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Abstract 
 

In this paper we describe the design and implementation of a distributed operating system for sensor net-
works. The goal of our system is to extend total system lifetime through power-aware adaptation for sensor 
networking applications. Our system achieves this goal by providing a single system image of a unified Java 
virtual machine to applications over an ad hoc collection of heterogeneous sensors. It automatically and 
transparently partitions applications into components and dynamically finds a placement of these components 
on nodes within the sensor network to reduce energy consumption and increase system longevity. This paper 
describes the design and implementation of our system and examines the question of where and when to mi-
grate components in a sensor network. We evaluate two practical, power-aware, general-purpose algorithms 
for object placement, as well as an adaptive scheme for deciding the time granularity of object migration. We 
demonstrate that our algorithms can increase sensor network longevity by a factor of four to five by effec-
tively distributing energy consumption and avoiding hotspots. 

1. Introduction 

Sensor networks simultaneously promise a radi-
cally new class of applications and pose signifi-
cant challenges for application development. Re-
cent advances in low-power, high-performance 
processors and medium to high-speed wireless 
networking have enabled large scale deployment 
of sensor nodes, capable of local processing and 
multi-hop communication. Many interesting sens-
ing applications, however, entail collaboration 
between components distributed throughout an 
ad hoc network. For example, sensor networks are 
often composed of three types of components: 
sensors acting as data sources, information con-
sumers operating as data sinks, and numerous in-
termediate filters for performing application-
specific data processing. While the data sources 
and sinks may be coupled tightly to the nodes to 
which they are attached, there is often a high de-
gree of freedom in the placement of the data proc-
essing components. This freedom, coupled with 
the dynamic environment posed by sensor net-
works, makes it difficult to find the optimal distri-
bution of application components among nodes.  

Adapting to dynamically changing conditions by 
changing the distribution of components across a 
network is critical for many distributed network-
ing applications. For example, the resources avail-

able to components at each node, in particular the 
available power and bandwidth may change over 
time and necessitate the relocation of application 
components. Further, event sources that are being 
sensed in the external environment, such as 
tracked objects or chemical concentrations, may 
move rapidly, thereby shifting network loads and 
requiring applications to adapt by migrating com-
ponents. Finally, an application's behavior might 
change, as in the transition from defensive to of-
fensive mode in a battlefront sensing application, 
modifying its communication pattern and necessi-
tating a reorganization of its deployed components 
within the network. 

Currently, sensor networking applications either 
rely on a static assignment of components to 
nodes or use ad hoc, manual policies and mecha-
nisms for migrating code and data in response to 
change. A static assignment of functionality to 
nodes simplifies application design by obviating 
code migration and reduces meta-traffic in the 
network by eliminating component mobility, but it 
also leads to non-adaptive, fragile and energy-
inefficient systems. For example, many current-
sensor networks perform all data aggregation and 
processing at a central node. Such a network will 
stall as soon as the critical nodes on the dataflow 
path run out of power or move out of transmission 
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range. In contrast, manual approaches to code and 
data mobility suffer from being platform-
dependent, error-prone and hard to develop. Each 
application using a manual approach needs to re-
implement the same migration, monitoring and 
communication mechanisms, correctly, on every 
platform. Further, locally optimal policies pursued 
by applications that share a common network may 
lead to globally unstable and energy-inefficient 
behavior when they conflict. For instance, a high-
priority submarine tracking application running on 
an acoustic sensor grid may be forced to behave 
sub-optimally by a lower-priority whale tracking 
application, if the applications use ad hoc mecha-
nisms to adapt to the current power levels in the 
network. In essence, application-level adaptation 
suffers from building on an abstraction level that 
is too low. An operating system that provides the 
requisite mechanisms and policies for code mobil-
ity would not only simplify application develop-
ment, but also ensure the integrity of system-wide 
goals in the face of multiple applications compet-
ing for resources. 

Unlike distributed programming on the Internet, 
where energy is not a constraint, delay is low, and 
bandwidth is plentiful, physical limitations of sen-
sor networks lead to some unique requirements. 
Technology trends indicate that the primary limi-
tation of sensor networks is energy consumption, 
and communication is the primary energy con-
sumer. Measurements from first-generation sensor 
nodes [Pottie & Kaiser 00] show that sending one 
bit may consume as much energy as executing 
3000 instructions. This motivates a system that 
performs more computation to reduce communica-
tion. 

In this paper, we outline the design of MagnetOS, 
a single system image (SSI) operating system for 
sensor networks. Based on our target domain of 
energy-constrained sensor networks, we identify 
the following set of design goals for an operating 
system. 

• Efficient: The system should execute distrib-
uted sensor network applications in a manner 
that conserves power and extends system life-
time. Policies and mechanisms used for adapta-
tion in the systems layer should not require ex-
cessive communication or power consumption. 

• Adaptive: The system should respond auto-
matically to significant changes in network to-
pology, resource availability, and the communi-
cation pattern of the applications. 

• General purpose: The system should support a 
wide range of applications and porting an exist-
ing centralized sensing application to execute 
efficiently on a sensor network should require 
little effort. Applications should be able to di-
rect the adaptation using application-specific in-
formation. The system should provide effective 
default adaptation policies for applications that 
are not power-aware. 

• Platform independent: Applications should be 
able to execute on ad hoc networks of heteroge-
neous nodes. 

