

1

A SINGLE SYSTEM IMAGE JAVA OPERATING SYSTEM
FOR SENSOR NETWORKS

Emin Gun Sirer Rimon Barr John C. Bicket Daniel S. Dantas

 Computer Science Department
Cornell University
Ithaca, NY 14853

{egs, barr, bicket, ddantas}@cs.cornell.edu

Abstract

In this paper we describe the design and implementation of a distributed operating system for sensor net-
works. The goal of our system is to extend total system lifetime through power-aware adaptation for sensor
networking applications. Our system achieves this goal by providing a single system image of a unified Java
virtual machine to applications over an ad hoc collection of heterogeneous sensors. It automatically and
transparently partitions applications into components and dynamically finds a placement of these components
on nodes within the sensor network to reduce energy consumption and increase system longevity. This paper
describes the design and implementation of our system and examines the question of where and when to mi-
grate components in a sensor network. We evaluate two practical, power-aware, general-purpose algorithms
for object placement, as well as an adaptive scheme for deciding the time granularity of object migration. We
demonstrate that our algorithms can increase sensor network longevity by a factor of four to five by effec-
tively distributing energy consumption and avoiding hotspots.

1. Introduction

Sensor networks simultaneously promise a radi-
cally new class of applications and pose signifi-
cant challenges for application development. Re-
cent advances in low-power, high-performance
processors and medium to high-speed wireless
networking have enabled large scale deployment
of sensor nodes, capable of local processing and
multi-hop communication. Many interesting sens-
ing applications, however, entail collaboration
between components distributed throughout an
ad hoc network. For example, sensor networks are
often composed of three types of components:
sensors acting as data sources, information con-
sumers operating as data sinks, and numerous in-
termediate filters for performing application-
specific data processing. While the data sources
and sinks may be coupled tightly to the nodes to
which they are attached, there is often a high de-
gree of freedom in the placement of the data proc-
essing components. This freedom, coupled with
the dynamic environment posed by sensor net-
works, makes it difficult to find the optimal distri-
bution of application components among nodes.

Adapting to dynamically changing conditions by
changing the distribution of components across a
network is critical for many distributed network-
ing applications. For example, the resources avail-

able to components at each node, in particular the
available power and bandwidth may change over
time and necessitate the relocation of application
components. Further, event sources that are being
sensed in the external environment, such as
tracked objects or chemical concentrations, may
move rapidly, thereby shifting network loads and
requiring applications to adapt by migrating com-
ponents. Finally, an application's behavior might
change, as in the transition from defensive to of-
fensive mode in a battlefront sensing application,
modifying its communication pattern and necessi-
tating a reorganization of its deployed components
within the network.

Currently, sensor networking applications either
rely on a static assignment of components to
nodes or use ad hoc, manual policies and mecha-
nisms for migrating code and data in response to
change. A static assignment of functionality to
nodes simplifies application design by obviating
code migration and reduces meta-traffic in the
network by eliminating component mobility, but it
also leads to non-adaptive, fragile and energy-
inefficient systems. For example, many current-
sensor networks perform all data aggregation and
processing at a central node. Such a network will
stall as soon as the critical nodes on the dataflow
path run out of power or move out of transmission

2

range. In contrast, manual approaches to code and
data mobility suffer from being platform-
dependent, error-prone and hard to develop. Each
application using a manual approach needs to re-
implement the same migration, monitoring and
communication mechanisms, correctly, on every
platform. Further, locally optimal policies pursued
by applications that share a common network may
lead to globally unstable and energy-inefficient
behavior when they conflict. For instance, a high-
priority submarine tracking application running on
an acoustic sensor grid may be forced to behave
sub-optimally by a lower-priority whale tracking
application, if the applications use ad hoc mecha-
nisms to adapt to the current power levels in the
network. In essence, application-level adaptation
suffers from building on an abstraction level that
is too low. An operating system that provides the
requisite mechanisms and policies for code mobil-
ity would not only simplify application develop-
ment, but also ensure the integrity of system-wide
goals in the face of multiple applications compet-
ing for resources.

Unlike distributed programming on the Internet,
where energy is not a constraint, delay is low, and
bandwidth is plentiful, physical limitations of sen-
sor networks lead to some unique requirements.
Technology trends indicate that the primary limi-
tation of sensor networks is energy consumption,
and communication is the primary energy con-
sumer. Measurements from first-generation sensor
nodes [Pottie & Kaiser 00] show that sending one
bit may consume as much energy as executing
3000 instructions. This motivates a system that
performs more computation to reduce communica-
tion.

In this paper, we outline the design of MagnetOS,
a single system image (SSI) operating system for
sensor networks. Based on our target domain of
energy-constrained sensor networks, we identify
the following set of design goals for an operating
system.

• Efficient: The system should execute distrib-
uted sensor network applications in a manner
that conserves power and extends system life-
time. Policies and mechanisms used for adapta-
tion in the systems layer should not require ex-
cessive communication or power consumption.

• Adaptive: The system should respond auto-
matically to significant changes in network to-
pology, resource availability, and the communi-
cation pattern of the applications.

• General purpose: The system should support a
wide range of applications and porting an exist-
ing centralized sensing application to execute
efficiently on a sensor network should require
little effort. Applications should be able to di-
rect the adaptation using application-specific in-
formation. The system should provide effective
default adaptation policies for applications that
are not power-aware.

• Platform independent: Applications should be
able to execute on ad hoc networks of heteroge-
neous nodes.

Our operating system meets these goals by provid-
ing the abstraction of a single unified Java virtual
machine over an ad hoc network of heterogeneous,
physically separate, potentially mobile sensor
nodes. MagnetOS consists of a static application
partitioning service that resides on border hosts
capable of injecting new code into the network,
and a runtime on each node that performs dynamic
monitoring and component migration. The static
partitioning service takes regular Java applications
and converts them into distributed components
that communicate via RPC [Birrell & Nelson 84]
by rewriting them at the bytecode level (Figure
1). The code injector then finds a suitable initial
layout of these components and starts the execu-
tion of the application. The runtime monitors the
performance of the application and migrates ap-
plication components when doing so would bene-
fit the system.

Monolithic application

Static partitioning

Distributed application

Figure 1: A static partitioning service converts mono-
lithic Java applications into distributed applications that
can run on an ad hoc network and transparently com-
municate via RPC.

