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Abstract

An ad-hoc network is the cooperative engagement of a
collection of (typically wireless) mobile nodes without
the required intervention of any centralized access point
or existing infrastructure. To provide optimal commu-
nication ability, a routing protocol for such a dynamic
self-starting network must be capable of unicast, broad-
cast, and multicast. In this paper we extend Ad-hoc
On-Demand Distance Vector Routing (AODV), an algo-
rithm for the operation of such ad-hoc networks, to offer
novel multicast capabilities which follow naturally from
the way AODV establishes unicast routes. AODV builds
multicast trees as needed (i.e., on-demand) to connect
multicast group members. Control of the multicast tree
is distributed so that there is no single point of failure.
AODV provides loop-free routes for both unicast and
multicast, even while repairing broken links. We include
an evaluation methodology and simulation results to val-
idate the correct and efficient operation of the AODV
algorithm.

1 Introduction

The idea of ad-hoc networks of mobile nodes dates back
to the days of the DARPA packet radio network [11]. In
more recent years, interest in these networks has grown
along with improvements in laptop computers. These
improvements include greater power, longer battery life,
and decreased weight. Because so many laptop comput-
ers are now in use, and because these computers are eas-
ily portable due to their compact and lightweight design,
the ability to communicate from one such computer to
another, and from one such computer to a fixed network,
is desired.

To facilitate such communication, many routing pro-
tocols have been developed [5, 10, 13, 14, 16]. While each
of these protocols is able to provide unicast capability
to network nodes, none offers multicast communication
ability. Although multicast is not necessary to establish
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communication between nodes, it is frequently a desired
feature for a network. A few protocols have been cre-
ated to provide the multicast communication which these
other protocols lack. The Lightweight Adaptive Multi-
cast (LAM) protocol [9] is an example of one of these
protocols. LAM is tightly coupled with the Temporally-
Ordered Routing Algorithm (TORA) [14] as it depends
on TORA’s route finding ability and cannot operate in-
dependently. An advantage of LAM is that, since it
is tightly coupled with TORA, it can take advantage
of TORA’s route finding ability and thereby reduce the
amount of control overhead generated. However, LAM
has the disadvantage that it relies on a core node, thus
has a central point of failure. Other protocols specified in
internet drafts [3, 8, 22] are also able to provide multicast
communication, but they too depend on an underlying
routing protocol for correct operation. Additionally, the
routing protocol described in [3] can suffer from transient
routing loops.

Unlike other protocols, the Ad-hoc On-Demand Dis-
tance Vector Routing (AODV) [17, 18] protocol is ca-
pable of unicast, broadcast, and multicast communica-
tion. Unicast and multicast routes are discovered on-
demand and use a broadcast route discovery mechanism.
Broadcast data delivery is provided by AODV by using
the Source IP Address and Identification fields of the TP
header as a unique identifier of the packet. The destina-
tion address of broadcast data packets is set to the well-
known broadcast address 255.255.255.255. The redun-
dant processing and propagation of a data packet multi-
ple times by a single node is prevented because each node
records the Source IP Address and Identification fields of
the IP header of the packet. All additional copies of a
data packet are discarded after the original reception.

There are numerous advantages to combining unicast
and multicast communication ability in the same pro-
tocol. A protocol which offers both forms of commu-
nication can be streamlined so that route information
obtained when searching for a multicast route can also
increase unicast routing knowledge, and vice versa. For
instance, if a node returns a route for a multicast group
to some source node, that source node, in addition to
learning how to reach the multicast group, will also have
learned of a route to the node returning that information.
AODV can take advantage of this to enhance general
routing knowledge. In a mobile environment, any reduc-
tion in control overhead is a significant advantage for a



routing protocol. Additionally, combining both types of
communication into a single protocol simplifies coding.
Lastly, we expect that continued improvements to the
basic algorithm (e.g., for Quality of Service (QoS) appli-
cations, for client/server discovery, or for utilizing asym-
metric routing paths) will benefit both unicast and mul-
ticast data transmission. AODV currently utilizes only
symmetric links between neighboring nodes, but other-
wise does not depend specifically on particular aspects
of the physical medium across which packets are dissem-
inated.

The remainder of this paper is organized as follows.
In Section 2, the basic data structures required for op-
eration of the AODYV algorithm are presented. Section 3
describes the route request/route reply query cycle used
for unicast route discovery. Section 4 describes, in de-
tail, the multicast algorithm. Simulation results are pre-
sented in Section 5. Section 6 describes our plans for
future work, and finally Section 7 concludes the paper.

