chapter fourteen

Performance

Theodore Hong, Imperial College of Science,
Technology, and Medicine

We live in the era of speed. Practically as a matter of course, we expect each day
to bring faster disks, faster networks, and above all, faster processors. Recently, a
research group at the University of Arizona even published a tongue-in-cheek
article arguing that large calculations could be done more quickly by slacking off
for a few months first, then buying a faster computer:

[Bly fine tuning your slacktitude you can actually accomplish more than
either the lazy bum at the beach for two years or the hard working sucker
who got started immediately. Indeed with a little bit of algebra we con-
vince ourselves that there exists an optimal slack time sx.*

In a world like this, one might well wonder whether performance is worth pay-
ing attention to anymore. For peer-to-peer file-sharing systems, the answer is a
definite yes, for reasons I will explain in the next section.

Let me first emphasize that by performance, I don’t mean abstract numerical
benchmarks such as, “How many milliseconds will it take to render this many
millions of polygons?” Rather, I want to know the answers to questions such as,
“How long will it take to retrieve this file?” or “How much bandwidth will this
query consume?” These answers will have a direct impact on the success and
usability of a system.

Fault tolerance is another significant concern. Peer-to-peer operates in an inher-
ently unreliable environment, since it depends on the personal resources of
ordinary individual users. These resources may become unexpectedly unavail-
able at any time, for a variety of reasons ranging from users disconnecting from

* C. Gottbrath, J. Bailin, C. Meakin, T. Thompson, and ].J. Charfman (1999), “The Effects of
Moore’s Law and Slacking on Large Computations,” arXiv:astro-ph/9912202.



the network or powering off a machine to users simply deciding not to partici-
pate any longer. In addition to these essentially random failures, personal
machines tend to be more vulnerable than dedicated servers to directed hack-
ing attacks or even legal action against their operators. Therefore, peer-to-peer
systems need to anticipate failures as ordinary, rather than extraordinary, occur-
rences, and must be designed in a way that promotes redundancy and graceful
degradation of performance.

Scaling is a third important consideration. The massive user bases of Napster
and of the Web have clearly shown how huge the demand on a successful
information-sharing system can potentially be. A designer of a new peer-to-peer
system must think optimistically and plan for how it might scale under strains
orders of magnitude larger in the future. If local indices of data are kept, will
they overflow? If broadcasts are used, will they saturate the network? Scalabil-
ity will also be influenced by performance: some design inefficiencies may pass
unnoticed with ten thousand users, but what happens when the user base hits
ten million or more? A recent report from Gnutella analysts Clip2, indicating
that Gnutella may already be encountering a scaling barrier, should serve to
sound a note of warning.

A note on terminology

We can classify peer-to-peer systems into three main categories, broadly speak-
ing: centrally coordinated, hierarchical, and decentralized.

In a centrally coordinated system, coordination between peers is controlled and
mediated by a central server, although peers may later act on information
received from the central server to contact one another directly. Napster and
SETI@home fall into this category.

A hierarchical peer-to-peer system devolves some or all of the coordination
responsibility down from the center to a tree of coordinators. In this arrange-
ment, peers are organized into hierarchies of groups, where communication
between peers in the same group is mediated by a local coordinator, but com-
munication between peers in different groups is passed upwards to a higher-
level coordinator. Some examples are the Domain Name System (DNS) and the
Squid web proxy cache.

Finally, completely decentralized peer-to-peer systems have no notion of global
coordination at all. Communication is handled entirely by peers operating at a
local level. This usually implies some type of forwarding mechanism in which



peers forward messages on behalf of other peers. Freenet and Gnutella are exam-
ples in this last category.

In this chapter, when I refer to peer-to-peer systems, I will be talking only about
decentralized peer-to-peer. Since the performance issues of centralized systems
have been discussed so much, it will be interesting to look at the issues of a fully
decentralized system.

Why performance matters

Several factors combine to make decentralized peer-to-peer systems more sensi-
tive to performance issues than other types of software. First, the essential char-
acteristic of such systems is communication—a characteristic that makes them
fundamentally dependent on the network. In network communication, as every
dial-up user knows, connection speed dominates processor and /O speed as the
bottleneck. Since this situation will most likely persist into the foreseeable
future, Moore’s Law (so helpful elsewhere) provides little comfort. The problem
is compounded by the highly parallel nature of peer-to-peer: A connection fast
enough to talk to one remote peer quickly becomes much less so for ten trying
to connect simultaneously. Thus, traffic minimization and load balancing
become important considerations.

Second, decentralized systems like Freenet and Gnutella need to use messages
that are forwarded over many hops {rom one peer to the next. Since there is no
central server to maintain a master index, it necessarily takes more effort to
search through the system to find out where data is. Each hop not only adds to
the total bandwidth load but also increases the time needed to perform a query,
since it takes a nontrivial amount of time to set up a connection to the next peer
or to discover that it is down. As mentioned previously, the latter occurrence
can be extremely common in peer-to-peer environments. If a peer is unreach-
able, TCP/IP can take up to several minutes to time out the connection. Multi-
ply that by several times for retries to other peers and add the time needed to
actually send the message over a possibly slow dial-up connection, and the
elapsed time per hop can get quite high. It is therefore important to cut down on
the number of hops that messages travel.

Third, the balance between resource providers and consumers must be consid-
ered. Like their counterparts in the real world, peer-to-peer communities
depend on the presence of a sufficient base of communal participation and
cooperation in order to function successfully.



However, there will always be those who consume resources without giving any
back. Recent analysis by Eytan Adar and Bernardo Huberman at Xerox PARC®
indicates that as many as 70% of current Gnutella users may be sharing no files
at all.

If a high enough proportion of users are free riders, performance degrades for
those who do contribute. A substantial decline in performance may impel some
contributors to pull out of the system altogether. Their withdrawal worsens the
situation further for the remainder, who will have even less incentive to stay,
leading to a downward spiral (the well-known “tragedy of the commons”).

To avoid this outcome, system designers must take into account the impact of
free riding on performance and devise strategies to encourage higher rates of
community participation. Some such strategies are discussed in Chapter 16,
Accountability.

Bandwidth barriers

There has been some progress on the network speed front, of course. Today’s
56-Kbps dial-up lines are a huge improvement on the 300-baud modems of
yore. Still, true broadband has been slow to arrive.