3

The algorithms used to decide where and when to
move application components form the core of our
system. While MagnetOS is designed such that
these algorithms can be transparently replaced to
optimize for differing goals, such as minimizing
application latency, response time, or bandwidth
consumption, in this paper we tackle what we be-
lieve to be the most important goal in energy-
constrained ad hoc networks of mobile hosts: we
examine how to maximize total application and
system lifetime by utilizing power more effi-
ciently. We present two practical, online algo-
rithms, named NetPull and NetCenter, for finding
a distribution of application components on nodes
in an ad hoc network that increases total system
lifetime by increasing the effective energy utiliza-
tion (Figure 2). We evaluate these algorithms in
the context of a generic sensing application and
examine their impact on system longevity, which
we define as the length of time that a sensing ap-
plication can maintain sensor coverage above a
given threshold area. Both algorithms operate by
dividing time into epochs, monitoring the commu-
nication pattern of the application components
within each epoch, and migrating components at
the end of the epoch when doing so would result
in more efficient power utilization. We also pre-
sent an online algorithm for selecting an epoch
length that matches application behavior through
online, adaptive statistical testing. We show that
the MagnetOS system can achieve a factor of four
to five improvement in system longevity over na-
ive or static partitioning techniques.

This paper makes three contributions. It outlines
the design and implementation of a single system
image operating system for sensor networks,
where the entire network appears to be a single
Java virtual machine to applications, whose com-

ponents are partitioned among the nodes auto-
matically and migrated transparently at runtime.
Second, we propose practical, adaptive, online
algorithms for deciding where and when to move
application components. Finally, we demonstrate
that these algorithms achieve high-energy utiliza-
tion, extract low overhead, and improve system
longevity.

In the next section, we describe related work on
operating system support for ad hoc sensor net-
works and their applications. Section 3 outlines
our system implementation, including the code
partitioning and distribution technique. Section 4
presents our network and application model, de-
scribes our simulation framework and evaluates
NetPull and NetCenter within this environment.
We summarize our contributions and results in
Section 5.

2. Related Work

There has been much research on distributed op-
erating systems, ad hoc sensor networks, and
power management, though few systems have ex-
amined all three.

2.1. Distributed Systems
Single system image (SSI) operating systems have
been examined extensively in the context of wired
networks of workstations. Early landmark sys-
tems, such as V [Cheriton 88], Sprite [Ousterhout
et al. 88], Ameoba [Tanenbaum et al. 90, Steketee
et al. 95], Accent [Rashid & Robertson 81], and
LOCUS [Popek & Walker 85], implemented na-
tive operating system facilities for migrating proc-
esses between nodes on a tightly coupled cluster.
More recently, the cJVM [Aridor et al. 99] and
JESSICA [Ma et al. 99] projects have examined
how to extend a Java virtual machine-across a
high-performance cluster. Others, including Con-
dor [Litzkow et al. 97], libckpt [Plank et al. 95]
and CoCheck [Stellner 96], provide user-level
mechanisms for checkpointing and process migra-
tion without operating system support. These pro-
jects target high-performance, well-connected
clusters. Their main goals are to balance load and
achieve high performance in a local area network
for interactive desktop programs or CPU-intensive
batch jobs. In contrast, MagnetOS targets wireless
multi-hop networks, where utilizing power effec-
tively and maximizing system longevity is more
important than traditional application perform-
ance.

node

data source

application filter

network packet

Figure 2: Migrating components closer to their data
sources in a sensor network increases system longevity
and decreases power consumption by reducing total
network communication cost.

4

Distributed object systems have examined how to
support distributed computations in the wide area.
Emerald [Jul et al. 88] provides transparent code
migration for programs written in the Emerald
language, where the migration is directed by
source-level programmer annotations. Thor
[Liskov et al. 93] provides persistent objects in a
language-independent framework. It enables cach-
ing, replication and migration of objects stored at
object repositories. More recently, grid computing
systems such as Legion [Lewis & Grimshaw 95]
and Globus [Foster & Kesselman 97] have fo-
cused on the construction of scalable, geographi-
cally distributed computing systems. These sys-
tems differ fundamentally from MagnetOS in that
they require explicit programmer control to trigger
migration, do not support an ad hoc network
model and target traditional applications.

Some recent systems have focused on how to par-
tition applications within a conventional wired
network. The Coign system [Hunt & Scott 99] has
examined how to partition COM applications be-
tween two tightly interconnected hosts within a
local-area network. Coign performs static spatial
partitioning of desktop applications via a two-way
minimum cut based on summary application pro-
files collected on previous runs. Extending this
work, the ABACUS system [Amiri et al. 00] has
examined how to migrate functionality in a stor-
age cluster. MagnetOS shares the same insight as
Coign, in that it also focuses on the automatic re-
location of application components, but differs in
that it dynamically moves application components
in response to changes in the network, instead of
computing a static partitioning from a profile.
[Kremer et al. 00] proposes using static analysis to
select tasks that can be executed remotely to save
energy. J-Orchestra [Tilevich & Smaragdakis 02]
performs application partitioning via rewriting,
leaving dynamic migration decisions under appli-
cation control. Spectra [Flinn et al. 01] monitors
resource consumption, collects resource usage
histories and uses quality of service (fidelity) in-
formation supplied by the application to make re-
source allocation decisions. Spectra is invoked
prior to operation startup, and statically deter-
mines a location at which to execute the operation.

Middleware projects have looked at constructing
toolkits to support mobile applications. The Rover
toolkit [Joseph et al. 95] provides relocation and
messaging services to facilitate the construction of
mobile applications. The Mobiware [Campbell 98]
and DOMT [Kunz and Omar 00] toolkits are tar-

geted specifically for ad hoc networks and provide
an adaptive-QoS programming interface. XMID-
DLE [Mascolo 01] assists with data management
and synchronization. MagnetOS takes a systems
approach instead of providing a programmer
driven toolkit and automatically manages the
shared network and energy resources among
ad hoc sensor applications. This approach unifies
the system layer and ensures that disparate appli-
cations, regardless of which toolkits they use, be-
have in a cooperative manner.