2 Routing Tables

Each node running AODV maintains two routing tables.
The first of these is the Route Table. The route table
is used for recording the next hop for routes to other
nodes in the network. The fields of the route table are
as follows:

Destination TP Address
Destination Sequence Number
Hop Count to Destination
Next Hop

Lifetime

New entries are placed in the route table following the
reception of route requests (RREQs) and route replies
(RREPs). When a node receives one of the listed mes-
sage types, and it does not already have a route entry
for the source of the message, it places an entry in the
table listing the indicated information. Associated with
each entry is a lifetime, indicating the length of time the
route entry is valid. Routes are deleted from the table if
they are not been updated or used within the indicated
lifetime.

The second routing table that a node maintains is
the Multicast Route Table. This table contains entries
for multicast groups of which the node is a router (i.e.,
a member of the multicast tree). Each entry in the mul-
ticast route table contains the following information:

Multicast Group IP Address

Multicast Group Leader IP Address
Multicast Group Sequence Number
Hop Count to Multicast Group Leader
Next Hops

Lifetime

New entries are placed in this table after the node
becomes a router for a multicast group. Associated with
each Next Hop entry 1s an Enabled flag. This flag is used
to indicate whether the link has been officially added on
to the multicast tree. The Enabled flag of a next hop
entry is set only after the activation of a route by the
reception of a Multicast Activation (MACT) message, as
described in Section 4.5.1. For multicast route entries,
there may be more than one next hop entry.

A third table, called the Request Table, is a small
table that contains only two fields:

o Multicast Group IP Address
o Requesting Node TP Address

Each node in the network that supports multicast
routing maintains this table, regardless of whether it is
a member of the multicast group. This feature is used
solely for optimization and does not affect the correct
operation of the protocol. When a node receives a RREQ
to join a multicast group, it checks its request table for an
entry for that group. If no entry for the group exists in
the table, the node records the IP address of the group,
together with the IP address of the node requesting a
route to the group. Because the first node to request
membership in a group typically becomes the multicast
group leader, the entries in the table represent the group
leaders. If a node later wishes to join a multicast group,
it can check its request table to determine who the group
leader is. If it has a route to that node, it can unicast
its RREQ instead of broadcasting it.

3 Route Discovery

Route discovery with AODV is purely on-demand and
follows a route request/route reply discovery cycle. When
a node needs a route to a destination, it broadcasts a
RREQ. Any node with a current route to that desti-
nation (including the destination itself) can unicast a
RREP back to the source node. Route information is
maintained by each node in its route table. Information
gleaned through RREQ and RREP messages is kept with
other routing information in the route table. AODV uses
sequence numbers to eliminate stale routes. Routes with
old sequence numbers are aged out of the system.
AODV’s primary objectives are as follows:
e To provide unicast, broadcast, and multicast capa-
bility to all nodes in the ad-hoc network
e To minimize the broadcast of control packets.
e To disseminate information about link breakages to
those neighboring nodes that utilize that link.

The following section briefly describes route discovery
in AODV. For further details, please see [18].

3.1 Reverse Route Establishment

Route discovery with AODYV is on-demand and occurs
when a node requires a route to a destination for which it
does not already have a recorded route. Such a node ini-
tiates route discovery by broadcasting a RREQ packet [5].
The fields of the RREQ are as follows:

< J_flag, R_flag, Broadcast_ID, Source_Addr,
Source_Seq#, Dest_Addr, Dest_Seq#, Hop_Cnt >

The J_flag and R_flag (join and repair flags, respectively)
fields are used only for multicast group RREQs (de-
scribed in Section 4.1).

Each node in the network is responsible for main-
taining two separate counters: a sequence number and
a broadcast ID. The sequence number ensures the fresh-
ness of routes to the node. The broadcast 1D, together
with the source node’s IP address, uniquely identifies
each RREQ. The sequence number is increased when the
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Figure 1: The RREQ / RREP Message Cycle.

node acquires new neighbor information, and the broad-
cast ID is incremented for each RREQ the node initi-
ates. The node requesting the route places its IP ad-
dress, current sequence number, and broadcast ID in the
Source_Addr, Source_Seq#, and Broadcast_ID fields, re-
spectively. The IP address of the destination and the last
known sequence number for that destination are placed
in the Dest_Addr and Dest_Seq# fields.

