implement functionality. Ad-
ditionally, our architecture provides a set of powerful
services, namely migration, remote messaging, replica-
tion, and checkpointing, that serve as building blocks
for pervasive applications. Our evaluation ofone.world
shows that our architecture is a viable platform for build-
ing adaptable applications. More information on our
architecture, including a source release, is available at
http://one.cs.washington.edu .

Acknowledgments

We thank Ben Hendrickson for implementing parts of
the storage subsystem. We thank Vibha Sazawal and
David Notkin for their advise and assistance in our com-
parative evaluation ofone.world and the students of Uni-
versity of Washington’s CSE 490dp course for serving
as test subjects. We thank Mike Swift for his valuable
comments on an earlier version of this report.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an inten-
tional naming system. InProceedings of the 17th ACM
Symposium on Operating Systems Principles, pages 186–
201, Dec. 1999.

[2] J. P. Anderson. Computer security technology planning
study. Technical Report ESD-TR-73-51, Vol. I, Elec-
tronic Systems Division, Air Force Systems Command,
Bedford, Massachusetts, Oct. 1972. Also AD-758 206,
National Technical Information Service.

[3] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison-Wesley,
1999.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. InProceedings of the 4th USENIX Symposium
on Operating Systems Design and Implementation, pages
333–346, Oct. 2000.

[5] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lep-
reau. Techniques for the design of Java operating sys-
tems. InProceedings of the 2000 USENIX Annual Tech-
nical Conference, pages 197–210, June 2000.

[6] P. Brinch Hansen. The nucleus of a multiprogramming
system. Communications of the ACM, 13(4):238–241,
250, Apr. 1970.

[7] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer.
EasyLiving: Technologies for intelligent environments.
In Proceedings of the 2nd International Symposium
on Handheld and Ubiquitous Computing, pages 12–29,
Sept. 2000.

[8] L. Cardelli. Abstractions for mobile computations. In
Vitek and Jensen [45], pages 51–94.

[9] N. Carriero and D. Gelernter. The S/Net’s Linda kernel.
ACM Transactions on Computer Systems, 4(2):110–129,
May 1986.

[10] A. Chankhunthod, P. B. Danzig, C. Needaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical Internet ob-
ject cache. InProceedings of the 1996 USENIX Annual
Technical Conference, pages 153–163, Jan. 1996.

[11] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Bor-
riello. ipChinook: An integrated IP-based design frame-
work for distributed embedded systems. InProceedings
of the 36th ACM/IEEE Design Automation Conference,
pages 44–49, June 1999.

[12] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. InProceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages,
and Applications ’00, pages 130–145, Oct. 2000.

[13] G. Czajkowski and T. von Eicken. JRes: A resource
accounting interface for Java. InProceedings of the
ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications ’98, pages 21–35,
Oct. 1998.

[14] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz. An architecture for a secure service dis-
covery service. InProceedings of the 5th ACM/IEEE In-
ternational Conference on Mobile Computing and Net-
working, pages 24–35, Aug. 1999.

[15] M. L. Dertouzos. The future of computing.Scientific
American, 281(2):52–55, Aug. 1999.

[16] F. Douglis and J. Ousterhout. Transparent process mi-
gration: Design alternatives and the Sprite implemen-
tation. Software—Practice and Experience, 21(8):757–
785, Aug. 1991.

[17] M. Esler, J. Hightower, T. Anderson, and G. Borriello.
Next century challenges: Data-centric networking for in-
visible computing. InProceedings of the 5th ACM/IEEE

http://one.cs.washington.edu
http://www.acm.org/pubs/articles/proceedings/ops/319151/p186-adjie-winoto/p186-adjie-winoto.pdf
http://www.acm.org/pubs/articles/proceedings/ops/319151/p186-adjie-winoto/p186-adjie-winoto.pdf
http://seclab.cs.ucdavis.edu/projects/history/CD/ande72a.pdf
http://seclab.cs.ucdavis.edu/projects/history/CD/ande72a.pdf
http://www.usenix.org/publications/library/proceedings/osdi2000/full_papers/back/back.pdf
http://www.usenix.org/publications/library/proceedings/osdi2000/full_papers/back/back.pdf
http://www.usenix.org/publications/library/proceedings/osdi2000/full_papers/back/back.pdf
http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/back/back.pdf
http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/back/back.pdf
http://www.acm.org/pubs/articles/journals/tocs/1986-4-2/p110-carriero/p110-carriero.pdf
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/danzig.ps
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/danzig.ps
http://www.acm.org/pubs/articles/proceedings/dac/309847/p44-chou/p44-chou.pdf
http://www.acm.org/pubs/articles/proceedings/dac/309847/p44-chou/p44-chou.pdf
http://www.acm.org/pubs/articles/proceedings/oops/353171/p130-clifton/p130-clifton.pdf
http://www.acm.org/pubs/articles/proceedings/oops/353171/p130-clifton/p130-clifton.pdf
http://www.acm.org/pubs/articles/proceedings/oops/286936/p21-czajkowski/p21-czajkowski.pdf
http://www.acm.org/pubs/articles/proceedings/oops/286936/p21-czajkowski/p21-czajkowski.pdf
http://www.acm.org/pubs/articles/proceedings/comm/313451/p24-czerwinski/p24-czerwinski.pdf
http://www.acm.org/pubs/articles/proceedings/comm/313451/p24-czerwinski/p24-czerwinski.pdf
http://www.sciam.com/1999/0899issue/0899dertouzos.html
http://www.acm.org/pubs/articles/proceedings/comm/313451/p256-esler/p256-esler.pdf
http://www.acm.org/pubs/articles/proceedings/comm/313451/p256-esler/p256-esler.pdf