Clip2’s analysis of Gnutella is instructive in showing how bandwidth limitations
can affect system capabilities. Based on a series of measurements over a period of
a month, Clip2 noted an apparent scalability barrier of substantial performance
degradation when query rates went above 10 queries per second. To explain
this, they proposed the following model. A typical Gnutella query message is
about 560 bits long, including TCP/IP headers. Clip2 observed that queries
made up approximately a quarter of all message traffic, with another half being
pings and the remainder miscellaneous messages. At any given time, Gnutella
peers were seen to have an average of three remote peers actively connected
simultaneously. Taking these numbers together, we get the following average
burden on a user’s link:

10 queries per second
X 560 bits per query
X 4 toaccount for the other three-quarters of message traffic
X 3 simultaneous connections
67,200 bits per second

* E. Adar and B.A. Huberman (2000), “Free Riding on Gnutella,” First Monday 5(10), http:/
Sfirstmonday.org/fissues/issue5_10/adar/index html.



That's more than enough to saturate a 56-Kbps link. This calculation suggests
that 10 queries per second is the maximum rate the system can handle in the
presence of a significant population of dial-up users.

Even when broadband finally becomes widespread, it is unlikely to eliminate the
importance of conserving bandwidth and usher in a new era of plenty. Just as
building more highways failed to decrease traffic congestion because people
drove more, adding more bandwidth just causes people to send larger files.
Today’s kilobit audio swapping becomes tomorrow’s megabit video swapping.
Hence, bandwidth conservation is likely to remain important for quite some
time in the foreseeable future.

Its a small, small world

In 1967, Harvard professor Stanley Milgram mailed 160 letters to a set of ran-
domly chosen people living in Omaha, Nebraska. He asked them to participate
in an unusual social experiment in which they were to try to pass these letters to
a given target person, a stockbroker working in Boston, Massachusetts, using
only intermediaries known to one another on a first-name basis. That is, each
person would pass her letter to a friend whom she thought might bring the let-
ter closest to the target; the friend would then pass it on to another friend, and
so on until the letter reached someone who knew the target personally and
could give it to him. For example, an engineer in Omaha, on receiving the let-
ter, passed it to a transplanted New Englander living in Bellevue, Nebraska, who
passed it to a math teacher in Littleton, Massachusetts, who passed it to a school
principal in a Boston suburb, who passed it to a local storekeeper, who gave it to
a surprised stockbroker.

In all, 42 letters made it through, via a median number of just 5.5 intermediar-
les. Such a surprisingly low number, compared to the then-U.S. population of
200 million, demonstrated concretely for the first time what has become popu-
larly known as the small-world effect. This phenomenon is familiar to anyone
who has exclaimed “Small world, isn't it!” upon discovering a mutual acquain-
tance shared with a stranger.

Milgram’s experiment was designed to explore the properties of social networks:
the interconnecting bonds of friendship among individuals in a society. One
way we can think about social networks is to use the mathematical discipline of
graph theory. Formally, a graph is defined as a collection of points (called vertices)



that are connected in pairs by lines (called edges).” Figure 14-1 shows an exam-
ple of a graph.

|

Figure 14-1. An example of a graph

How are graphs related to social networks? We can represent a social network as
a graph by creating a vertex for each individual in the group and adding an edge
between two vertices whenever the corresponding individuals know one
another. Each vertex will have a different number of edges connected to it going
to different places, depending on how wide that person’s circle of acquaintances
is. The resulting structure is likely to be extremely complex; for example, a
graph for the United States would contain over 280 million vertices connected
by a finely tangled web of edges.

Computer networks bear a strong resemblance to social networks and can be
represented by graphs in a similar way. In fact, you've probably seen such a
graph already if you've ever looked at a connectivity map for a LAN or WAN,
although you might not have thought of it that way. In these maps, points repre-
senting individual computers or routers are equivalent to graph vertices, and
lines representing physical links between machines are edges.

Another electronic analogue to a social network is the World Wide Web. The
Web can be viewed as a graph in which web pages are vertices and hyperlinks
are edges. Just as friendship links in a social network tend to connect members

* By the way, these graphs have nothing to do with the familiar graphs of equations used in
algebra.



of the same social circle, hyperlinks frequently connect web pages that share a
commen theme or topic.

There is a slight complication because (unlike friendships) hyperlinks are one-
way; that is, you can follow a hyperlink from a source page to a target page but
not the reverse. For Web links, properly speaking, we need to use a directed
graph, which is a graph in which edges point from a source vertex to a target
vertex, rather than connecting vertices symmetrically. Directed graphs are usu-
ally represented by drawing their edges as arrows rather than lines, as shown in
Figure 14-2.

Figure 14-2. A directed graph

Most importantly for our purposes, peer-to-peer networks can be regarded as
graphs as well. We can create a Freenet graph, for example, by creating a vertex
for each computer running a Freenet node and linking each node by a directed
edge to every node referenced in its data store. Similarly, a Gnutella graph
would have a vertex for each computer running a Gnutella “servent” and edges
linking servents that are connected to each other. These graphs form a useful
abstract representation of the underlying networks. By analyzing them mathe-
matically, we ought to be able to gain some insight into the functioning of the
corresponding systems.

An excursion into graph theory

There are a number of interesting questions you can ask about graphs. One
immediate question to ask is whether or not it is connected. That is, is it always
possible to get from any vertex (or individual) to any other via some chain of
intermediaries? Or are there some groups which are completely isolated from
one another, and never the twain shall meer?



An important property to note in connection with this question is that paths in a
graph are transitive. This means that if there is a path from point A to point B,
and also a path from point B to point C, then there must be a path from A to C.
This fact might seem too obvious to need stating, but it has broader conse-
quences. Suppose there are two separate groups of vertices forming two
subgraphs, each connected within itself but disconnected from the other. Then
adding just one edge from any vertex V in one group to any vertex W in the
other, as in Figure 14-3, will make the graph as a whole connected. This fol-
lows from transitivity: by assumption there is a path from every vertex in the
first group to V, and a path from W to every vertex in the second group, so add-
ing an edge between V and W will complete a path from every vertex in the first
group to every vertex in the second (and vice versa). Conversely, deleting one
critical edge may cause a graph to become disconnected, a topic we will return
to later in the context of network robustness.