A node receiving a RREQ first updates its route table
to record the sequence number and next hop informa-
tion for the source node. This reverse route entry may
later be used to relay a RREP back to the source. The
node then checks this table to see whether it has a route
to the requested destination. In order to respond to a
RREQ, a node must either be the destination itself, or
must have an unexpired route to the destination with a
sequence number at least as great as that indicated in
the Dest_Seq# field of the RREQ. A node having such a
route is said to have a ’fresh enough’ route to the desti-
nation. If this is the case, the node generates a RREP
as described in Section 3.2 below. Otherwise, it rebroad-
casts the packet to its neighbors. Figure 1(a) illustrates
the broadcasting of RREQs.

A node may receive the same RREQ multiple times.
When a node receives a RREQ), it records the source ad-
dress and broadcast ID of the packet. If it later receives
a RREQ with this same information, it does not process
the packet but instead discards it.

3.2 Forward Path Setup

As stated above, a node can respond to a RREQ if it is
the destination itself, or if it has a fresh enough route to
the destination. When a node fulfills these requirements,
it sends a RREP back to the source node. The RREP

contains the following information:

< R_flag,U_flag, Dest_Addr, Dest_Seq#,
Hop_Cnt, Lifetime >

The Dest_Addr field is set to the destination address
specified in the RREQ, and the Dest_Seq# is set to the
responding node’s record of the destination’s sequence
number. The Hop_Cnt field is set to the distance of the
responding node from the destination, or zero if the des-
tination itself sends the RREP. The R_flag and U_flag
(repair and update flags) fields are used only for multi-
cast routes, as described in Section 4.3.

The responding node unicasts the RREP back along
the next hop towards the source node. The node re-

ceiving the RREP increments the Hop_Cnt field by one
and then updates its entry for the destination node in its
route table, thereby establishing the forward path to the
destination. It then unicasts the RREP to its recorded
next hop to the source node. This continues until the
RREP reaches the source node. Figure 1(b) is an ex-
ample of the destination node responding by sending a
RREP back to the source. Nodes that are not along the
path determined by the RREP delete the reverse pointers
after active route_timeout (3000 msec).

Once the source node receives the RREP, it can use
the route to send data packets to the destination. In the
event that it receives a RREP in the future with a greater
destination sequence number or a smaller hopcount, the
source node updates its route table information for the
destination and instead uses the new route.

It is likely that an intermediate node will receive more
than one RREP for a given source/destination pair. In
this case, the node checks the Dest_Seq# and Hop_Cnt
fields against its recorded information. If the destina-
tion sequence number is greater than the node’s recorded
value, or if the sequence number is the same but the
Hop_Cntis smaller, the node updates its information for
the destination and forwards the RREP to the source.
Otherwise, if the information contained in the RREP is
not as good as that which the node already has in its
route table and has sent to the source, it will discard the

RREP and not forward it.

3.3 Local Connectivity Management

Nodes learn of their neighbors through packet transmis-
sions. When a node sends a packet, its neighbors hear
the transmission and update their local connectivity in-
formation to ensure that it includes this neighbor. In the
event that a node has not transmitted anything within
the last hello_interval msec, it broadcasts to its neigh-
bors a Hello message. This informs its neighbors that it is
still within their transmission range. A Hello message is a
special unsolicited RREP which contains a node’s IP ad-
dress and current sequence number. The Hello message
is prevented from being rebroadcast outside the neigh-
borhood of the node because it contains a time to live
(TTL) value of 1. Neighbors that receive this packet up-
date their local connectivity information to include the
node. The failure to receive any transmissions from a
neighbor in the time defined by the periodic transmis-
sion of allowedhello_loss Hello messages is an indi-
cation that the local connectivity has changed, and the
route information for this neighbor should be updated
(see also Section 4.6.1).

4 The Multicast Algorithm

The multicast algorithm uses the same RREQ/RREP
messages as previously described. Only one new mes-
sage, the Multicast Activation (MACT), is needed. As
nodes join the multicast group, a multicast tree com-
posed of group members and nodes connecting the group
members is created. Multicast group membership follows
the model of the Mbone in that it is dynamic; nodes are
able to join and leave at any time [6]. A multicast group
leader maintains the multicast group sequence number.
Multicast group members must also agree to be routers
in the multicast tree.
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Figure 2: Multicast Join Operation.