Our operating system meets these goals by provid-
ing the abstraction of a single unified Java virtual 
machine over an ad hoc network of heterogeneous, 
physically separate, potentially mobile sensor 
nodes. MagnetOS consists of a static application 
partitioning service that resides on border hosts 
capable of injecting new code into the network, 
and a runtime on each node that performs dynamic 
monitoring and component migration. The static 
partitioning service takes regular Java applications 
and converts them into distributed components 
that communicate via RPC [Birrell & Nelson 84] 
by rewriting them at the bytecode level  (Figure 
1). The code injector then finds a suitable initial 
layout of these components and starts the execu-
tion of the application. The runtime monitors the 
performance of the application and migrates ap-
plication components when doing so would bene-
fit the system. 

Monolithic application 

Static partitioning 

Distributed application 
 

Figure 1: A static partitioning service converts mono-
lithic Java applications into distributed applications that 
can run on an ad hoc network and transparently com-
municate via RPC. 
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The algorithms used to decide where and when to 
move application components form the core of our 
system. While MagnetOS is designed such that 
these algorithms can be transparently replaced to 
optimize for differing goals, such as minimizing 
application latency, response time, or bandwidth 
consumption, in this paper we tackle what we be-
lieve to be the most important goal in energy-
constrained ad hoc networks of mobile hosts: we 
examine how to maximize total application and 
system lifetime by utilizing power more effi-
ciently. We present two practical, online algo-
rithms, named NetPull and NetCenter, for finding 
a distribution of application components on nodes 
in an ad hoc network that increases total system 
lifetime by increasing the effective energy utiliza-
tion (Figure 2). We evaluate these algorithms in 
the context of a generic sensing application and 
examine their impact on system longevity, which 
we define as the length of time that a sensing ap-
plication can maintain sensor coverage above a 
given threshold area. Both algorithms operate by 
dividing time into epochs, monitoring the commu-
nication pattern of the application components 
within each epoch, and migrating components at 
the end of the epoch when doing so would result 
in more efficient power utilization. We also pre-
sent an online algorithm for selecting an epoch 
length that matches application behavior through 
online, adaptive statistical testing. We show that 
the MagnetOS system can achieve a factor of four 
to five improvement in system longevity over na-
ive or static partitioning techniques. 

This paper makes three contributions. It outlines 
the design and implementation of a single system 
image operating system for sensor networks, 
where the entire network appears to be a single 
Java virtual machine to applications, whose com-

ponents are partitioned among the nodes auto-
matically and migrated transparently at runtime. 
Second, we propose practical, adaptive, online 
algorithms for deciding where and when to move 
application components. Finally, we demonstrate 
that these algorithms achieve high-energy utiliza-
tion, extract low overhead, and improve system 
longevity. 

In the next section, we describe related work on 
operating system support for ad hoc sensor net-
works and their applications. Section 3 outlines 
our system implementation, including the code 
partitioning and distribution technique. Section 4 
presents our network and application model, de-
scribes our simulation framework and evaluates 
NetPull and NetCenter within this environment. 
We summarize our contributions and results in 
Section 5. 

2. Related Work 

There has been much research on distributed op-
erating systems, ad hoc sensor networks, and 
power management, though few systems have ex-
amined all three. 

2.1. Distributed Systems 
Single system image (SSI) operating systems have 
been examined extensively in the context of wired 
networks of workstations. Early landmark sys-
tems, such as V [Cheriton 88], Sprite [Ousterhout 
et al. 88], Ameoba [Tanenbaum et al. 90, Steketee 
et al. 95], Accent [Rashid & Robertson 81], and 
LOCUS [Popek & Walker 85], implemented na-
tive operating system facilities for migrating proc-
esses between nodes on a tightly coupled cluster. 
More recently, the cJVM [Aridor et al. 99] and 
JESSICA [Ma et al. 99] projects have examined 
how to extend a Java virtual machine-across a 
high-performance cluster. Others, including Con-
dor [Litzkow et al. 97], libckpt [Plank et al. 95] 
and CoCheck [Stellner 96], provide user-level 
mechanisms for checkpointing and process migra-
tion without operating system support. These pro-
jects target high-performance, well-connected 
clusters. Their main goals are to balance load and 
achieve high performance in a local area network 
for interactive desktop programs or CPU-intensive 
batch jobs. In contrast, MagnetOS targets wireless 
multi-hop networks, where utilizing power effec-
tively and maximizing system longevity is more 
important than traditional application perform-
ance. 

 

node 
  

data source 
  

application filter 
  

network packet 
   

Figure 2: Migrating components closer to their data 
sources in a sensor network increases system longevity 
and decreases power consumption by reducing total 
network communication cost. 
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Distributed object systems have examined how to 
support distributed computations in the wide area. 
Emerald [Jul et al. 88] provides transparent code 
migration for programs written in the Emerald 
language, where the migration is directed by 
source-level programmer annotations. Thor 
[Liskov et al. 93] provides persistent objects in a 
language-independent framework. It enables cach-
ing, replication and migration of objects stored at 
object repositories. More recently, grid computing 
systems such as Legion [Lewis & Grimshaw 95] 
and Globus [Foster & Kesselman 97] have fo-
cused on the construction of scalable, geographi-
cally distributed computing systems. These sys-
tems differ fundamentally from MagnetOS in that 
they require explicit programmer control to trigger 
migration, do not support an ad hoc network 
model and target traditional applications.  