Figure 14-3. Adding an edge between V and W connects the two subgraphs

If it is possible to get from any vertex to any other by some path, a natural
follow-up question to ask is how long these paths are. One useful measure to
consider is the following: for each pair of vertices in the graph, find the length of
the shortest path between them; then, take the average over all pairs. This num-
ber, which we'll call the characteristic pathlength of the graph, gives a sense of
how far apart points are in the network.

In the networking context, the relevance of these two questions is immediately
apparent. For example, performing a traceroute from one machine to another is
equivalent to finding a path between two vertices in the corresponding graph.



Finding out whether a route exists, and how many hops it takes, are basic ques-
tions in network analysis and troubleshooting,

For decentralized peer-to-peer networks, these two questions have a similar sig-
nificance. The first tells us which peers can communicate with one another (via
some message-forwarding route); the second, how much effort is involved in
doing so. To see how we can get a handle on these questions, let’s return to the
letter-passing experiment in more depth. Then we'll see if we can apply any
insights to the peer-to-peer situation.

The small-world model

The success of Milgram’s volunteers in moving letters between the seemingly
disparate worlds of rural heartland and urban metropolis suggests that the social
network of the United States is indeed connected. Its characteristic pathlength
corresponds to the median number of intermediaries needed to complete a
chain, measured to be about six.

Intuitively, it seems that the pathlength of such a large network ought to be
much higher. Most people’s social circles are highly cliquish or clustered; that is,
most of the people whom you know also know each other. Equivalently, many
of the friends of your friends are people whom you know already. So taking
additional hops may not increase the number of people within reach by much. It
seems that a large number of hops would be necessary to break out of one social
circle, travel across the country, and reach another, particularly given the size of
the U.S. How then can we explain Milgram’'s measurement?

The key to understanding the result lies in the distribution of links within social
networks. In any social grouping, some acquaintances will be relatively isolated
and contribute few new contacts, whereas others will have more wide-ranging
connections and be able to serve as bridges between far-flung social clusters.
These bridging vertices play a critical role in bringing the network closer
together. In the Milgram experiment, for example, a quarter of all the chains
reaching the target person passed through a single person, a local storekeeper.
Half the chains were mediated by just three people, who collectively acted as
gateways between the target and the wider world.

It turns out that the presence of even a small number of bridges can dramatically
reduce the lengths of paths in a graph, as shown by a recent paper by Duncan
Watts and Steven Strogatz in the journal Nature.” They began by considering a

* DJ. Watts and S.H. Strogatz (1998), “Collective Dynamics of ‘Small-World" Networks,”
Nature 393, p.440.



simple type of graph called a regular graph, which consists of a ring of n vertices,
each of which is connected to its nearest k neighbors. For example, if k is 4, each
vertex is connected to its nearest two neighbors on each side (four in total), giv-
ing a graph such as the one shown in Figure 14-4.

Figure 14-4. A regular graph

If we look at large regular graphs in which n is much larger than k, which in turn
is much larger than 1, the pathlength can be shown to be approximately n/2k.
For example, if n is 4,096 and k is 8, then n/2k is 256—a very large number of
hops to take to get where you're going! (Informally, we can justify the formula n/
2k by noticing that it equals half the number of hops it takes to get to the oppo-
site side of the ring. We say only half because we are averaging over all pairs,
some of which will be close neighbors and some of which will be on opposite
sides.)

Another property of regular graphs is that they are highly clustered, since all of
their links are contained within local neighborhoods. To make this notion more
precise, we can define a measure of clustering as follows. For the k neighbors of a
given vertex, the total number of possible connections among them is kx (k-1)/2.
Let’s define the clustering coefficient of a vertex as the proportion (between 0 and
1) of these possible links that are actually present in the graph. For example, in
the regular graph of Figure 14-4, each vertex has four neighbors. There are a
total of (4x3)/2 = 6 possible connections among the four neighbors (not count-
ing the original vertex itself), of which 3 are present in the graph. Therefore the
clustering coefficient of each vertex is 3/6 = 0.5. '

In social terms, this coefficient can be thought of as counting the number of
connections among a person’s friends—a measure of the cliquishness of a group.



If we do the math, it can be shown that as the number of vertices in the graph
increases, the clustering coefficient approaches a constant value of 0.75 (very
cliquish).

More generally, in a non-regular graph, different vertices will have different
coefficients. So we define the clustering coefficient of a whole graph as the aver-
age of all the clustering coefficients of the individual vertices.

The opposite of the completely ordered regular graph is the random graph. This
is just a graph whose vertices are connected to each other at random. Random
graphs can be categorized by the number of vertices n and the average number
of edges per vertex k. Notice that a random graph and a regular graph having
the same values for n and k will be comparable in the sense that both will have
the same total number of vertices and edges. For example, the random graph
shown in Figure 14-5 has the same number of vertices (12) and edges (24) as
the regular graph in Figure 14-4. It turns out that for large random graphs, the
pathlength is approximately log n/log k, while the clustering coefficient is
approximately k/n. So using our previous example, where n was 4,096 and k was
8, the pathlength would be log 4,096/log 8 = 4—much better than the 256 hops
for the regular graph!

Figure 14-5. A random graph

On the other hand, the clustering coefficient would be 8/4,096 = 0.002—much
lcss than the regular graph’s 0.75. In fact, as n gets larger, the clustering coeffi-
vient becomes practically 0.

Il ' we compare these two extremes, we can see that the regular graph has high
clustering and a high pathlength, whereas the random graph has very low clus-
tering and a comparatively low pathlength. (To be more precise, the pathlength



of the regular graph grows linearly as n gets larger, but the pathlength of the
random graph grows only logarithmically.)

What about intermediate cases? Most real-world networks, whether social net-
works or peer-to-peer networks, lie somewhere in between—neither completely
regular nor completely random. How will they behave in terms of clustering and
pathlength?

Watts and Strogatz used a clever trick to explore the in-between region. Starting
with a 1000-node regular graph with k equal to 10, they “rewired” it by taking
each edge in turn and, with probability p, moving it to connect to a different,
randomly chosen vertex. When p is 0, the regular graph remains unchanged;
when p is 1, a random graph results. The region we are interested in is the
region where p is between 0 and 1. Figure 14-6 shows one possible rewiring of
Figure 14-4 with p set to 0.5.