2.2. Ad hoc Routing Protocols
There has been much prior research on ad hoc
routing algorithms. Proactive (e.g. DSDV [Perkins
& Bhagwat 94], WRP [Murthy & Garcia-
Luna_Aceves 96]), reactive (e.g. DSR [Broch et
al. 98], AODV [Perkins 97], TORA [Park &
Corson 98]) and hybrid (e.g. ZRP [Haas &
MagnetOSman 98], HARP [Nikaein et al. 01])
routing protocols seek to pick efficient routes by
proactively disseminating or reactively discover-
ing route information, or both. While some proto-
cols, such as PARO [Gomez et al. 01] and MBLR
[Toh 01], have examined how to make power-
aware routing decisions, all of these routing
algorithms assume that the communication
endpoints are fixed. Directed diffusion
[Heidemann et al. 01] provides a data-centric
programming model for sensor networks by
labeling sensor data using attribute-value pairs and
routing based on a gradient. MagnetOS com-
plements the routing layer to move application
code around the network, changing the location of
the communication endpoints and radically
altering the communication pattern of the overall
application. It provides increased system and
application longevity by bringing application com-
ponents closer to the data sources, which
complements the route selection performed by the
ad hoc routing protocol. 2.3. Power Management
Prior work has also examined how to minimize
power consumption within an independent host
through various mechanisms [Pillai & Shin 01,
Grunwald et al. 00, Weiser et al. 94, Douglis et al.
95, Stemm & Katz 96], including low-power proc-
essor modes, disk spin-down policies, adapting
wireless transmission strength and selectively
turning off unused devices. Our system is com-
plementary to this work and opens up further op-
portunities for minimizing power consumption by
shipping computation out of hosts limited in
power to less critical nodes.

5

3. System Implementation and Distribu-
tion Model

MagnetOS implements a single system image op-
erating system for sensor networks in two steps.
First, a monolithic application is partitioned, dis-
tributing its functionality across the ad hoc net-
work. The MagnetOS runtime then coordinates the
communication and migration of these application
segments across the nodes in the sensor network
in order for the newly distributed application to
appear as if running on a single Java virtual ma-
chine. We will now discuss the implementation
details of the two components, the partitioning
mechanism and the MagnetOS runtime.

3.1. Application Partitioning
The partitioning mechanism of MagnetOS con-
verts Java applications written and compiled for a
single virtual machine into remote objects that can
be dispersed and executed across an ad hoc net-
work of many virtual machines. The transformed
application code, though modified to interact with
the MagnetOS runtime, retains its original
application semantics.

MagnetOS partitions applications at class granu-
larity; consequently, the unit of mobility in Mag-
netOS is an object instance. This transformation at
class boundaries preserves existing object inter-
faces. The entire transformation is performed at
the byte-code level via binary rewriting, without
requiring source-code access.

Our approach to partitioning applications stati-
cally is patterned after distributed virtual ma-
chines [Sirer et al. 99]. Static partitioning confers
several advantages. First, the complex partitioning
services need only be supported at code-injection
points, and can be performed offline. Second,
since the run-time operation of the system and its
integrity do not depend on the partitioning tech-
nique, users can partition their applications into
arbitrary components if they so choose. Further,
since applications are verified prior to injection
into the network, individual MagnetOS nodes
need not re-run a costly verifier on application
components. Finally, binary rewriting provides a
convenient, default mechanism for transitioning
legacy, monolithic applications to execute over
ad hoc networks.

The static partitioning takes original application
classes, and for each class, creates an instance
(Magnet), a remote stub (MagnetPole), an inter-

face (MagnetInterface) and a class object (Mag-
netStatic).

A Magnet is a modified implementation of the
original class that stores the instance variables of
the object. Each Magnet is an object instance and
is free to move across nodes in the network. Mag-
netPoles, on the other hand, are remote references
to the corresponding Magnet instance. That is,
MagnetPoles are used to invoke procedure calls
on remote Magnets residing on other nodes. Calls
to the MagnetPole are intercepted by the Magne-
tOS runtime and converted into RPCs. This level
of indirection enables code migration. As a Mag-
net moves, the method calls to the corresponding
MagnetPoles are tracked by the MagnetOS run-
time and directed to the new Magnet location.
MagnetInterfaces capture the interface that the
original class exposes to the rest of the applica-
tion. Magnet and MagnetPole instances implement
the MagnetInterface of the original class.

Several modifications to the application binaries
are required for this remote object mechanism to
work seamlessly. First, object creations (new in-
structions and matching constructor invocations)
are replaced by calls to the local MagnetOS run-
time. The runtime selects an appropriate node and
constructs a new Magnet instance at that location.
This operation returns a corresponding, properly
initialized MagnetPole, which is then used in sub-
sequent method invocations. In addition, Magne-
tOS adds accessor methods of the appropriate type
for each field, converting field accesses into
method calls to the MagnetPole reference, which
subsequently remotely call the accessor on the
corresponding Magnet instance. Finally,
typechecking and synchronizing instructions
(checkcast, instanceof, monitorenter
and monitorexit instructions, and synchro-
nized methods) are rewritten to trap into the
MagnetOS runtime. The runtime reconstructs the
appropriate type check on top of the modified type
hierarchy, retaining the original application's be-
havior. Similarly, it converts lock acquisitions and
releases into centralized operations at the Magnet.
Unlike regular JVM monitor operations, each
thread in MagnetOS is identified via a globally
unique identifier, consisting of a
<nodeid, threadid> tuple. This enables MagnetOS
to identify cases of recursively locked mutexes
and support the lock semantics required by the
Java virtual machine.

6

The final component created for a class is a Mag-
netStatic object. It contains static field members,
also known as class instances. In Java, static fields
are shared across all instances of an object. The
partitioning service coalesces the static fields of
the original class into a single object, to which all
the Magnet instances of that class retain a refer-
ence. Static field and method instructions are re-
placed with calls to the MagnetOS runtime, which
tracks the location of the MagnetStatic object and
forwards the static operations to the appropriate
node in the ad hoc network.

While MagnetOS attempts to provide reasonable
defaults for converting regular JVM applications
to work in an ad hoc network, it explicitly does
not try to make the process completely transparent
and support network-oblivious applications. Ap-
plications running on networks have diverse fail-
ure modes that cannot be masked, and MagnetOS
reflects such failures to the programmer by map-
ping them to implicit runtime exceptions, similar
to the way other exceptional events, such as run-
ning out of memory, are handled. This mapping
conforms to the JVM specification and provides a
way for the application programmer to react to
runtime events. We have found that most non-
trivial, stateful applications will require some
amount of failure recovery in all but the most
densely connected and static networks.

3.2. Runtime Mechanisms for Object Mi-
gration

The MagnetOS runtime provides the dynamic ser-
vices that facilitate the distributed execution of
componentized applications across an ad hoc net-
work. Its services include component creation,
inter-component communication, object migra-
tion, garbage collection, naming, and object dis-
covery. These runtime services are invoked in
three ways: through background processes that
automatically manage the running system, indi-
rectly via MagnetPoles, and directly via explicit
API calls from the application.