4.1 Route Request Message Generation

A node sends a Route Request (RREQ) message when it
wishes to join a multicast group, or when it has data to
send to a multicast group and it does not have a route to
that group. The Dest_Addr of the RREQ is set to the TP
address of the desired multicast group, and the destina-
tion sequence number is set to the last known sequence
number for that group. If the node wishes to join the
multicast group, it sets the J_flag of the RREQ; other-
wise, it leaves the flag unset. The RREQ may be either
broadcast or unicast depending on the information avail-
able at the source node. If the source node has a record
of another node (the multicast group leader) previously
requesting a route to that multicast group, and if the
source node has a valid route to that node, it includes
an extension field containing the IP address of the group
leader and unicasts the RREQ along the known path to
the group leader. Otherwise, if the source does not know
who the group leader is or if it does not have a route to
the group leader, it broadcasts the request. Figure 2(a)
illustrates the propagation of a broadcast RREQ.

Only a member of the desired multicast tree (i.e., a
router for the group) may respond to a join RREQ. If
the RREQ is not a join request, any node with a fresh
enough route to the multicast group may respond. If
a node receives a join RREQ for a multicast group of
which it is not a member, or if it receives a RREQ and
it does not have a route to that group, it rebroadcasts
the RREQ to its neighbors.

If the source node does not receive a RREP before
timing out, it broadcasts another RREQ with Broad-
cast_ID increased by one. If it does not receive a RREP
to this RREQ), it continues broadcasting route requests
up to rreqretries total rebroadcasts. After this num-
ber of attempts, it can be assumed that either the multi-
cast group is unreachable,; or there are no other members
of that multicast group in its connected portion of the
network. In this case, the node becomes the multicast
group leader, and initializes the group sequence number
(i.e., sets equal to 1). If the original RREQ is unicast
to the group leader and a RREP is not received, all fur-
ther RREQs are broadcast, because it is possible that
either the group leader is unreachable or that the node
specified in the unicast RREQ is no longer the group
leader. The Dest_Addr of each broadcast RREQ is set
to the TP address of the multicast group, and the exten-
sion containing the TP address of the group leader is not
included.

Nodes receiving a join RREQ check their request ta-
ble for an entry for the requested multicast group. If
there is no entry for the multicast group, the node en-
ters the multicast group address, together with the TP
address of the requesting node, in its request table. If
there is no previous entry for the group, the requesting
node may become the group leader. A node wishing to
join a multicast group consults its request table to de-
termine the group leader.

4.2 Reverse Route Establishment

As the RREQ is broadcast across the network, nodes
set up pointers to establish the reverse route. Propaga-
tion of non-join RREQs for multicast groups is similar
to that described in Section 3.1. A join RREQ, however,
requires a few processing differences. A node receiving a
join RREQ maintains a corresponding route entry in its
multicast route table, in addition to its (unicast) route
table. The Enabled flag for this entry is set to FALSE,
and only later i1s set to TRUE if the route is selected
to be added to the multicast tree (see Section 4.5.1). A
node can only respond to a join RREQ if it is a member
of the multicast tree. The generation of route replies is
described below.

4.3 Route Reply Message Generation

If a node receives a join RREQ for a multicast group,
it may reply if it is a router for the multicast group’s
tree and its recorded sequence number for the multicast
group is at least as great as that contained in the RREQ.
Additionally, the group leader can always reply to a join
RREQ for its multicast group. The responding node
updates its route and multicast route tables by placing
the requesting node’s next hop information in the tables,
and then generates a RREP. The node then unicasts the
RREP back to the node indicated by the Source_Addr
field of the received RREQ. Figure 2(b) illustrates the
path of the RREPs to the source node.

The RREP contains the last known sequence num-
ber for the multicast group and the IP address of the
multicast group leader. In addition, it includes a special
extension field called Mgroup_Hop. This field is initial-
ized to zero and incremented each time the packet is for-
warded. When the RREP is received by the source node,
the Mgroup_Hop field indicates the distance (in hops) of
the source node from the nearest member of the mul-
ticast tree. The IP address of the group leader is also



placed in an extension field, called Group_Leader_Addr.