Figure 14-6. A rewiring of a regular graph

Surprisingly, what they found was that with larger p, clustering remains high but
pathlength drops precipitously, as shown in Figure 14-7. Rewiring with p as low
as 0.001 (that is, rewiring only about 0.1% of the edges) cuts the pathlength in
half while leaving clustering virtually unchanged. At a p value of 0.01, the graph
has taken on hybrid characteristics. Locally, its clustering coefficient still looks
essentially like that of the regular graph. Globally, however, its pathlength has
nearly dropped to the random-graph level. Watts and Strogatz dubbed graphs
with this combination of high local clustering and short global pathlengths
small-world graphs.

Two important implications can be seen. First, only a small amount of rewiring
is needed to promote the small-world transition. Second, the transition is barely
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Figure 14-7. Evolution of pathlength and clustering under rewiring, relative to initial values

noticeable at the local level. Hence it is difficult to tell whether or not your
world is a small world, although it won't take much effort to turn it into one if it
isn't.

These results can explain the small-world characteristics of the U.S. social net-
work. Even if local groups are highly clustered, as long as a small fraction (1%
or even fewer) of individuals have long-range connections outside the group,
pathlengths will be low. This happens because transitivity causes such individu-
als to act as shortcuts linking entire communities together. A shortcut doesn't
benefit just a single individual, but also everyone linked to her, and everyone
linked to those who are linked to her, and so on. All can take advantage of the
shorteut, greatly shortening the characteristic pathlength. On the other hand,
changing one local connection to a long-range one has only a small effect on the
clustering coefficient.

Let’s now look at how we can apply some of the concepts of the small-world
model to peer-to-peer by considering a pair of case studies.

Case study 1: Freenet

I'he small-world effect is fundamental to Freenet's operation. As with Milgram’s
letters, Freenet queries are forwarded from one peer to the next according to



local decisions about which potential recipient might make the most progress
towards the target. Unlike Milgram’s letters, however, Freenet messages are not
targeted to a specific named peer but toward any peer having a desired file in its
data store.

To take a concrete example, suppose 1 were trying to obtain a copy of Peer-to-
Peer. Using Milgram’s method, 1 could do this by trying to get a letter to Tim
OReilly asking for a copy of the book. I might begin by passing it to my friend
Dan (who lives in Boston), who might pass it to his friend James (who works in
computers), who might pass it to his friend Andy (who works for Tim), who
could pass it to Tim himself. Using Freenet’s algorithm, I don't try to contact a
particular person. Instead, I might ask my friend Alison (who I know has other
O'Reilly books) if she has a copy. If she didn’t, she might similarly ask her friend
Helena, and so on. Freenet’s routing is based on evaluating peers’ bookshelves
rather than their contacts—any peer owning a copy can reply, not just Tim
O'Reilly specifically. '

For the Freenet algorithm to work, we need two properties to hold. First, the
Freenet graph must be connected, so that it is possible for any request to eventu-
ally reach some peer where the data is stored. (This assumes, of course, that the
data does exist on Freenet somewhere.) Second, despite the large size of the net-
work, short routes must exist between any two arbitrary peers, making it possi-
ble to pass messages between them in a reasonable number of hops. In other
words, we want Freenet to be a small world.

The first property is easy. Connectedness can be achieved by growing the net-
work incrementally from some initial core. If each new node starts off by link-
ing itself to one or more introductory nodes already known to be reachable from
the core, transitivity will assure a single network rather than several discon-
nected ones. There is a potential problem, however: If the introductory node
fails or drops out, the new node and later nodes connected to it might become
stranded.

Freenet’s request and insert mechanisms combat this problem by adding addi-
tional redundant links to the network over time. Even if a new node starts with
only a single reference to an introductory node, each successful request will
cause it to gain more references to other nodes. These references will provide
more links into the network, alleviating the dependence on the introductory
node: Conversely, performing inserts creates links in the opposite direction, as
nodes deeper in the network gain references to the inserting node. Nonetheless,
the effect of node failures needs to be examined more closely. We will return to
this subject later.




The second property presents more of a challenge. As we saw earlier, it is diffi-
cult to tell from local examination alone whether or not the global network is a
small world, and Freenet’s anonymity properties deliberately prevent us from
measuring the global network directly. For example, it is impossible to even find
out how many nodes there are. Nor do we know precisely which files are stored
in the network or where, so it is hard to infer much from local request out-
comes. We therefore turn to simulation.

Initial experiments

Fortunately, simulation indicates that Freenet networks do evolve small-world
characteristics. Following Watts and Strogatz, we can initialize a simulated
Freenet network with a regular topology and see how it behaves over time. Sup-
pose we create a network of 1,000 identical nodes having initially empty data
stores with a capacity of 50 data items and 200 additional references each. To
minimally bootstrap the network’s connectivity, let’s number the nodes and give
each node references to 2 nodes immediately before and after it numerically
(modulo 1,000). For example, node 0 would be connected to.nodes 998, 999,
1, and 2. We have to associate keys with these references, so for convenience
we'll use a hash of the referenced node number as the key. Using a hash has the
advantage of yielding a key that is both random and consistent across the net-
work (that is, every node having a reference to node 0 will assign the same key
to the reference, namely hash(0)). Figure 14-8 shows some of the resulting data
stores. Topologically, this network is equivalent to a directed regular graph in
which n is 1,000 and & is 4.

ligure 14-8. Initial data stores for a simulated network



What are the initial characteristics of this network? Well, from the earlier discus-
sion of regular graphs, we know that its pathlength is n/2k, or 1,000/8 = 125.
Each node has four neighbors—for example, node 2 is connected to nodes 0, 1,
3,and 4. Of the 12 possible directed edges among these neighbors, 6 are present
(from0to1,1to3,and 3 t04, and from 1 to 0, 3 to 1, and 4 to 3), so the clus-
tering coefficient is 6/12 = 0.5.

A comparable random graph, on the other hand, would have a pathlength of log
1,000/log 4 = 5 and a clustering coefficient of 4/1,000 = 0.004.

Now let’s simulate a simple network usage model. At each time step, pick a
node at random and flip a coin to decide whether to perform a request or an
insert from that node. If requesting, randomly choose a key to request from
those known to be present in the network; if inserting, randomly choose a key
to insert from the set of all possible keys. Somewhat arbitrarily, let's set the
hops-to-live to 20 on both insert and request.