In order to create a new instance of an object, an
application will contact the local runtime and pass
the requisite type descriptor and parameters for
object creation. The runtime then has the option of
placing the newly created object at a suitable loca-
tion with little cost. It may choose to locate the
object on the local node, at a well-known node or
at its best guess of an optimal location within the
network. In our current implementation, all new
objects are created locally. We chose this ap-

proach for its simplicity, and rely on our dynamic
object migration algorithms to find the optimal
placement of objects over time. Furthermore,
short-lived, tightly scoped objects do not travel
across the network unnecessarily. The application
binaries, containing all of the object constructors,
are distributed to all nodes at the time that the ap-
plication is introduced into the network. Once cre-
ated, the (remote) runtime simply initializes the
object by calling its constructor and returns a
MagnetPole instance referring to the (remote) ob-
ject.

The runtime transparently handles invocations
among the application components distributed
across the network. Each runtime keeps a list of
the live, local Magnets, which can optionally be
named. MagnetPoles maintain the current location
of their corresponding Magnet, and make runtime
calls on behalf of application invocations to mar-
shal arguments to, and results from, the appropri-
ate node and object.

The MagnetOS runtime implements a lease-based
garbage collector for remote objects, with leases
automatically renewed by MagnetPoles. As in
RMI and Network Objects [Birrell et al. 94], we
do not collect cycles in the object reference graph.
Local objects are handled by the standard Java
garbage collector.

MagnetOS migrates application components at
runtime by serializing Magnet state and moving it
to a new node. MagnetPoles are informed of the
relocation lazily, the next time they invoke a Mag-
net method or renew their object lease, via a
forwarding reference left behind when an object
migrates. Long chains of forwarding pointers, if
allowed to persist for a long time, would pose a
vulnerability – as nodes die, out-of-date Magnet-
Poles may not be able to trace a path to the current
location of the object to which they are connected.
MagnetOS collapses these paths whenever they
are traversed. Periodic lease updates in lease-
based garbage collection requires periodic com-
munication between MagnetPoles and Magnets,
which provides an upper-bound on the amount of
time such linear chains are permitted to form in
the network.

The MagnetOS runtime provides an explicit inter-
face by which application writers can manually
direct component placement. This interface allows
programmers to establish affinities between com-
ponents and ad-hoc nodes. We provide two levels
of affinity. Specifying a “strong” affinity between

7

a component and a node effectively anchors the
code to that node. This is intended for attaching
components like device drivers to the nodes with
the installed device in them. Specifying a “weak”
affinity immediately migrates the component to
the named node, and allows the automated code
placement techniques described in the next section
to adapt to the application’s communication pat-
tern from the new starting point. Note that today’s
manually constructed applications correspond to
the use of strong affinity in our system – unless
explicitly moved, components are bound to nodes.
The result of overusing strong affinity is a fragile
system, where unforeseen communication and
mobility patterns can leave an application
stranded. While we provide these primitives, we
do not advocate their use and believe that auto-
mated techniques can outperform manual efforts
to place components.

3.3. Runtime Support for Ad hoc Networks
The sensor networking domain places additional
constraints on the runtime implementation.

First, multi-hop ad hoc networks require an ad hoc
routing protocol to connect non-neighboring
nodes. MagnetOS relies on a standard ad hoc rout-
ing protocol below the runtime to provide message
routing. Currently, our system runs on any plat-
form that supports Java JDK1.4. On Linux, we use
an efficient in-kernel AODV implementation we
developed. On other platforms, we use a user-level
version of AODV written in Java to provide uni-
cast routing. The choice of a routing algorithm is
independent from the rest of the runtime, as the
runtime makes no assumptions of the routing layer
besides unicast routing.

In addition, standard communication packages
such as Sun’s RMI are designed for infrastructure
networks, and are inadequate when operating on
multi-hop ad hoc networks. Frequent changes in
network topology and variance in available band-
width require MagnetOS to migrate objects. How-
ever, standard RMI does not provide an easy-to-
use mechanism by which the endpoints of an ac-
tive connection can be modified. Consequently,
we have had to develop our own RPC package.
Similar to Sun’s RMI, it supports a synchronous
interface and uses a reliable datagram protocol
resembling RDP [Hinden & Partridge 90] instead
of TCP. The MagnetOS RPC package allows us to
easily modify the communication endpoints when
components move and is responsible for all com-

munication between MagnetPoles and correspond-
ing Magnets.

Finally, the higher-level policies in MagnetOS
require information on component behavior to
make intelligent migration decisions. The runtime
assists in this task by collecting, for each compo-
nent, information on the amount of data it ex-
changes with other components. The runtime in-
tercepts all RPCs and records, for all incoming
and outgoing invocations per component, the
source and destination. It keeps a cumulative sum
per component per epoch, and periodically in-
forms the migration policy in the system of the
current tally. While this approach has worst case
space requirement that is O(N2), where N is the
number of components in the network, most com-
ponents communicate with few others, and the
space requirements are typically small. For in-
stance, in the sensor benchmark examined in Sec-
tion 4, the storage requirements are linear. The
next section describes how MagnetOS uses these
statistics to automatically migrate components.

3.4. Finding an Energy-Minimizing Object
Placement

In this section, we describe two algorithms, Net-
Pull and NetCenter, which use the information
gathered by the runtime to migrate components in
a manner that increases system longevity.

Both NetPull and NetCenter share the same basic
insight. They shorten the mean path length of data
packets by automatically moving communicating
objects closer together. They perform this by pro-
filing the communication pattern of each applica-
tion in discrete time units, called epochs. In each
epoch, every runtime keeps track of the number of
incoming and outgoing packets for every object.

node

data source

application component

network packet

1 - NetPull
2 - NetCenter

1 2

Figure 3: NetPull moves one hop towards the source of
data whereas NetCenter moves directly to the source of
most packets.

8

At the end of each epoch, the migration algorithm
decides whether to move that object, based on its
recent pattern of behavior. Under both algorithms,
the decision is made locally, based on information
collected during recent epochs at that node. Net-
Pull and NetCenter differ in the type of informa-
tion they collect and how they pick the destination
host. Depending on the environment, one may be
easier to implement.

NetPull collects information about the communi-
cation pattern of the application at the physical
link level, and migrates components over physical
links one hop at a time. This requires very little
support from the network; namely, the runtime
needs to be able to examine the link level packet
headers to determine the last or next hop for in-
coming and outgoing packets, respectively. For
every object, we keep a count of the messages sent
to and from each neighboring node. At the end of
an epoch, the runtime examines all of these links
and the object is moved one hop along the link
with greatest communication.