Some recent systems have focused on how to par-
tition applications within a conventional wired 
network. The Coign system [Hunt & Scott 99] has 
examined how to partition COM applications be-
tween two tightly interconnected hosts within a 
local-area network. Coign performs static spatial 
partitioning of desktop applications via a two-way 
minimum cut based on summary application pro-
files collected on previous runs. Extending this 
work, the ABACUS system [Amiri et al. 00] has 
examined how to migrate functionality in a stor-
age cluster. MagnetOS shares the same insight as 
Coign, in that it also focuses on the automatic re-
location of application components, but differs in 
that it dynamically moves application components 
in response to changes in the network, instead of 
computing a static partitioning from a profile. 
[Kremer et al. 00] proposes using static analysis to 
select tasks that can be executed remotely to save 
energy. J-Orchestra [Tilevich & Smaragdakis 02] 
performs application partitioning via rewriting, 
leaving dynamic migration decisions under appli-
cation control. Spectra [Flinn et al. 01] monitors 
resource consumption, collects resource usage 
histories and uses quality of service (fidelity) in-
formation supplied by the application to make re-
source allocation decisions. Spectra is invoked 
prior to operation startup, and statically deter-
mines a location at which to execute the operation.  

Middleware projects have looked at constructing 
toolkits to support mobile applications. The Rover 
toolkit [Joseph et al. 95] provides relocation and 
messaging services to facilitate the construction of 
mobile applications. The Mobiware [Campbell 98] 
and DOMT [Kunz and Omar 00] toolkits are tar-

geted specifically for ad hoc networks and provide 
an adaptive-QoS programming interface. XMID-
DLE [Mascolo 01] assists with data management 
and synchronization. MagnetOS takes a systems 
approach instead of providing a programmer 
driven toolkit and automatically manages the 
shared network and energy resources among 
ad hoc sensor applications. This approach unifies 
the system layer and ensures that disparate appli-
cations, regardless of which toolkits they use, be-
have in a cooperative manner.  

2.2. Ad hoc Routing Protocols 
There has been much prior research on ad hoc 
routing algorithms. Proactive (e.g. DSDV [Perkins 
& Bhagwat 94], WRP [Murthy & Garcia-
Luna_Aceves 96]), reactive (e.g. DSR [Broch et 
al. 98], AODV [Perkins 97], TORA [Park & 
Corson 98]) and hybrid (e.g. ZRP [Haas & 
MagnetOSman 98], HARP [Nikaein et al. 01]) 
routing protocols seek to pick efficient routes by 
proactively disseminating or reactively discover-
ing route information, or both. While some proto-
cols, such as PARO [Gomez et al. 01] and MBLR 
[Toh 01], have examined how to make power-
aware routing decisions, all of these routing 
algorithms assume that the communication 
endpoints are fixed. Directed diffusion 
[Heidemann et al. 01] provides a data-centric 
programming model for sensor networks by 
labeling sensor data using attribute-value pairs and 
routing based on a gradient. MagnetOS com-
plements the routing layer to move application 
code around the network, changing the location of 
the communication endpoints and radically 
altering the communication pattern of the overall 
application. It  provides increased system and 
application longevity by bringing application com-
ponents closer to the data sources, which 
complements the route selection performed by the 
ad hoc routing protocol. 2.3. Power Management 
Prior work has also examined how to minimize 
power consumption within an independent host 
through various mechanisms [Pillai & Shin 01, 
Grunwald et al. 00, Weiser et al. 94, Douglis et al. 
95, Stemm & Katz 96], including low-power proc-
essor modes, disk spin-down policies, adapting 
wireless transmission strength and selectively 
turning off unused devices. Our system is com-
plementary to this work and opens up further op-
portunities for minimizing power consumption by 
shipping computation out of hosts limited in 
power to less critical nodes.  
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3. System Implementation and Distribu-
tion Model 

MagnetOS implements a single system image op-
erating system for sensor networks in two steps. 
First, a monolithic application is partitioned, dis-
tributing its functionality across the ad hoc net-
work. The MagnetOS runtime then coordinates the 
communication and migration of these application 
segments across the nodes in the sensor network 
in order for the newly distributed application to 
appear as if running on a single Java virtual ma-
chine. We will now discuss the implementation 
details of the two components, the partitioning 
mechanism and the MagnetOS runtime. 

3.1. Application Partitioning 
The partitioning mechanism of MagnetOS con-
verts Java applications written and compiled for a 
single virtual machine into remote objects that can 
be dispersed and executed across an ad hoc net-
work of many virtual machines. The transformed 
application code, though modified to interact with 
the MagnetOS runtime, retains its original 
application semantics.   

MagnetOS partitions applications at class granu-
larity; consequently, the unit of mobility in Mag-
netOS is an object instance. This transformation at 
class boundaries preserves existing object inter-
faces. The entire transformation is performed at 
the byte-code level via binary rewriting, without 
requiring source-code access. 