Every 100 time steps, measure the state of the network. We can directly calcu-
late its clustering coefficient and characteristic pathlength by examining the data
stores of each node to determine which other nodes it is connected to and then
performing a breadth-first search on the resulting graph.

Figure 14-9 shows the results of simulating this model. Ten trials were taken,
each lasting 5,000 time steps, and the results were averaged over all trials.

As we can see, the pathlength rapidly decreases by a factor of 20 within the first
500 time steps or so before leveling off. On the other hand, the clustering coeffi-
cient decreases only slowly over the entire simulation period. The final path-
length hovers slightly above 2, while the final clustering is about 0.22. If we
compare these figures to the values calculated earlier for the corresponding reg-
ular graph (125 pathlength and 0.5 clustering) and random graph (5 pathlength
and 0.004 clustering), we can see the small-world effect: Freenet’s pathlength
approximates the random graph’s pathlength while its clustering coefficient is of
the same order of magnitude as the regular graph.

Does the small-world effect translate into real performance, however? To answer
this question, let’s look at the request performance of the network over time.
Every 100 time steps, we probe the network by simulating 300 requests from
randomly chosen nodes in the network. During this probe period, the network
is frozen so that no data is cached and no links are altered. The keys requested
are chosen randomly from those known to be stored in the network and the
hops-to-live is set to 500. By looking at the number of hops actually taken, we
can measure the distance that a request needs to travel before finding data. For
our purposes, a request that fails will be treated as taking 500 hops. At each
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Figure 14-9. Evolution of pathlength and clustering over time in a Freenet network

snapshot, we'll plot the median pathlength of all requests (that is, the top 50%
fastest requests).

These measurements are plotted in Figures 14-10 and 14-11. Reassuringly, the
results indicate that Freenet does actually work. The median pathlength for
requests drops from 500 at the outset to about 6 as the network converges to a
stable state. That is, half of all requests in the mature network succeed within six
hops. A quarter of requests succeed within just three hops or fewer.

Note that the median request pathlength of 6 is somewhat higher than the char-
acteristic pathlength of 2. This occurs because the characteristic pathlength mea-
sures the distance along the optimal path between any pair of nodes. Freenet's
local routing cannot always choose the globally optimal route, of course, but it
manages to get close most of the time.

On the other hand, if we look at the complete distribution of final pathlengths,
as shown in Figure 14-12, there are some requests that take a disproportion-
ately long time. That is, Freenet has good average performance but poor worst-
case performance, because a few bad routing choices can throw a request
completely off the track.
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Figure 14-10. Median request pathlength over time (inear scale)

1000

100+

10+

E

5000

Timestep
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Figure 14-12. Distribution of all request pathlengths at the end of the simulation

Indeed, local routing decisions are extremely important. Although the small-
world effect tells us that short routes exist between any pair of vertices in a
small-world network, the tricky part is actually finding these short routes.

To illustrate this point, consider a Freenet-like system in which nodes forward
query messages to some peer randomly chosen from the data store, rather than
the peer associated with the closest key to the query. Performing the same simu-
lation on this system gives the measurements shown in Figure 14-13.

We see that the median request pathlength required now is nearly 50, although
analysis of the network shows the characteristic pathlength to still be about 2.
This request pathlength is too high to be of much use, as 50 hops would take
[orever to complete. So although short paths exist in this network, we are unable
to make effective use of them.

These observations make sense if we think about our intuitive experience with
another small-world domain, the Web. The process of navigating on the Web
Irom some starting point to a desired destination by following hyperlinks is
quite similar to the process of forwarding a request in Freenet. A recent paper in
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Figure 14-13. Median request pathlength under random routing

Nature by Réka Albert, Hawoong Jeong, and Albert-Laszlé Barabasi* reported
that the Web is a small-world network with a characteristic pathlength of 19.
That is, from any given web page, it is possible to surf to any other one of the
nearly 800 million reachable pages in existence with an average of 19 clicks.

However, such a path can be constructed only by an intelligent agent able to
make accurate decisions about which link to follow next. Even humans often fail
in this task, getting “lost in the Web.” An unintelligent robot choosing links at
random would clearly get nowhere. The only hope for such a robot is to apply
brute-force indexing, and the force required is brute indeed: Albert et al. esti-
mated that a robot attempting to locate a web page at a distance of 19 hops
would need to index at least a full 10% of the Web, or some 80 million pages.

Simulating growth

Having taken a preliminary look at the evolution of a fixed Freenet network, let’s
now look at what happens in a network that grows over time. When a new node
wants to join Freenet, it must first find (through out-of-band means) an initial

* R. Albert, H. Jeong, and A. Barabasi (1999), “Diameter of the World-Wide Web," Nature
401, p.130.



introductory node that is already in the network. The new node then sends an
announcement message to the introductory node, which forwards it into
Freenet. Each node contacted adds a reference to the new node to its data store
and sends back a reply containing its own address, before forwarding the
announcement on to another node chosen randomly from its data store. In turn,
the new node adds all of these replies to its data store. The net result is that a set
of two-way links are established between the new node and some number of
existing nodes, as shown in Figure 14-14.

Figure 14-14. Adding a new node to Freenet (arrows show the path of the announcement
message; dotted lines show the new links established)

We can simulate this evolution by the following procedure. Initialize the net-
work with 20 nodes connected in a regular topology as before, so that we can
continue to use a hops-to-live of 20 from the outset. Add a new node every 5
time steps until the network reaches a size of 1,000. When adding a new node,
choose an introductory node at random and send an announcement message
with hops-to-live 10. Meanwhile, inserts and requests continue on every time
step as before, and probes every 100 time steps.

It might seem at first that this simulation won't realistically model the rate of
growth of the network, since nodes are simply added linearly every five steps.
However, simulation time need not correspond directly to real time. The effect
of the model is essentially to interpose five requests between node additions,
regardless of the rate of addition. In real time, we can expect that the number of
requests per unit time will be proportional to the size of the network. If we
assume that the rate at which new nodes join is also proportional to the size of
the network, the linear ratio between request rate and joining rate is justified.