NetCenter operates at the network level, and mi-
grates components multiple hops at a time. In each
epoch, NetCenter examines the network source
addresses of all incoming messages, and the desti-
nation addresses of outgoing messages for each
object. This information is part of the transmitted
packet, and requires no additional burden on the
network. At the end of an epoch, NetCenter finds
the host with which a given object communicates
the most and migrates the object directly to that
host.

Both of these algorithms improve system longev-
ity by using the available power within the net-
work more effectively. By migrating communicat-
ing components closer to each other, they reduce
the total distance packets travel, and thereby re-
duce the overall power consumption. Further,
moving application components from node to
node helps avoid hot spots and balance out the
communication load in the network. As a result,
both algorithms can significantly improve the total
system longevity for an energy-constrained ad hoc
network.

3.5. Determining Adaptation Granularity
Both NetPull and NetCenter are epoch-based algo-
rithms, and are therefore sensitive to the time
granularity at which they adapt. Adapting too
quickly can result in wasted energy due to poor
migration decisions in response to transient condi-

tions and normal system perturbation. Adapting
too slowly can also result in wasted energy when
significant changes in application behavior or the
environment are not addressed.

The insight guiding our approach to epoch selec-
tion is that a well-placed component should get
equal numbers of packets from all directions
within an epoch. Consequently, a distinct direc-
tion that dominates the communication pattern
marks the boundary of an epoch. We implement
an adaptive epoch selection algorithm based on a
statistical test that determines whether the data
collected thus far is sufficient to make a migration
decision with high confidence. We accumulate the
number of packets sent to each component by its
communicating peers, and then compute the like-
lihood of this event occurring from a multinomial
distribution with equally weighted priors as fol-
lows:

() () ()
()∏

∏∑ ⋅=
!

! ,...,1
i

x
i

in x

p
xxxP

i

where: n – number of peers
xi – number of packets from node i
pi – 1/n.

If the probability calculated above is below a
threshold value, we continue to accumulate data,
and defer the migration decision. We migrate
components only when we can determine with
high probability that one direction in the network
dominates the communication pattern.

4. Evaluation

In this section, we evaluate the performance of
MagnetOS. We first evaluate the core object mi-
gration algorithms, NetPull and NetCenter, and
show that they achieve good energy utilization,
improve system longevity, and are thus suitable
for use in a general-purpose, automatic object mi-
gration system. We then discuss the benefits of
epoch length adaptation. Finally, we report results
from some microbenchmarks to show that auto-
matically partitioning applications does not extract
a large performance cost, and that the memory
costs of a specially-tuned Java virtual machine is
within the resource-budget of next generation sen-
sors.

4.1. Simulation Framework
Our system targets general-purpose sensor net-
works. We developed a fast, packet-level, stati-
cally parameterizable ad hoc networking simulator

9

in order to simulate large networks. The simulator
accounts for all communication costs, including
AODV routing and route repair overhead. It mod-
els the movement of every unicast and multicast
packet and incurs the cost of moving a condenser
and notifying all its sensors of the new location.

We initialize the simulator with a uniform distri-
bution of nodes on a plane, and vary parameters
such as noise levels, field size, density, battery
power, and communication and sensing radii.
Sensing events are generated at random locations
on the field, and with random durations and veloc-
ity vectors. Sensors that are in range detect these
signals and generate application events. They can
also, with small probability, generate fictitious
events due to sensor noise.

4.2. Network Model and Benchmark Ap-
plication

In our simulations, all nodes have the same com-
munication radius and they are connected to the
fixed networking infrastructure via a single, cen-
trally placed node. Each node initially stores a
fixed, finite amount of energy. Sending a packet
between any neighboring nodes exacts a constant
communication cost, and the cost of local compu-
tation on a host is negligible in comparison.

We examine a generic, reconfigurable sensing
benchmark we developed named SenseNet. This
application consists of sensors, condensers and
displays. Sensors are fixed at particular ad hoc
nodes, where they monitor events within their
sensing radius and send a packet to a condenser in
response to an event. Condensers can reside on
any node, where they process and aggregate sen-
sor events and filter noise. The display runs on the
central node, extracts high-level data out of the
sensor network and sends it to the wired network.

4.3. Algorithms
We compare four different algorithms for auto-
matic object migration:

• Static corresponds to a static, fixed assignment
of objects to nodes within the network. Our
components remain at the home node for the en-
tire duration of the simulation.

• Random selects a random destination for each
component at each epoch. It corresponds to a
simple load-balancing algorithm, designed to
avoid network hotspots.

• NetPull moves components one hop along the
most active adjacent communication link at each
epoch to the most active neighbor.

• NetCenter moves components directly to the
node with greatest activity in the previous ep-
och.

4.4. Simulation Parameters
A simulation of a complex system such as this
requires many parameters. In the following ex-
periments, we model a terrestrial sensor network
consisting of nodes with seismic sensors for object
tracking. We examine large sensor networks, con-
sisting of 3600 nodes. The field size is 300 by 300
distance units, which, if scaled to a meter, corre-
spond to a density of 0.04 sensors/m2, a practical
density for distribution from the air. Node sensing
radius is 20 units; communication radius is 10.
Sensors generate spurious readings, or noise, due
to local vibrations and sensor noise; we assume
that sensors are fairly accurate, and that only 1%
of the messages are attributable to noise. We have
examined, but do not present results from, simula-
tions with higher sensor density (0.02 through
0.06) and noise level (1% through 10%). The
choice of a particular density, or noise level does
not qualitatively impact our results; they shift the
curves without affecting any of the trends. The
choice of epoch duration is initially fixed – we
address the epoch length selection question sepa-
rately in Section 4.6. Each epoch contains at least
one event in our simulations, where an event cor-
responds to an object being tracked, and moves
through the sensor field at a randomly chosen ve-
locity. An event may span up to 10 epochs and
move through the field at a velocity between 0.0
and 2.0 distance units per epoch. We assume that
nodes are stationary after the initial deployment,
though none of the nodes make any assumptions
about geographical location of other nodes. Every
data point represents an average of five runs.