International Conference on Mobile Computing and Net-
working, pages 256–262, Aug. 1999.

[18] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual ma-
chines. InProceedings of the 2nd USENIX Symposium
on Operating Systems Design and Implementation, pages
137–151, Oct. 1996.

[19] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Super-
computer Applications and High Performance Comput-
ing, 11(2):115–128, 1997.

[20] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services. In
Proceedings of the 16th ACM Symposium on Operating
Systems Principles, pages 78–91, Oct. 1997.

[21] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces Prin-
ciples, Patterns, and Practice. Addison-Wesley, 1999.

[22] C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for file cache consistency. In
Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 202–210, Dec. 1989.

[23] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dan-
gers of replication and a solution. InProceedings of the
1996 ACM SIGMOD International Conference on Man-
agement of Data, pages 173–182, June 1996.

[24] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for in-
ternet service construction. InProceedings of the 4th
USENIX Symposium on Operating Systems Design and
Implementation, pages 319–332, Oct. 2000.

[25] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InProceedings of the 9th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 93–104, Nov.
2000.

[26] K. L. Johnson, J. F. Carr, M. S. Day, and M. F.
Kaashoek. The measured performance of content dis-
tribution networks. InProceedings of the 5th Inter-
national Web Caching and Content Delivery Workshop,
May 2000.http://www.terena.nl/conf/wcw/
Proceedings/S4/S4-1.pdf .

[27] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system.ACM Trans-
actions on Computer Systems, 6(1):109–133, Feb. 1988.

[28] E. Kiciman and A. Fox. Using dynamic mediation to
integrate COTS entities in a ubiquitous computing envi-
ronment. InProceedings of the 2nd International Sym-
posium on Handheld and Ubiquitous Computing, Sept.
2000.

[29] D. B. Lange and M. Oshima.Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison Wesley,
1998.

[30] A. Le Hors, P. Le H́egaret, L. Wood, G. Nicol, J. Robie,
M. Champion, and S. Byrne. Document object model

(DOM) level 2 core specification. W3C recommenda-
tion, World Wide Web Consortium, Nov. 2000.

[31] P. J. Leach and R. Salz. UUIDs and GUIDs. Internet
Draft draft-leach-uuids-guids-01.txt, Internet Engineer-
ing Task Force, Feb. 1998.

[32] M. Lewis and A. Grimshaw. The core Legion object
model. InProceedings of the Fifth IEEE International
Symposium on High Performance Distributed Comput-
ing, pages 551–561, Aug. 1996.

[33] D. Miloji c̆ić, F. Douglis, and R. Wheeler, editors.
Mobility—Processes, Computers, and Agents. ACM
Press. Addison-Wesley, Feb. 1999.

[34] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Infor-
mation Bus — an architecture for extensible distributed
systems. InProceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 58–68, Dec. 1993.

[35] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
Proceedings of the FREENIX Track, 1999 USENIX An-
nual Technical Conference, pages 183–192, June 1999.

[36] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. InProceedings of the
1999 USENIX Annual Technical Conference, pages 199–
212, June 1999.

[37] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for
weakly consistent replication. InProceedings of the
16th ACM Symposium on Operating Systems Principles,
pages 288–301, Oct. 1997.

[38] C. Petzold.Programming Windows. Microsoft Press, 5th
edition, Nov. 1998.

[39] B. Steensgaard and E. Jul. Object and native code thread
mobility among heterogeneous computers. InProceed-
ings of the 15th ACM Symposium on Operating Systems
Principles, pages 68–77, Dec. 1995.

[40] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated stor-
age system. InProceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 172–183, Dec.
1995.

[41] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design
considerations for distributed caching on the Internet. In
Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems, pages 273–284, June
1999.