Our approach to partitioning applications stati-
cally is patterned after distributed virtual ma-
chines [Sirer et al. 99]. Static partitioning confers 
several advantages. First, the complex partitioning 
services need only be supported at code-injection 
points, and can be performed offline. Second, 
since the run-time operation of the system and its 
integrity do not depend on the partitioning tech-
nique, users can partition their applications into 
arbitrary components if they so choose. Further, 
since applications are verified prior to injection 
into the network, individual MagnetOS nodes 
need not re-run a costly verifier on application 
components. Finally, binary rewriting provides a 
convenient, default mechanism for transitioning 
legacy, monolithic applications to execute over 
ad hoc networks. 

The static partitioning takes original application 
classes, and for each class, creates an instance 
(Magnet), a remote stub (MagnetPole), an inter-

face (MagnetInterface) and a class object (Mag-
netStatic).  

A Magnet is a modified implementation of the 
original class that stores the instance variables of 
the object. Each Magnet is an object instance and 
is free to move across nodes in the network. Mag-
netPoles, on the other hand, are remote references 
to the corresponding Magnet instance. That is, 
MagnetPoles are used to invoke procedure calls 
on remote Magnets residing on other nodes. Calls 
to the MagnetPole are intercepted by the Magne-
tOS runtime and converted into RPCs. This level 
of indirection enables code migration. As a Mag-
net moves, the method calls to the corresponding 
MagnetPoles are tracked by the MagnetOS run-
time and directed to the new Magnet location. 
MagnetInterfaces capture the interface that the 
original class exposes to the rest of the applica-
tion. Magnet and MagnetPole instances implement 
the MagnetInterface of the original class. 

Several modifications to the application binaries 
are required for this remote object mechanism to 
work seamlessly. First, object creations (new in-
structions and matching constructor invocations) 
are replaced by calls to the local MagnetOS run-
time. The runtime selects an appropriate node and 
constructs a new Magnet instance at that location. 
This operation returns a corresponding, properly 
initialized MagnetPole, which is then used in sub-
sequent method invocations. In addition, Magne-
tOS adds accessor methods of the appropriate type 
for each field, converting field accesses into 
method calls to the MagnetPole reference, which 
subsequently remotely call the accessor on the 
corresponding Magnet instance. Finally, 
typechecking and synchronizing instructions 
(checkcast, instanceof, monitorenter 
and monitorexit instructions, and synchro-
nized methods) are rewritten to trap into the 
MagnetOS runtime. The runtime reconstructs the 
appropriate type check on top of the modified type 
hierarchy, retaining the original application's be-
havior. Similarly, it converts lock acquisitions and 
releases into centralized operations at the Magnet. 
Unlike regular JVM monitor operations, each 
thread in MagnetOS is identified via a globally 
unique identifier, consisting of a 
<nodeid, threadid> tuple. This enables MagnetOS 
to identify cases of recursively locked mutexes 
and support the lock semantics required by the 
Java virtual machine. 
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The final component created for a class is a Mag-
netStatic object. It contains static field members, 
also known as class instances. In Java, static fields 
are shared across all instances of an object. The 
partitioning service coalesces the static fields of 
the original class into a single object, to which all 
the Magnet instances of that class retain a refer-
ence.  Static field and method instructions are re-
placed with calls to the MagnetOS runtime, which 
tracks the location of the MagnetStatic object and 
forwards the static operations to the appropriate 
node in the ad hoc network. 

While MagnetOS attempts to provide reasonable 
defaults for converting regular JVM applications 
to work in an ad hoc network, it explicitly does 
not try to make the process completely transparent 
and support network-oblivious applications. Ap-
plications running on networks have diverse fail-
ure modes that cannot be masked, and MagnetOS 
reflects such failures to the programmer by map-
ping them to implicit runtime exceptions, similar 
to the way other exceptional events, such as run-
ning out of memory, are handled. This mapping 
conforms to the JVM specification and provides a 
way for the application programmer to react to 
runtime events. We have found that most non-
trivial, stateful applications will require some 
amount of failure recovery in all but the most 
densely connected and static networks.  

3.2. Runtime Mechanisms for Object Mi-
gration 

The MagnetOS runtime provides the dynamic ser-
vices that facilitate the distributed execution of 
componentized applications across an ad hoc net-
work. Its services include component creation, 
inter-component communication, object migra-
tion, garbage collection, naming, and object dis-
covery. These runtime services are invoked in 
three ways: through background processes that 
automatically manage the running system, indi-
rectly via MagnetPoles, and directly via explicit 
API calls from the application. 

In order to create a new instance of an object, an 
application will contact the local runtime and pass 
the requisite type descriptor and parameters for 
object creation. The runtime then has the option of 
placing the newly created object at a suitable loca-
tion with little cost. It may choose to locate the 
object on the local node, at a well-known node or 
at its best guess of an optimal location within the 
network. In our current implementation, all new 
objects are created locally. We chose this ap-

proach for its simplicity, and rely on our dynamic 
object migration algorithms to find the optimal 
placement of objects over time. Furthermore, 
short-lived, tightly scoped objects do not travel 
across the network unnecessarily. The application 
binaries, containing all of the object constructors, 
are distributed to all nodes at the time that the ap-
plication is introduced into the network. Once cre-
ated, the (remote) runtime simply initializes the 
object by calling its constructor and returns a 
MagnetPole instance referring to the (remote) ob-
ject. 