10

4.5. Results and Discussion
Figure 4 illustrates the impact of our algorithms
on system longevity. In this simulation, we define
system failure as the point when half of the field is
no longer being sensed, that is, only half of the
field area is within the sensing radius of at least
one live sensor which can communicate along
some functioning route with the home node. Static
corresponds to current, naïve implementations of
sensing applications, where all data is pooled off
of the sensor network for processing on a central
node. The network becomes unoperational as soon
as the gateway nodes around the central node run
out of power. Random performs better by 50%
because it distributes the load more evenly and
avoids hot spots. NetPull and NetCenter lengthen
the operational lifetime of the system by a factor
of four to five by performing in-network process-
ing at suitably-selected locations.

Figure 5 shows how quickly the field coverage
degrades when components are assigned to nodes
in a manner that is oblivious to the underlying ap-
plication communication pattern. In contrast, Net-
Pull and NetCenter migrate components close to
the source of events, thus preserving energy and
shedding load from the critical nodes in the net-
work.

The slopes of the curves in Figure 6 demonstrate
that actively migrating components in the network
drains fewer nodes than a static placement. This is
because active migration algorithms avoid creat-
ing hotspots around critical nodes. In addition,
both Static and Random reach system failure with
far fewer drained nodes, indicating that these al-
gorithms distribute load unevenly and lead to hot-
spots.

Figure 7 shows that NetPull and NetCenter lie
between Static and Random in terms of energy
consumption per epoch. The low slope for Static
shows that this algorithm uses less energy per ep-
och because it does not expend any power on ac-

0

200

400

600

800

1000

1200

1400

1600

1800

static random netpull netcenter

ep
o

ch
s

0

1

2

3

4

5

6

sp
ee

d
u

p

 0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

epoch

p
er

ce
n

t
o

f
fi

el
d

 a
re

a
se

n
se

d

static
random
netpull
netcenter

Figure 4: System longevity improvement. Figure 5: Sensor coverage degradation over time.

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

epoch

n
u

m
b

er
 o

f
se

n
so

rs
 d

ra
in

ed

static
random
netpull
netcenter

0 200 400 600 800 1000 1200 1400 1600 1800

0

10

20

30

40

50

60

70

80

90

100

epoch

p
er

ce
n

t
o

f
fi

el
d

 a
re

a
se

n
se

d

static
random
netpull
netcenter

Figure 6: Sensor drainage over time. Figure 7: Field energy used over time.

11

tive object migration. Most of this power usage is
concentrated in a ring around critical nodes, how-
ever, and the application terminates early, leaving
more than 95% of the total energy on the field un-
utilized. NetPull and NetCenter consume more
energy than Static, because they need to move
components, but consume less energy than Ran-
dom, because they take application behavior into
account. Overall, they outlast both random and
static despite lying between them.

The graph of disconnected nodes over time,
shown in Figure 8, indicates that the number of
disconnected nodes increases more gradually for
NetPull and NetCenter because they distribute
load more evenly across the network. In the case
of Static and Random, even though only a small
number of nodes are drained, they are all located
around the home node and thus quickly disconnect
the entire field from the wired network.

Finally, Figure 9 shows that all algorithms, except
for the static placement of components, are unaf-
fected by variations of field size, and will scale to
large networks. Static does not scale, because the
number of critical nodes is a constant function of
the application data flow graph, and is not propor-
tional to the size of the field.

Overall, NetPull and NetCenter achieve good en-
ergy utilization and improved system longevity.
Their simplicity makes them strong candidates for
use in automated object migration systems.

4.6. Epoch length selection
In this section, we evaluate epoch length selection
algorithm described in section 3.5. To test the sen-
sitivity of object migration to epoch length, we set
up an experiment where the field contains four
event sources located at the midpoint of each
edge. Events are generated for half a 10 second
period in a pair-wise alternating manner. Figure
10 evaluates the performance of automatic object
migration algorithms at different, statically fixed
epoch lengths. It demonstrates the dangers of an
epoch length that is not matched to the temporal
communication patterns in the network. A highly
adaptive algorithm like NetCenter performs best
when its epoch length matches that of the underly-
ing event source. At shorter epoch lengths it
wastes energy by performing excessive migra-
tions. At harmonics of the beaconing frequency,
some of the migration algorithms perform slightly
better, though at long epoch lengths all the migra-
tion algorithms fail to adapt to network changes.

In contrast with statically selected epoch lengths,
yhe adaptive epoch length selection algorithm de-
scribed in section 3.5 achieves an average system
longevity of 2370 when combined with NetCenter.

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

epoch

n
u

m
b

er
 o

f
se

n
so

rs
 d

is
co

n
n

ec
te

d

static
random
netpull
netcenter

50 100 150 200 250
0

10

20

30

40

50

60

70

80

p
er

ce
n

t
o

f
to

ta
l s

en
so

r
p

o
w

er
 u

se
d

 a
t

fa
ilu

re

field size

static
random
netpull
netcenter

Figure 8: Sensors disconnected over time. Figure 9: Energy used at breakdown vs. field size.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

epoch length

ep
oc

hs
 to

 fa
ilu

re

System longevity versus epoch length

static
random
netpull
netcenter

Figure 10: Sensitivity of migration algorithms to epoch
length.

12

It outperforms any static epoch length selection
shown in Figure 10 by 50%.

4.7. MagnetOS RPC performance
An automatic approach to application partitioning
and transparent object migration would be unten-
able if the performance of automatically parti-
tioned applications suffered significantly. In this
section, we show that the performance of auto-
matically partitioned and rewritten applications is
competitive with manually partitioned applica-
tions. In the micro-benchmark below, we compare
the overhead of our RPC implementation to that of
remote invocations performed via Java RMI, on a
1.7 GHz P4 with 256 MB of RAM JDK 1.4 on
Linux 2.4.17 with AODV. On all micro-
benchmarks, automatically decomposed applica-
tions are competitive with manually coded,
equivalent RMI implementations.

Remote call Java RMI MagnetOS
Null 430 ± 16 172 ± 6
Int 446 ± 9 180 ± 8
Obj. w/ 32ints 991 ± 35 174 ± 4
Obj. w/ 4int, 2obj 844 ± 21 177 ± 7

all times in µs, average of 1000 calls.

Table 1: Remote method invocation comparison.

4.8. Space-optimized Java Virtual Machine
The applicability of a Java-based SSI OS is lim-
ited by the ability of sensor network nodes to sup-
port the requisite services of a Java VM. Java vir-
tual machines on the desktop can indeed have ex-
cessive resource requirements; the Java virtual
machine we started out with, the Kimera VM, also
had significant memory requirements. Table 2
shows the size of different Java virtual machines
at application startup.