[42] T. Thorn. Programming languages for mobile code.ACM
Computing Surveys, 29(3):213–239, Sept. 1997.

[43] P. Tullmann and J. Lepreau. Nested Java processes:
OS structure for mobile code. InProceedings of the
8th ACM SIGOPS European Workshop, pages 111–117,
Sept. 1998.

[44] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe:
A wide-area distributed system.IEEE Concurrency,
7(1):70–78, 1999.

http://www.usenix.org/publications/library/proceedings/osdi96/full_papers/hibler/hibler.ps
http://www.usenix.org/publications/library/proceedings/osdi96/full_papers/hibler/hibler.ps
http://www.acm.org/pubs/articles/proceedings/ops/268998/p78-fox/p78-fox.pdf
http://www.acm.org/pubs/articles/proceedings/ops/74850/p202-gray/p202-gray.pdf
http://www.acm.org/pubs/articles/proceedings/ops/74850/p202-gray/p202-gray.pdf
http://www.acm.org/pubs/articles/proceedings/mod/233269/p173-gray/p173-gray.pdf
http://www.acm.org/pubs/articles/proceedings/mod/233269/p173-gray/p173-gray.pdf
http://www.usenix.org/publications/library/proceedings/osdi2000/full_papers/gribble/gribble.pdf
http://www.usenix.org/publications/library/proceedings/osdi2000/full_papers/gribble/gribble.pdf
http://www.acm.org/pubs/articles/proceedings/asplos/356988/p93-hill/p93-hill.pdf
http://www.acm.org/pubs/articles/proceedings/asplos/356988/p93-hill/p93-hill.pdf
http://www.terena.nl/conf/wcw/Proceedings/S4/S4-1.pdf
http://www.terena.nl/conf/wcw/Proceedings/S4/S4-1.pdf
http://www.acm.org/pubs/articles/journals/tocs/1988-6-1/p109-jul/p109-jul.pdf
http://www.acm.org/pubs/articles/journals/tocs/1988-6-1/p109-jul/p109-jul.pdf
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.pdf
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.pdf
http://www.opennc.org/dce/info/draft-leach-uuids-guids-01.txt
http://www.acm.org/pubs/articles/proceedings/ops/168619/p58-oki/p58-oki.pdf
http://www.acm.org/pubs/articles/proceedings/ops/168619/p58-oki/p58-oki.pdf
http://www.acm.org/pubs/articles/proceedings/ops/168619/p58-oki/p58-oki.pdf
http://www.usenix.org/events/usenix99/full_papers/olson/olson.pdf
http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/pai/pai.pdf
http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/pai/pai.pdf
http://www.acm.org/pubs/articles/proceedings/ops/268998/p288-petersen/p288-petersen.pdf
http://www.acm.org/pubs/articles/proceedings/ops/268998/p288-petersen/p288-petersen.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p68-steensgaard/p68-steensgaard.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p68-steensgaard/p68-steensgaard.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://dlib.computer.org/conferen/icdcs/0222/pdf/02220273.pdf
http://dlib.computer.org/conferen/icdcs/0222/pdf/02220273.pdf
http://www.acm.org/pubs/articles/journals/surveys/1997-29-3/p213-thorn/p213-thorn.pdf
http://www.dsg.cs.tcd.ie/~vjcahill/sigops98/papers/tullmann.ps
http://www.dsg.cs.tcd.ie/~vjcahill/sigops98/papers/tullmann.ps
http://dlib.computer.org/pd/books/pd1999/pdf/p1070.pdf
http://dlib.computer.org/pd/books/pd1999/pdf/p1070.pdf

[45] J. Vitek and C. D. Jensen, editors.Secure Internet Pro-
gramming: Security Issues for Distributed and Mobile
Objects, volume 1603 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 1999.

[46] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Haw-
blitzel, D. Hu, and D. Spoonhower. J-Kernel: a
capability-based operating system for Java. In Vitek and
Jensen [45], pages 369–393.

[47] M. Weiser. The computer for the twenty-first century.
Scientific American, 265(3):94–104, Sept. 1991.

[48] M. Welsh and D. Culler. Jaguar: Enabling efficient com-
munication and I/O in Java.Concurrency: Practice and
Experience, 12(7):519–538, June 2000.

[49] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A.
Ford. T Spaces.IBM Systems Journal, 37(3):454–474,
1998.

http://www.research.ibm.com/journal/sj/373/wyckoff.html

	Introduction
	Motivation and Approach
	Architecture
	Basic Abstractions
	Services

	Design and Implementation
	Data Management
	Events and Components
	The Environment Hierarchy
	Implementation

	Evaluation
	Basic Performance
	Usability and Effectiveness
	Replication Case Study
	The Logic/Operation Pattern

	Future Work
	Related Work
	Conclusions