The runtime transparently handles invocations 
among the application components distributed 
across the network. Each runtime keeps a list of 
the live, local Magnets, which can optionally be 
named. MagnetPoles maintain the current location 
of their corresponding Magnet, and make runtime 
calls on behalf of application invocations to mar-
shal arguments to, and results from, the appropri-
ate node and object. 

The MagnetOS runtime implements a lease-based 
garbage collector for remote objects, with leases 
automatically renewed by MagnetPoles. As in 
RMI and Network Objects [Birrell et al. 94], we 
do not collect cycles in the object reference graph. 
Local objects are handled by the standard Java 
garbage collector. 

MagnetOS migrates application components at 
runtime by serializing Magnet state and moving it 
to a new node. MagnetPoles are informed of the 
relocation lazily, the next time they invoke a Mag-
net method or renew their object lease, via a 
forwarding reference left behind when an object 
migrates. Long chains of forwarding pointers, if 
allowed to persist for a long time, would pose a 
vulnerability – as nodes die, out-of-date Magnet-
Poles may not be able to trace a path to the current 
location of the object to which they are connected. 
MagnetOS collapses these paths whenever they 
are traversed. Periodic lease updates in lease-
based garbage collection requires periodic com-
munication between MagnetPoles and Magnets, 
which provides an upper-bound on the amount of 
time such linear chains are permitted to form in 
the network.  

The MagnetOS runtime provides an explicit inter-
face by which application writers can manually 
direct component placement. This interface allows 
programmers to establish affinities between com-
ponents and ad-hoc nodes. We provide two levels 
of affinity. Specifying a “strong” affinity between 
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a component and a node effectively anchors the 
code to that node. This is intended for attaching 
components like device drivers to the nodes with 
the installed device in them. Specifying a “weak” 
affinity immediately migrates the component to 
the named node, and allows the automated code 
placement techniques described in the next section 
to adapt to the application’s communication pat-
tern from the new starting point. Note that today’s 
manually constructed applications correspond to 
the use of strong affinity in our system – unless 
explicitly moved, components are bound to nodes. 
The result of overusing strong affinity is a fragile 
system, where unforeseen communication and 
mobility patterns can leave an application 
stranded. While we provide these primitives, we 
do not advocate their use and believe that auto-
mated techniques can outperform manual efforts 
to place components. 

3.3. Runtime Support for Ad hoc Networks 
The sensor networking domain places additional 
constraints on the runtime implementation.  

First, multi-hop ad hoc networks require an ad hoc 
routing protocol to connect non-neighboring 
nodes. MagnetOS relies on a standard ad hoc rout-
ing protocol below the runtime to provide message 
routing. Currently, our system runs on any plat-
form that supports Java JDK1.4. On Linux, we use 
an efficient in-kernel AODV implementation we 
developed. On other platforms, we use a user-level 
version of AODV written in Java to provide uni-
cast routing. The choice of a routing algorithm is 
independent from the rest of the runtime, as the 
runtime makes no assumptions of the routing layer 
besides unicast routing. 

In addition, standard communication packages 
such as Sun’s RMI are designed for infrastructure 
networks, and are inadequate when operating on 
multi-hop ad hoc networks. Frequent changes in 
network topology and variance in available band-
width require MagnetOS to migrate objects. How-
ever, standard RMI does not provide an easy-to-
use mechanism by which the endpoints of an ac-
tive connection can be modified. Consequently, 
we have had to develop our own RPC package. 
Similar to Sun’s RMI, it supports a synchronous 
interface and uses a reliable datagram protocol 
resembling RDP [Hinden & Partridge 90] instead 
of TCP. The MagnetOS RPC package allows us to 
easily modify the communication endpoints when 
components move and is responsible for all com-

munication between MagnetPoles and correspond-
ing Magnets. 

Finally, the higher-level policies in MagnetOS 
require information on component behavior to 
make intelligent migration decisions. The runtime 
assists in this task by collecting, for each compo-
nent, information on the amount of data it ex-
changes with other components. The runtime in-
tercepts all RPCs and records, for all incoming 
and outgoing invocations per component, the 
source and destination. It keeps a cumulative sum 
per component per epoch, and periodically in-
forms the migration policy in the system of the 
current tally. While this approach has worst case 
space requirement that is O(N2), where N is the 
number of components in the network, most com-
ponents communicate with few others, and the 
space requirements are typically small. For in-
stance, in the sensor benchmark examined in Sec-
tion 4, the storage requirements are linear. The 
next section describes how MagnetOS uses these 
statistics to automatically migrate components. 

3.4. Finding an Energy-Minimizing Object 
Placement 

In this section, we describe two algorithms, Net-
Pull and NetCenter, which use the information 
gathered by the runtime to migrate components in 
a manner that increases system longevity. 

Both NetPull and NetCenter share the same basic 
insight. They shorten the mean path length of data 
packets by automatically moving communicating 
objects closer together. They perform this by pro-
filing the communication pattern of each applica-
tion in discrete time units, called epochs. In each 
epoch, every runtime keeps track of the number of 
incoming and outgoing packets for every object. 

node 

data source 

application component 

network packet 

1 - NetPull 
2 - NetCenter 

1  2 

 
Figure 3: NetPull moves one hop towards the source of 
data whereas NetCenter moves directly to the source of 
most packets. 
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At the end of each epoch, the migration algorithm 
decides whether to move that object, based on its 
recent pattern of behavior. Under both algorithms, 
the decision is made locally, based on information 
collected during recent epochs at that node. Net-
Pull and NetCenter differ in the type of informa-
tion they collect and how they pick the destination 
host. Depending on the environment, one may be 
easier to implement. 