Virtual Machines Peak Memory
Consumption

Sun Java JDK 1.4 9000 KB
Kimera Unmodified 22822 KB
Kimera Optimized 1172 KB
Sun J2ME KVM 160 KB
Sun Java Card VM 512B + 16 KB ROM
Table 2: Space consumption of Java virtual machines.

Traditional virtual machines, such as Sun Java
JDK 1.4 and the original Kimera VM support
many features and are not optimized for space.
Consequently, they have high memory require-
ments and are not suitable for sensor networks.

However, through simple space optimizations,
including lazy loading, discarding basic block in-
formation, stack reduction, and eliminating the
space allocated for reserved but unused fields, we
have reduced these resource requirements 20-fold
without compromising any VM functionality.

Even further space savings can be achieved by
trading off functionality for space. For instance,
Sun’s J2ME KVM and Java Card VM have been
specifically targeted for embedded platforms.
They consume less memory by supporting fewer
Java libraries, not providing features like code
verification and reflection, and modifying the pro-
gramming model to avoid rich data types. For in-
stance, the Java Card VM can execute Java appli-
cations using only 512 bytes. Overall, we consider
the problem of running a Java interpreter, or
equivalent functionality, on sensors to be solvable.
Our VM is capable of executing the MagnetOS
runtime and Java applications with full access to
the complete Java class libraries with 2 MB of
RAM, which we expect to be available on sensor
nodes of the near future.

5. Conclusion

In this paper, we present the design and imple-
mentation of a single system image operating sys-
tem for sensor networks. Our system implements
the Java Virtual Machine interface on top of a col-
lection of sensor nodes. An application partition-
ing tool takes monolithic Java applications and
converts them into distributed, componentized
applications. A small runtime on each node is re-
sponsible for object creation, invocation and mi-
gration. We rely on a transparent RPC for node-
independent communication between components.
Overall, this distributed system provides a well-
understood programming model for sensor net-
work applications, while simultaneously providing
the system with sufficient freedom to transpar-
ently move components in order to extend achieve
power savings and extend sensor network lifetime.

We propose algorithms for automatically deter-
mining where to locate application components in
the network to minimize energy consumption and
to determine when to migrate application compo-
nents by adaptively selecting an epoch duration.
Combined, these algorithms enable MagnetOS to
find an assignment of components to nodes that
yields good utilization of available energy in the
network. These algorithms are practical, entail low
overhead and are easy to implement because they
rely only on local information that is readily avail-

13

able. We have demonstrated that they can con-
serve power and achieve a factor of four to five
improvement in system longevity.

Ad hoc sensor networking is a rapidly emerging
area with few established mechanisms, policies
and benchmarks. We hope that high-level abstrac-
tions, such as single system image operating sys-
tems combined with automatic object migration
algorithms, will create a familiar and power-
efficient programming environment, thereby ena-
bling rapid development of platform-independent,
power-adaptive applications for sensor networks.

References

[Amiri et al. 00] Khalil Amiri, David Petrou, Greg
Ganager and Garth Gibson. Dynamic Function
Placement in Active Storage Clusters. USENIX
Annual Technical Conference, San Diego, CA,
June 2000.

[Aridor et al. 99] Yariv Aridor, Michael Factor and Avi
Teperman. cJVM: a Single System Image of a JVM
on a Cluster. IEEE International Conference on
Parallel Processing, September 1999.

[Birrell & Nelson 84] A. D. Birrell and B. J. Nelson.
Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39--59, Febru-
ary 1984.

[Birrell et al. 94] Andrew Birrell, Greg Nelson, Susan
Owicki, and Edward Wobber. Network Objects.
SRC Tech Report 115, Feb 1994.

[Broch et al. 98] J. Broch, D. B. Johnson, and D. A.
Maltz, The Dynamic Source Routing Protocol for
Mobile Ad hoc Networks. Internet-Draft, draft-ietf-
manet-dsr-01.txt, Dec. 1998.

[Cheriton 88] David Cheriton. The V Distributed
System. Communications of the ACM, 31(3),
March 1988, pp.314-333.

[Douglis et al. 95] Fred Douglis, P. Krishnan and
Brian Bershad. Adaptive Disk Spin-down Policies
for Mobile Computers. In 2nd USENIX Sympo-
sium on Mobile and Location-Independent Com-
puting, April 1995.

[Flinn 01] Jason Flinn, Dushyanth, Narayanan, and M.
Satyanarayanan. Self-Tuned Remote Execution for
Pervasive Computing. In Proceedings of the 8th
Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schloss Elmau, Germany, May
2001.

[Foster & Kesselman 97] I. Foster, C. Kesselman.
Globus: A Metacomputing Infrastructure Toolkit.
Intl J. Supercomputer Applications, 11(2):115-128,
1997.

[Gomez et al. 01] J. Gomez, A. T. Campbell, M.
Naghshineh and C. Bisdikian. PARO: Conserving
Transmission Power in Wireless Ad hoc Networks.
In Proceedings of the 9th International Conference
on Network Protocols, Riverside, California, No-
vember 2001.

[Grunwald et al. 00] Dirk Grunwald, Philip Levis, Keith
I. Farkas, Charles B. Morrey III and Michael Neu-
feld. Policies for Dynamic Clock Scheduling. In
Proceedings of the Fourth OSDI, San Diego, Cali-
fornia, October 2000.

[Haas & MagnetOSman 98] Z. J. Haas and M. R. Mag-
netOSman, The Zone Routing Protocol (ZRP) for
Ad hoc networks (Internet-Draft). Mobile Ad hoc
Network (MANET) Working Group, IETF, Aug.
1998.

[Harold 00] Harold, E. R. Java Network Programming.
O'Reilly & Associates, Aug 2000.

[Hinden & Partridge 90] B. Hinden and C. Partridge,
"Version 2 of the reliable data protocol (RDP),"
RFC 1151, IETF, Apr 1990.

[Hunt & Scott 99] Galen C. Hunt and Michael L. Scott.
The Coign Automatic Distributed Partitioning Sys-
tem. In Proceedings of the Third Symposium on
Operating System Design and Implementation, pp.
187-200. New Orleans, Louisiana, February 1999.

[Joseph et al. 95] Anthony D. Joseph, Alan F. De
Lespinasse, Joshua A. Tauber, David K. Gifford,
and M. Frans Kaashoek., Rover: A Toolkit for Mo-
bile Information Access. In Proceedings of the Fif-
teenth SOSP, Dec 1995.