Figure 14-15 shows the results of simulating this model. As before, 10 trials
were run and the results averaged over all trials.
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Figure 14-15. Median request pathlength in a growing network

The results are extremely promising. The request pathlength starts off low,
unsurprisingly, since the network is so small initially that even random routing
should find the data quickly. However, as the network grows, the request path-
length remains low.

By the end of the simulation, the network is performing even better than the
fixed-size simulation having the same number of nodes. Now 50% of all
requests succeed within just 5 hops or fewer, while 84% succeed within 20.
Meanwhile, the characteristic pathlength and the clustering coefficient are not
appreciably different from the fixed case—about 2.2 for the pathlength and
about 0.25 for the clustering coefficient.

Simulating fault tolerance

Let's turn to some aspects of robustness. As mentioned earlier, an important
challenge in designing a peer-to-peer system is coping with the unreliability of
peers. Since peers tend to be personal machines rather than dedicated servers,
they are often turned off or disconnected from the network at random. Another
consideration for systems that may host content disapproved of by some group
is the possibility of a deliberate attempt to bring the network down through
technical or legal attacks.



Taking as a starting point the network grown in the second simulation, we can
examine the effects of two node failure scenarios. One scenario is random fail-
ure, in which nodes are simply removed at random from the network. The other
scenario is targeted attack, in which the most important nodes are targeted for
removal. Here we follow the approach of another paper by Albert, Jeong, and
Barabasi on the fault tolerance of the Internet.”

We can model the random failure scenario by progressively removing more and
more nodes selected at random from the network and watching how the sys-
tem’s performance holds up. Figure 14-16 shows the request pathlength plotted
against the percentage of nodes failing. The network remains surprisingly
usable, with the median request pathlength remaining below 20 even when up
to 30% of nodes fail.
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Figure 14-16. Change in request pathlength under random failure

An explanation can be offered by looking at the distribution of links within the
network. If we draw a histogram of the proportion of nodes having different
numbers of links, as shown in Figure 14-17, we can see that the distribution is
highly skewed. Most nodes have only a few outgoing links, but a small number

" R. Albert, H. Jeong, and A. Barabasi (2000), “Error and Attack Telerance of Complex Net-
works,"” Nature 406, p.378.



of nodes toward the right side of the graph are very well-connected. (The
unusually large column at 250 links is an artifact of the limited data store size of
250—when larger data stores are used, this column spreads out farther to the
right.)
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Figure 14-17. Histogram showing the proportion of nodes vs. the number of links

When nodes are randomly removed from the network, most of them will proba-
bly be nodes with few links, and thus their loss will not hurt the routing in the
network much. The highly connected nodes in the right-hand tail will be able to
keep the network connected. These nodes correspond to the shortcuts needed to
make the small-world effect happen.

The attack scenario, on the other hand, is more dangerous. In this scenario, the
most-connected nodes are preferentially removed first. Figure 14-18 shows the
trend in the request pathlength as nodes are attacked. Now the network
becomes unusable much more quickly, with the median request pathlength
passing 20 at the 18% failure level. This demonstrates just how important those
nodes in the tail are. When they are removed, the network starts to fall apart
into disconnected fragments.

Figure 14-19 shows the contrast between the two failure modes in more detail,
using a semi-log scale.
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Figure 14-19. Comparison of the effects of attack and failure on median request pathlength



Link distribution in Freenet

Where do the highly connected nodes come from? We can get some hints by
trying to fit a function to the observed distribution of links. If we redraw the his-
togram as a log-log plot, as shown in Figure 14-20, we can see that the distribu-
tion of link numbers roughly follows a straight line (except for the anomalous
point at 250). Since the equation for a downward-sloping line is:

y=—kx+b

where k and b are constants, this means that the proportion of nodes p having a
given number of links L satisfies the equation:

logp=-klogL+b

By exponentiating both sides, we can express this relationship in a more normal-
looking way as:

p=AXx Lk

This is called a scale-free relationship, since the total number of nodes doesn’t
appear in the equation. Therefore it holds regardless of the size of the network,
big or small. In fact, scale-free link distributions are another characteristic often
used to identify small-world networks.
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Figure 14-20. Log-log scatter plot of the proportion of nodes vs. the number of links



It turns out that this type of relationship arises naturally from the interaction of
two processes: Growth and preferential attachment. Growth just means that new
nodes are added over time. Preferential attachment means that new nodes tend
to add links to nodes that have a lot of links already. This makes sense because
nodes that are well known (i.e., have lots of links) will tend to see more requests
and hence will tend to become even better connected.

The impact of free riding

In addition to being robust against node failures, peer-to-peer systems must be
able to cope with free riders. Just as in any other social system, there are always
those who take from the system without contributing anything back. In the
peer-to-peer context, this might mean downloading files but not sharing any for
upload, or initiating queries without forwarding or answering queries from oth-
ers. At best, such behavior just means increased load for everyone else; at worst,
it can significantly harm the functioning of the system.

Freenet deals with free riders by simply ignoring them. If a node never provides
any files, no other nodes will gain references to it. To the rest of the network, it
might as well not exist, so it won't have any effect on the pathlengths of others’
requests. However, its own requests will contribute to the total bandwidth load
on the network while providing no additional capacity. Similarly, if a node
refuses to accept incoming connections, other nodes will treat it as though it
were down and try elsewhere. Only if a node drops messages without respond-
ing will untoward things start to happen, although in that case it is behaving
more like a malicious node than a free riding one.

Scalability

Finally, let's consider Freenet's scaling properties. In small-world graphs, the
characteristic pathlength scales logarithmically with the size of the network,
since it follows the random-graph pathlength of log n/log k. That is, a geometric
increase in the number of vertices results in only a linear increase in the charac-
teristic pathlength. This means that for example, if k is 3, increasing the size of
the network by 10 times would increase the pathlength by just 2. If Freenet's
routing continues to work in large networks, the request pathlength should scale
similarly. (Remember that the correlation between the request pathlength and
the characteristic pathlength depends on the accuracy of the routing.)