NetPull collects information about the communi-
cation pattern of the application at the physical 
link level, and migrates components over physical 
links one hop at a time. This requires very little 
support from the network; namely, the runtime 
needs to be able to examine the link level packet 
headers to determine the last or next hop for in-
coming and outgoing packets, respectively. For 
every object, we keep a count of the messages sent 
to and from each neighboring node. At the end of 
an epoch, the runtime examines all of these links 
and the object is moved one hop along the link 
with greatest communication. 

NetCenter operates at the network level, and mi-
grates components multiple hops at a time. In each 
epoch, NetCenter examines the network source 
addresses of all incoming messages, and the desti-
nation addresses of outgoing messages for each 
object. This information is part of the transmitted 
packet, and requires no additional burden on the 
network. At the end of an epoch, NetCenter finds 
the host with which a given object communicates 
the most and migrates the object directly to that 
host. 

Both of these algorithms improve system longev-
ity by using the available power within the net-
work more effectively. By migrating communicat-
ing components closer to each other, they reduce 
the total distance packets travel, and thereby re-
duce the overall power consumption. Further, 
moving application components from node to 
node helps avoid hot spots and balance out the 
communication load in the network. As a result, 
both algorithms can significantly improve the total 
system longevity for an energy-constrained ad hoc 
network. 

3.5. Determining Adaptation Granularity 
Both NetPull and NetCenter are epoch-based algo-
rithms, and are therefore sensitive to the time 
granularity at which they adapt. Adapting too 
quickly can result in wasted energy due to poor 
migration decisions in response to transient condi-

tions and normal system perturbation. Adapting 
too slowly can also result in wasted energy when 
significant changes in application behavior or the 
environment are not addressed. 

The insight guiding our approach to epoch selec-
tion is that a well-placed component should get 
equal numbers of packets from all directions 
within an epoch. Consequently, a distinct direc-
tion that dominates the communication pattern 
marks the boundary of an epoch. We implement 
an adaptive epoch selection algorithm based on a 
statistical test that determines whether the data 
collected thus far is sufficient to make a migration 
decision with high confidence. We accumulate the 
number of packets sent to each component by its 
communicating peers, and then compute the like-
lihood of this event occurring from a multinomial 
distribution with equally weighted priors as fol-
lows: 

( ) ( ) ( )
( )∏

∏∑ ⋅=
! 

! ,...,1
i

x
i

in x

p
xxxP
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where: n – number of peers 
xi – number of packets from node i 
pi – 1/n. 

If the probability calculated above is below a 
threshold value, we continue to accumulate data, 
and defer the migration decision. We migrate 
components only when we can determine with 
high probability that one direction in the network 
dominates the communication pattern. 

4. Evaluation 

In this section, we evaluate the performance of 
MagnetOS. We first evaluate the core object mi-
gration algorithms, NetPull and NetCenter, and 
show that they achieve good energy utilization, 
improve system longevity, and are thus suitable 
for use in a general-purpose, automatic object mi-
gration system. We then discuss the benefits of 
epoch length adaptation. Finally, we report results 
from some microbenchmarks to show that auto-
matically partitioning applications does not extract 
a large performance cost, and that the memory 
costs of a specially-tuned Java virtual machine is 
within the resource-budget of next generation sen-
sors. 

4.1. Simulation Framework 
Our system targets general-purpose sensor net-
works. We developed a fast, packet-level, stati-
cally parameterizable ad hoc networking simulator 
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in order to simulate large networks. The simulator 
accounts for all communication costs, including 
AODV routing and route repair overhead. It mod-
els the movement of every unicast and multicast 
packet and incurs the cost of moving a condenser 
and notifying all its sensors of the new location. 

We initialize the simulator with a uniform distri-
bution of nodes on a plane, and vary parameters 
such as noise levels, field size, density, battery 
power, and communication and sensing radii. 
Sensing events are generated at random locations 
on the field, and with random durations and veloc-
ity vectors. Sensors that are in range detect these 
signals and generate application events. They can 
also, with small probability, generate fictitious 
events due to sensor noise. 

4.2. Network Model and Benchmark Ap-
plication 

In our simulations, all nodes have the same com-
munication radius and they are connected to the 
fixed networking infrastructure via a single, cen-
trally placed node. Each node initially stores a 
fixed, finite amount of energy. Sending a packet 
between any neighboring nodes exacts a constant 
communication cost, and the cost of local compu-
tation on a host is negligible in comparison. 

We examine a generic, reconfigurable sensing 
benchmark we developed named SenseNet. This 
application consists of sensors, condensers and 
displays. Sensors are fixed at particular ad hoc 
nodes, where they monitor events within their 
sensing radius and send a packet to a condenser in 
response to an event. Condensers can reside on 
any node, where they process and aggregate sen-
sor events and filter noise. The display runs on the 
central node, extracts high-level data out of the 
sensor network and sends it to the wired network. 

4.3. Algorithms 
We compare four different algorithms for auto-
matic object migration: 

• Static corresponds to a static, fixed assignment 
of objects to nodes within the network. Our 
components remain at the home node for the en-
tire duration of the simulation. 