[Jul et al. 88] Eric Jul, Henry Levy, Norman Hut-
chinson, Andrew Black. Fine-Grained Mobility in
the Emerald System. ACM TOCS, 6(1), Feb. 1988,
pp. 109-133.

[Kremer et al. 00] U. Kremer, J. Hicks, and J. Rehg.
Compiler-directed remote task execution for power
management: A case study. Workshop on Compil-
ers and Operating Systems for Low Power, PA, Oc-
tober 2000.

[Kunz & Omar 00] T. Kunz and S. Omar. A Mobile
Code Toolkit for Adaptive Mobile Applications.
IEEE Workshop on Mobile Comp. Syst. and Apps,
Monterey, CA Dec 2000.

[Lewis & Grimshaw 95] Mike Lewis and Andrew
Grimshaw. The Core Legion Object Model. Pro-
ceedings of the Fifth IEEE International Sympo-
sium on High Performance Distributed Computing,
August 1995.

[Liskov et al. 92] Barbara Liskov and Mark Day and
Liuba Shrira. Distributed Object Management in
Thor. In Proc. of the International Workshop on
Distributed Object Management, 1992, pp. 79-91.

14

[Litzkow et al. 97] Michael Litzkow, Todd
Tannenbaum, Jim Basney, and Miron Livny.
Checkpoint and migration of UNIX processes in
the Condor distributed processing system. Techni-
cal Report #1346, University of Wisconsin-
Madison, April 1997.

[Lorch & Smith 98] Jacob R. Lorch and Alan Jay
Smith. Software Strategies for Portable Computer
Energy Management. IEEE Personal Communica-
tions Magazine, 5(3), June 1998.

[Ma et al. 99] Matchy J. M. Ma, Cho-Li Wang, Francis
C. M. Lau and Zhiwei Xu. JESSICA: Java-Enabled
Single System Image Computing Architecture. The
International Conference on Parallel and Distrib-
uted Processing Techniques and Applications, June
1999.

[Mascolo 01] Cecilia Mascolo, Licia Capra and Wolf-
gang Emmerich. XMIDDLE - A Middleware of
Ad hoc Networks. UCL-CS Research Note 00/54,
2001.

[Murthy & Garcia-Luna-Aceves 96] S. Murthy and J.J.
Garcia-Luna-Aceves. An Efficient Routing Proto-
col for Wireless Networks. ACM Mobile Networks
and App. J., Special Issue on Routing in Mobile
Communication Networks, Oct. 1996, pages 183-
97.

[Nikaein et al. 01] Navid Nikaein, Christian Bonnet and
Neda Nikaein. HARP - Hybrid Ad hoc Routing
Protocol. In Proc. of the International Symposium
on Telecommunications, 2001.

 [Ousterhout et al. 88] J. Ousterhout, A. Cherenson,
F. Douglis, M. Nelson, and B. Welch. The Sprite
network operating system. IEEE Computer,
21(2):23--36, February 1988.

[Park & Corson 98] Vincent D. Park and M.
Scott Corson. Temporally-Ordered Routing Algo-
rithm (TORA) version 1: Functional Specification.
Internet-Draft, draft-ietf-manet-tora-spec01. txt,
August 1998.

[Perkins 97] Perkins, C.E. Ad hoc On-Demand
Distance Vector (AODV) Routing. IETF MANET,
Internet Draft, Dec.1997.

[Perkins & Bhagwat 94] C. Perkins and P. Bhagwat.
Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers.
ACM SIGCOMM, October 1994.

[Pillai & Shin 01] Padmanabhan Pillai and Kang G.
Shin. Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems. SOSP
2001, pp. 89-102.

[Plank et al. 95] James S. Plank, Micah Beck, Gerry
Kingsley and Kai Li. Libckpt: Transparent Check-
pointing under Unix. Usenix Winter 1995 Techni-
cal Conference, New Orleans, LA, January 1995.

[Popek & Walker 85] G. Popek and B. Walker, eds.
The LOCUS Distributed System Architecture. MIT
Press, Cambridge, MA 1985.

[Pottie & Kaiser 00] G.J. Pottie and W.J. Kaiser. Wire-
less integrated network sensors. Communications
of the ACM, 43(5):51--58, May 2000.

[Rashid & Robertson 81] Rashid, R.F., Robertson, G.G.
Accent: A Communication Oriented Network Op-
erating System Kernel. 8th ACM SOSP. Pacific
Grove, California, 1981.

[Sirer et al. 99] Emin Gün Sirer, Robert Grimm, Ar-
thur J. Gregory and Brian N. Bershad. Design and
Implementation of a Distributed Virtual Machine
for Networked Computers. 17th SOSP, South Caro-
lina, December 1999.

[Steketee et al. 95] Chris Steketee, Piotr Socko,
Bartosz Kiepuszewski. Experiences with the Im-
plementation of a Process Migration Mechanism
for Amoeba. In Proceedings of the 19th Austral-
asian Computer Science Conference, January 1995,
pp. 213-224.

[Stellner 96] Georg Stellner. CoCheck: Checkpointing
and Process Migration for MPI. International Paral-
lel Processing Symposium, pp. 526--531, Hono-
lulu, HI, April 1996.

[Stemm & Katz 96] Mark Stemm and Randy Katz.
Measuring and Reducing energy consumption of
network interfaces in hand-held devices. 3rd Inter-
national Workshop on Mobile Multimedia Com-
munications, Sept. 1996.

[Tanenbaum et al. 90] Tanenbaum, A.S., Renesse, R.
van, Staveren, H. van., Sharp, G.J., Mullender, S.J.,
Jansen, A.J., and Rossum, G. van: Experiences with
the Amoeba Distributed Operating System, Com-
mun. ACM, vol. 33, pp. 46-63, Dec. 1990.

[Tennenhouse & Wetherall 96] D. L. Tennenhouse and
D. Wetherall. Towards an Active Network Archi-
tecture. In Multimedia Computing and Networking,
San Jose, California, January 1996.

[Tilevich & Smaragdakis 02] E. Tilevich and Y.
Smaragdakis. J-Orchestra: Automatic Java Applica-
tion Partitioning. European Conference on Object-
Oriented Programming, 2002.

[Toh 01] C.K. Toh. Maximum Battery Life Routing to
Support Ubiquitous Mobile Computing in Wireless
Ad hoc Networks. IEEE Communications, June
2001.

[Weiser et al. 94] Mark Weiser, Brent Welch, Alan
Demers, and Scott Shenker. Scheduling for reduced
CPU energy. In Proc. of the First OSDI, Monterey,
California, November 1994.