As nodes along the path to the source node receive the
RREP, they add both a route table and a multicast route
table entry for the node from which they received the
RREP, thereby creating the forward path. They incre-
ment the Hop_Cnt and Mgroup_Hop fields of the RREP
and then continue forwarding the RREP back towards
the source node.

In the event that a node receives a unicast RREQ
with its own IP address in the Multicast Group Leader
extension, and if the node is in fact not the group leader,
it simply ignores the request and does not propagate
the RREQ any further. The source node will timeout
and broadcast a new RREQ without the multicast group
leader extension. This event should never happen; how-
ever to protect against the possibility that a node has
out-dated group leader information in its request table,
a mechanism is included to handle a RREQ with such
invalid information.

4.4 Group Hello Messages

The first member of the multicast group becomes the
leader for that group. This node remains the group
leader until it decides to leave the group, or until two
partitions of the multicast tree merge (see Section 4.6.2).
The multicast group leader is responsible for maintain-
ing the multicast group sequence number and for dissem-
inating this number to the multicast group. Periodically
(every group_hello_interval seconds), the group leader
broadcasts a Group Hello message. The Group Hello
message is an unsolicited RREP with a TTL greater than
the diameter of the network, so that it is propagated
across the entire network. The Group Hello contains
extensions which indicate the multicast group IP ad-
dresses and corresponding sequence numbers of all mul-
ticast groups for which the node is the group leader.
The sequence number for the group is incremented for
each Group Hello broadcast by the group leader. The
Hop_Cnt of the Group Hello is initialized to zero and is
incremented by each node that receives it, thereby indi-
cating the distance in hops from the group leader.

Nodes use the Group Hello information to update
their request table. When a node receives the Group
Hello, it checks its request table for an entry for the ad-
vertised multicast group. If the table does not contain
an entry for that group, the node enters the group and
group leader IP addresses. Nodes that are members of
the multicast tree use the Group Hello to update their
current distance from the group leader. The Group Hello
is also used for merging partitioned multicast trees, as is
described in Section 4.6.2.

4.5 Multicast Tree Maintenance

Because the network consists of mobile nodes, links on
the multicast tree are likely to break. Link breakages
must be repaired in a timely manner to maximize multi-
cast group connectivity. Multicast tree maintenance can
be divided into three main categories: selecting and acti-
vating the link to be added to the tree when a new node
joins the group, pruning the tree when a node decides
to leave the group, and repairing a broken link. Repair
involves re-establishing branches when a link fails and
reconnecting the tree after a network partition.

At any interior node in a multicast tree, the route
entry for the multicast group has multiple next hops.
When a data packet addressed to the multicast group
is received by a multicast tree member, the Source IP
Address and Identification fields of the data packet’s IP
header are recorded. The packet is then multicast by the
node to its next hops. If the node is a group member, the
packet is processed. A node on the multicast tree may
receive the same data packet multiple times if it receives
a data packet, retransmits the packet to its next hops,
and then receives that same data packet when its next
hops retransmit the packet to their next hops. The node
will detect this redundancy by checking the Source 1P
Address and Identification fields of the IP header, and it
will then discard the packet.

4.5.1 Multicast Route Activation

When a source node broadcasts a RREQ for a multicast
group, 1t often receives more than one reply. Because
each of the RREPs sets up a potential addition to the
multicast tree, one and only one of the RREPs must be
selected as the next hop. In this way, only one branch
is added to the tree, and loops are thereby avoided.
This is accomplished as follows. The source node waits
rte_discovery_timeout milliseconds after sending the
RREQ before selecting a route. rte_discovery_timeout
is a configurable parameter which may be set according
to the size of the network. During this time period, the
node keeps the received route with the greatest sequence
number and the shortest number of hops to the nearest
member of the multicast tree; it disregards other routes.
At the end of this period, it enables the selected next hop
in its multicast route table, and then wunicasts a Multi-
cast Activation (MACT) message to this selected next
hop. Each MACT message contains the following fields:

< P_flag, GL_flag, Source_Addr, Source_Seq#,
Dest_Addr >

The Dest_Addr is set to the IP address of the mul-
ticast group. The P_flag and GL_flag fields, which are
used for pruning and choosing a new group leader, re-
spectively, are explained in Sections 4.5.2 and 4.6.1.