Figure 14-21 shows the results of extending our earlier growth simulation up
to 200,000 nodes. As hoped, the request pathlength does appear to scale
logarithmically.
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Figure 14-21. Median request pathlength vs. network size (inear scale)

We can see the scaling more clearly on the semi-log plot shown in Figure 14-22.
On this plot, the data follow approximately straight lines, showing that path-
length is indeed roughly proportional to log(size). The median line has a “knee”
where it changes slope at 50,000 nodes. This probably results from data stores
becoming filled and could be corrected by creating larger data stores. Note that
our data stores were limited to 250 links by the memory requirements of the
simulation, whereas real Freenet nodes can easily hold thousands of references.
In fact, if we recall the connectivity distribution shown in Figure 14-17, only a
small number of high-capacity nodes should be necessary. Even with small data
stores, the trend shows that Freenet scales very well: Doubling the network size
brings a pathlength increase of only 4 hops.

The number of messages that must be transmitted per request is proportional to
the request pathlength, since the latter indicates the number of times a request is
forwarded. In turn, the bandwidth used is proportional to the number of mes-
sages sent. Thus, the bandwidth requirements of requests should also scale loga-
rithmically in relation to the size of the network. Considering that, in general,
the effort required to search for an item in a list grows logarithmically in rela-
tion to the size of the list, this is probably the best scaling that can be expected
from a decentralized peer-to-peer system.
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Figure 14-22. Median request pathlength vs. network size (logarithmic scale)

Case study 2: Gnutella

Gnutella uses a simple broadcast model to conduct queries, which does not
invoke the small-world effect. Nonetheless, many of the concepts presented in
this chapter can be taken as a useful framework for thinking about Gnutella’s
performance, which has been in the trade press so much recently.

In Gnutella, each peer tries to maintain a small minimum number (typically
around three) of active simultaneous connections to other peers. These peers are
selected from a locally maintained host catcher list containing the addresses of
the other peers that this peer knows about. Peers can be discovered through a
wide variety of mechanisms, such as watching for PING and PONG messages,
noting the addresses of peers initiating queries, receiving incoming connections
from previously unknown peers, or using out-of-band channels such as IRC and
the Web. However, not all peers so discovered may accept new connections,
since they may already have enough connections or be picky about the peers
they will talk to. Establishing a good set of connections can in general be a
somewhat haphazard process. Further, peers leaving the network will cause
additional shuffling as the remaining peers try to replace lost connections.



It therefore seems reasonable to model a Gnutella network by a random graph
with a k of 3. Note that such a graph does not necessarily have exactly three
edges per vertex. Rather, there will be some distribution in which the probabil-
ity of finding a vertex having a given number of edges peaks around 3 and
decreases exponentially with increasing numbers of edges. We will have more to
say about this later.

Gnutella queries propagate through the network as follows. Upon receiving a
new query, a peer broadcasts it to every peer that it is currently connected to,
each of which in turn will broadcast the query to the peers it is connected to,
and so on, in the manner of a chain letter. If a peer has a file that matches the
query, it sends an answer back to the originating peer, but still forwards the
query anyway. This process continues up to a maximum depth (or “search hori-
zon”) specified by the time-to-live field in the query. Essentially, Gnutella que-
ries perform breadth-first searches on the network graph, in which searches
broaden out and progressively cover the vertices closest to the starting point
first. (By contrast, Freenets style is closer to depth-first search, in which
searches are directed deeper into the graph first.)

As before, it is necessary for the network graph to be connected, so that it is pos-
sible for any query to eventually reach some peer having the desired data.
Achieving complete connectivity is somewhat more difficult than in Freenet
because of the random nature of Gnutella connectivity. We can imagine that a
random assignment of connections might leave some subset of peers cut off
from the rest. However, in practice connectedness appears to hold.

Second, there must again be short routes between arbitrary peers, so that que-
ries will be able to reach their targets before exceeding their depth limits. We
turn to simulation to explore these properties.

Initial experiments

Suppose we create a network of 1,000 identical nodes initially sharing no files.
To model its connectivity, let’s add 1,500 edges by picking random nodes to be
connected, two at a time, and creating edges between them. Topologically, the
resulting network will be equivalent to a random graph in which n is 1,000 and
kis 3.

Now let’s add data to fill the network, since Gnutella does not have an explicit
“insert” or “publish” mechanism. To make this simulation broadly comparable
to the Freenet simulation, we'll randomly generate data items to be stored on 20
nodes each (the equivalent of a Freenet insert with hops-to-live 20). This can be
imagined as 20 users independently choosing to share the same file, perhaps a



particular MP3. We set the number of different data items added to be the same
as the number inserted over the course of the Freenet simulation—that is, about
2,500.

As before, we simulate a simple network usage model. Since a Gnutella network
does not evolve organically over time the way a Freenet network does, a single
set of probe measurements should suffice. Following our previous method, we
perform 300 queries from randomly chosen nodes in the network. The keys
requested are chosen randomly from those known to be stored in the network,
and the time-to-live is set to infinity, so these queries will always succeed even-
tually. To gauge the distance a query must travel before finding data, we stop
the query as soon as a hit is found and note the number of hops taken to that
point. (In the real Gnutella, queries proceed in parallel on a large number of
nodes, so it is not practicable to halt them after finding a match on one node.)
Figure 14-23 shows the resulting distribution of query pathlengths.
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Figure 14-23. Distribution of query pathlengths in Gnutella

We see that Gnutella queries are satisfied extremely quickly, under both average-
case and worst-case conditions. Indeed, the breadth-first search guarantees that
the optimal shortest path to the data will always be found, making the query
pathlength equal to the characteristic pathlength. However, this is not a true



measure of the effort expended by the network as a whole, since queries are
broadcast to so many nodes. A better measure is to consider the number of
nodes contacted in the course of a query, as shown in Figure 14-24.
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Figure 14-24. Distribution of the number of nodes contacted per query

A significant number of queries require the participation of 50 nodes, and many
even call for 100 or more. It is apparent that the price paid for a quick result is a
large expenditure of effort to exhaustively search a significant proportion of the
network, Vis-a-vis Freenet, Gnutella makes a trade-off of much greater search
effort in return for optimal paths and better worst-case performance.

Fault tolerance and link distribution in Gnutella

‘What are Gnutella’s fault-tolerance characteristics? As before, we can consider its
behavior under two node failure scenarios: random failure and targeted attack.
The distribution of links in Freenet was an important factor in its robustness, so
let’s look at Gnutella’s corresponding distribution, shown in Figure 14-25.