• Random selects a random destination for each 
component at each epoch. It corresponds to a 
simple load-balancing algorithm, designed to 
avoid network hotspots. 

• NetPull moves components one hop along the 
most active adjacent communication link at each 
epoch to the most active neighbor. 

• NetCenter moves components directly to the 
node with greatest activity in the previous ep-
och. 

4.4. Simulation Parameters 
A simulation of a complex system such as this 
requires many parameters. In the following ex-
periments, we model a terrestrial sensor network 
consisting of nodes with seismic sensors for object 
tracking. We examine large sensor networks, con-
sisting of 3600 nodes. The field size is 300 by 300 
distance units, which, if scaled to a meter, corre-
spond to a density of 0.04 sensors/m2, a practical 
density for distribution from the air. Node sensing 
radius is 20 units; communication radius is 10. 
Sensors generate spurious readings, or noise, due 
to local vibrations and sensor noise; we assume 
that sensors are fairly accurate, and that only 1% 
of the messages are attributable to noise. We have 
examined, but do not present results from, simula-
tions with higher sensor density (0.02 through 
0.06) and noise level (1% through 10%). The 
choice of a particular density, or noise level does 
not qualitatively impact our results; they shift the 
curves without affecting any of the trends. The 
choice of epoch duration is initially fixed – we 
address the epoch length selection question sepa-
rately in Section 4.6. Each epoch contains at least 
one event in our simulations, where an event cor-
responds to an object being tracked, and moves 
through the sensor field at a randomly chosen ve-
locity. An event may span up to 10 epochs and 
move through the field at a velocity between 0.0 
and 2.0 distance units per epoch. We assume that 
nodes are stationary after the initial deployment, 
though none of the nodes make any assumptions 
about geographical location of other nodes. Every 
data point represents an average of five runs.  
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4.5. Results and Discussion 
Figure 4 illustrates the impact of our algorithms 
on system longevity. In this simulation, we define 
system failure as the point when half of the field is 
no longer being sensed, that is, only half of the 
field area is within the sensing radius of at least 
one live sensor which can communicate along 
some functioning route with the home node. Static 
corresponds to current, naïve implementations of 
sensing applications, where all data is pooled off 
of the sensor network for processing on a central 
node. The network becomes unoperational as soon 
as the gateway nodes around the central node run 
out of power. Random performs better by 50% 
because it distributes the load more evenly and 
avoids hot spots. NetPull and NetCenter lengthen 
the operational lifetime of the system by a factor 
of four to five by performing in-network process-
ing at suitably-selected locations. 

Figure 5 shows how quickly the field coverage 
degrades when components are assigned to nodes 
in a manner that is oblivious to the underlying ap-
plication communication pattern. In contrast, Net-
Pull and NetCenter migrate components close to 
the source of events, thus preserving energy and 
shedding load from the critical nodes in the net-
work. 

The slopes of the curves in Figure 6 demonstrate 
that actively migrating components in the network 
drains fewer nodes than a static placement. This is 
because active migration algorithms avoid creat-
ing hotspots around critical nodes. In addition, 
both Static and Random reach system failure with 
far fewer drained nodes, indicating that these al-
gorithms distribute load unevenly and lead to hot-
spots. 

Figure 7 shows that NetPull and NetCenter lie 
between Static and Random in terms of energy 
consumption per epoch. The low slope for Static 
shows that this algorithm uses less energy per ep-
och because it does not expend any power on ac-
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Figure 4: System longevity improvement. Figure 5: Sensor coverage degradation over time. 
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Figure 6: Sensor drainage over time. Figure 7: Field energy used over time. 
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tive object migration. Most of this power usage is 
concentrated in a ring around critical nodes, how-
ever, and the application terminates early, leaving 
more than 95% of the total energy on the field un-
utilized. NetPull and NetCenter consume more 
energy than Static, because they need to move 
components, but consume less energy than Ran-
dom, because they take application behavior into 
account. Overall, they outlast both random and 
static despite lying between them. 

The graph of disconnected nodes over time, 
shown in Figure 8, indicates that the number of 
disconnected nodes increases more gradually for 
NetPull and NetCenter because they distribute 
load more evenly across the network. In the case 
of Static and Random, even though only a small 
number of nodes are drained, they are all located 
around the home node and thus quickly disconnect 
the entire field from the wired network. 

Finally, Figure 9 shows that all algorithms, except 
for the static placement of components, are unaf-
fected by variations of field size, and will scale to 
large networks. Static does not scale, because the 
number of critical nodes is a constant function of 
the application data flow graph, and is not propor-
tional to the size of the field. 

Overall, NetPull and NetCenter achieve good en-
ergy utilization and improved system longevity. 
Their simplicity makes them strong candidates for 
use in automated object migration systems. 

4.6. Epoch length selection 
In this section, we evaluate epoch length selection 
algorithm described in section 3.5. To test the sen-
sitivity of object migration to epoch length, we set 
up an experiment where the field contains four 
event sources located at the midpoint of each 
edge. Events are generated for half a 10 second 
period in a pair-wise alternating manner. Figure 
10 evaluates the performance of automatic object 
migration algorithms at different, statically fixed 
epoch lengths. It demonstrates the dangers of an 
epoch length that is not matched to the temporal 
communication patterns in the network. A highly 
adaptive algorithm like NetCenter performs best 
when its epoch length matches that of the underly-
ing event source. At shorter epoch lengths it 
wastes energy by performing excessive migra-
tions. At harmonics of the beaconing frequency, 
some of the migration algorithms perform slightly 
better, though at long epoch lengths all the migra-
tion algorithms fail to adapt to network changes. 

In contrast with statically selected epoch lengths, 
yhe adaptive epoch length selection algorithm de-
scribed in section 3.5 achieves an average system 
longevity of 2370 when combined with NetCenter. 
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Figure 8: Sensors disconnected over time. Figure 9: Energy used at breakdown vs. field size. 
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Figure 10: Sensitivity of migration algorithms to epoch 
length. 
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It outperforms any static epoch length selection 
shown in Figure 10 by 50%. 

4.7. MagnetOS RPC performance 
An automatic approach to application partitioning 
and transparent object migration would be unten-
able if the performance of automatically parti-
tioned applications suffered significantly. In this 
section, we show that the performance of auto-
matically partitioned and rewritten applications is 
competitive with manually partitioned applica-
tions. In the micro-benchmark below, we compare 
the overhead of our RPC implementation to that of 
remote invocations performed via Java RMI, on a 
1.7 GHz P4 with 256 MB of RAM JDK 1.4 on 
Linux 2.4.17 with AODV. On all micro-
benchmarks, automatically decomposed applica-
tions are competitive with manually coded, 
equivalent RMI implementations. 

Remote call Java RMI MagnetOS 
Null 430 ± 16 172 ± 6 
Int 446 ±   9 180 ± 8 
Obj. w/ 32ints 991 ± 35 174 ± 4 
Obj. w/ 4int, 2obj 844 ± 21 177 ± 7 

all times in µs, average of 1000 calls.

Table 1: Remote method invocation comparison. 

4.8. Space-optimized Java Virtual Machine 
The applicability of a Java-based SSI OS is lim-
ited by the ability of sensor network nodes to sup-
port the requisite services of a Java VM. Java vir-
tual machines on the desktop can indeed have ex-
cessive resource requirements; the Java virtual 
machine we started out with, the Kimera VM, also 
had significant memory requirements.  Table 2 
shows the size of different Java virtual machines 
at application startup. 

Virtual Machines Peak Memory 
Consumption  

Sun Java JDK 1.4 9000 KB 
Kimera Unmodified 22822 KB 
Kimera Optimized 1172 KB 
Sun J2ME KVM 160 KB 
Sun Java Card VM 512B + 16 KB ROM 
Table 2: Space consumption of Java virtual machines. 

Traditional virtual machines, such as Sun Java 
JDK 1.4 and the original Kimera VM support 
many features and are not optimized for space. 
Consequently, they have high memory require-
ments and are not suitable for sensor networks. 

However, through simple space optimizations, 
including lazy loading, discarding basic block in-
formation, stack reduction, and eliminating the 
space allocated for reserved but unused fields, we 
have reduced these resource requirements 20-fold 
without compromising any VM functionality. 

Even further space savings can be achieved by 
trading off functionality for space. For instance, 
Sun’s J2ME KVM and Java Card VM have been 
specifically targeted for embedded platforms. 
They consume less memory by supporting fewer 
Java libraries, not providing features like code 
verification and reflection, and modifying the pro-
gramming model to avoid rich data types. For in-
stance, the Java Card VM can execute Java appli-
cations using only 512 bytes. Overall, we consider 
the problem of running a Java interpreter, or 
equivalent functionality, on sensors to be solvable. 
Our VM is capable of executing the MagnetOS 
runtime and Java applications with full access to 
the complete Java class libraries with 2 MB of 
RAM, which we expect to be available on sensor 
nodes of the near future. 

5. Conclusion 

In this paper, we present the design and imple-
mentation of a single system image operating sys-
tem for sensor networks. Our system implements 
the Java Virtual Machine interface on top of a col-
lection of sensor nodes. An application partition-
ing tool takes monolithic Java applications and 
converts them into distributed, componentized 
applications. A small runtime on each node is re-
sponsible for object creation, invocation and mi-
gration. We rely on a transparent RPC for node-
independent communication between components. 
Overall, this distributed system provides a well-
understood programming model for sensor net-
work applications, while simultaneously providing 
the system with sufficient freedom to transpar-
ently move components in order to extend achieve 
power savings and extend sensor network lifetime. 

We propose algorithms for automatically deter-
mining where to locate application components in 
the network to minimize energy consumption and 
to determine when to migrate application compo-
nents by adaptively selecting an epoch duration. 
Combined, these algorithms enable MagnetOS to 
find an assignment of components to nodes that 
yields good utilization of available energy in the 
network. These algorithms are practical, entail low 
overhead and are easy to implement because they 
rely only on local information that is readily avail-
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able. We have demonstrated that they can con-
serve power and achieve a factor of four to five 
improvement in system longevity. 

Ad hoc sensor networking is a rapidly emerging 
area with few established mechanisms, policies 
and benchmarks. We hope that high-level abstrac-
tions, such as single system image operating sys-
tems combined with automatic object migration 
algorithms, will create a familiar and power-
efficient programming environment, thereby ena-
bling rapid development of platform-independent, 
power-adaptive applications for sensor networks. 
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