Mathematically, this is a “Poisson” distribution peaked around the average con-
nectivity of 3. Its tail drops off exponentially, rather than according to a power
law as Freenet's does. This can be seen more clearly in the log-log plot of
Figure 14-26.
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Comparing this plot to Figure 14-20, we can see that Figure 14-26 drops off
much more sharply at high link numbers. As a result, highly connected nodes
are much less of a factor in Gnutella than they are in Freenet.

Let’'s see how Gnutella behaves under the targeted attack scenario, in which the
most-connected nodes are removed first. Figure 14-27 shows the number of
nodes contacted per query (as a percentage of the surviving nodes) versus the
percentage of nodes attacked. (A request that fails is treated as a value of 100%.)
If we compare this plot to Figure 14-18, we can see that Gnutella resists tar-
geted attack better than Freenet does, since the highly connected nodes play less
of a role.
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Figure 14-27. Change in number of nodes contacted per query, under targeted attack

On the other hand, the random failure scenario is the opposite. Figure 14-28
shows the number of nodes contacted versus the percentage of nodes failing. If
we compare this to Figure 14-16, Freenet does better.

In fact, this occurs because Gnutella performs about the same under both ran-
dom failure and targeted attack, as can be seen more clearly in Figure 14-29.
Here again is a trade-off: Gnutella responds equally to failure and attack, since
all of its nodes are roughly equivalent. Freenet’s highly connected nodes enable
it to better cope with random failure, but these then become points of vulnera-
bility for targeted attack.
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This is brought out in more detail by Figure 14-30, which plots the four scenar-
ios together using an arbitrary scale. We can see that the Freenet failure curve
grows much more slowly than the Gnutella curves, while the Freenet attack
curve shoots up sooner.
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Figure 14-30. Comparison of attack and failure nodes in Freenet and Gnutella
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The impact of free riding

Free riding in Gnutella is of more than merely theoretical interest, as indicated
by the Xerox PARC paper mentioned earlier. Gnutella is vulnerable to free rid-
ers because its peers do not maintain any state information about other peers, so
they cannot distinguish free riding from non—free riding peers. In particular, free
riding peers will still have queries sent to them even if they never answer any.
The presence of free riders will thus “dilute” the network, making queries travel
farther before finding data. This can cause queries to fail if the desired data is
pushed beyond the search horizon.

Ironically, it may be better for the network if free riding peers drop queries alto-
gether instead of forwarding them, since queries will then simply flow around
the free riders (unless portions of the network are completely cut off, of course).
This is the opposite of the Freenet situation: Freenet free riders that drop que-



ries are harmful since they kill off those queries, but those that forward queries
unanswered actually help the network to route around them later on by propa-
gating information about downstream peers.

Scalability

Finally, let’s consider Gnutella’s scalability. As a random graph, its characteristic
pathlength scales logarithmically with the size of the network. Since its breadth-
first search finds optimal paths, the request pathlength always equals the charac-
teristic pathlength and also scales logarithmically. We have already seen that
these pathlengths are quite low, so the amount of time taken by queries should
be manageable up to very large network sizes. This does not accurately reflect
their bandwidth usage, however.

The bandwidth used by a query is proportional to the number of messages sent,
which in turn is proportional to the number of nodes that must be contacted
before finding data. Actually, this is an underestimate, since many nodes will be
sent the same query more than once and queries continue after finding data.
Figure 14-31 shows the median number of nodes contacted per query versus
network size, up to 200,000 nodes.
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Fuure 14-31. Median number of nodes contacted per query, vs. network size



We can see that the number of nodes that must be contacted scales essentially
linearly, meaning that every doubling of network size will also double the band-
width needed per query. An alternate way of looking at this is to see that if
bandwidth usage is kept lower by limiting search depths, success rates will drop
since queries will not be able to reach the data. This may pose a serious scalabil-
ity problem.

One solution already being explored is to modify Gnutella from a pure decen-
tralized peer-to-peer model to a partly hierarchical model by using super peers.
These are special peers that act as aggregators for other peers located “behind”
them in the manner of a firewall. Super peers maintain indices of all the files
their subordinate peers are sharing, and appear to the rest of the network as
though they were sharing those files themselves. When queried for a file, a super
peer can route the query directly to the relevant peer without a broadcast. In
addition, if one of its subordinates requests a file held by another subordinate, it
can satisfy the request immediately without involving the wider network. Super
peers thus reduce the effective size of the network by replacing a group of ordi-
nary peers with a single super peer.

From there, it is a short step to imagine “super-super peers” that aggregate que-
ries for super peers, “super-super-super peers,” and so on. Taken to the extreme,
this could yield a completely hierarchical search tree like DNS. Such an arrange-
ment would place each peer in successively larger aggregate groups, ultimately
ending in a root peer managing the entire network. Searches in such a tree
would scale logarithmically; however, it implies a considerable loss of the auton-
omy promised by peer-to-peer.

Conclusions

Performance is likely to remain an important issue in peer-to-peer systems
design well into the foreseeable future. Within the peer-to-peer model, a num-
ber of trade-offs can be used to tailor different sets of performance outcomes.
Freenet, for example, emphasizes high scalability and efficient searches under
average conditions while sacrificing worse-case performance. At the other end of
the spectrum, Gnutella sacrifices efficiency for faster searches and better worst-
case guarantees. ldeas drawn from graph theory and the small-world model can
help to quantify these trade-offs and to analyze systems in concrete terms.

Fault tolerance and free riding are additional challenges to deal with, and here
again we can see different approaches. Systems like Freenet that develop special-
ized nodes can improve their robustness under random failure, but more uni-
form systems like Gnutella can better cope with targeted attacks. Free riding, a



different type of failure mode, needs to be addressed in terms of routing around
or otherwise neutralizing uncooperative nodes.

Last but not least, scalability is a crucial concern for systems that hope to make
the leap from conceptual demonstration to world-wide usage. For systems that
do not inherently scale well, a further set of trade-offs can allow better scalabil-
ity through a move toward a hierarchical peer-to-peer model, though at the
expense of local autonomy.

The peer-to-peer model encompasses a diverse set of approaches. By recogniz-
ing the wide range of possibilities available, inventing new ideas and new com-
binations, and using analytical methods to evaluate their behaviors, system
designers will be well-equipped to exploit the power of peer-to-peer.
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