The next hop, on receiving the MACT message, like-
wise enables the entry for the source node in its multi-
cast route table. If this node is a member of the multi-
cast tree, it does not propagate the MACT any further.
However, if this node is not a member of the multicast
tree, it will have received one or more RREPs from its
neighbors. It keeps the best next hop for its route to the
multicast group, unicasts a MACT to that next hop, and
enables the corresponding entry in its multicast route
table. This process continues until the node that orig-
inated the RREP (because it was already a member of
the tree) is reached. Nodes that had generated or for-
warded RREPs delete the entry for the requesting node
if they do not receive a MACT activating their route af-
ter mtree build milliseconds. Figure 2(c) illustrates a
multicast tree created in the described manner.

The MACT message ensures that the multicast tree
does not have multiple paths to any tree node (and, thus,
is in fact a tree). Nodes only forward data packets along
activated routes in their multicast route table. This pre-
vents the possibility of data packets being delivered to



a source node by multiple next hops before a MACT
message is received.

4.5.2 Pruning

During normal network operation, a multicast group mem-
ber may decide to terminate its membership in the mul-
ticast group. If the node is not a leaf node of the tree,
it may revoke its member status but it must continue to
serve as a router for the tree. Otherwise, if the node is a
leaf node, it may prune itself from the tree by using the
MACT message. In this case, the P_flag (prune) of the
MACT is set, and the Dest_Addris set to the IP address
of the multicast group. A leaf node necessarily has only
one next hop for the multicast group, so it unicasts the
MACT message to that next hop. After sending the mes-
sage, the node removes all information for the multicast
group from its multicast route table. The next hop, on
receiving the MACT, notes the P_flag, and consequently
deletes the entry for the sender node from its multicast
route table. If this node is itself not a member of the
multicast group, and if the pruning of the other node
has made it a leaf node, it can similarly prune itself from
the tree by the method described. Tree branch pruning
terminates when either a multicast group member or a
non-leaf node is reached.

4.6 Repairing Broken Links

Multicast group tree links may break due to node mobil-
ity or route expiration timers. Unlike in the unicast sce-
nario, however, a link breakage necessarily triggers route
reconstruction because of the necessity of keeping the
multicast group members connected during the lifetime
of the group. The re-establishment of tree links after
breakages and network partitions is described below.

4.6.1 Link Breakages

Nodes promiscuously record the reception of any neigh-
bor’s transmission. A link breakage is detected if no
packets are received from the neighbor in the time

hello_interval x (1 + allowed hello loss).

If a neighbor transmits other packets during that time,
the neighbor is no longer obligated to transmit any Hello
packets because the other packets serve the purpose of
signaling its presence. The neighbor is also expected to
forward any data packets received to their next hop(s)
within retransmit_time msec. Failing to receive any
transmissions from a neighbor will cause the expiration
of the route timer associated with that route.

When a link breakage is detected, the node down-
stream of the break (i.e., the node that is further from
the multicast group leader) is responsible for repairing
the broken link. This distinction is made because, if
both nodes tried to repair the link, it is possible they
would establish different paths and thus form a loop.
The downstream node initiates the repair by broadcast-
ing a RREQ with Dest_Addr set to the IP address of
the multicast group leader and with the J_flag set. The
Dest_Seq# is set to the last known sequence number of
the multicast group, and the Multicast Group Hop Count
(Mgroup_Hop) extension is set to the distance of the node
from the multicast group leader. The only nodes which

may reply to a RREQ with the Mgroup_Hop extension
are nodes that are at least as close to the group leader
as indicated by this field, or the group leader itself. This
prevents nodes on the same side of the break as the ini-
tiating node from responding, thereby ensuring a new
route to the group leader is found.

Because the node with which the initiating node lost
contact is likely to still be nearby, the initial TTL value
of the RREQ is set to a small value. In this way, the
effects of the link breakage can be localized. If no RREP
is received within rte_discovery_timeout milliseconds,
all successive RREQs (up to rreqretries additional at-
tempts) are broadcast across the network. Any node that
is a part of the multicast tree and that has a fresh enough
multicast group sequence number and a hopcount to the
multicast group leader smaller than that indicated by the
Mgroup_Hop field can respond to the RREQ by unicast-
ing a RREP. Forward path set up and subsequent route
deletions occur as described in Sections 4.3 and 4.5.1.

If no RREP is received at the source node after
rreq.retries attempts, it can be assumed that the net-
work has become partitioned and the tree cannot (at this
time) be reconnected. In this scenario, the partition of
the tree that is downstream of the break is left without a
group leader. A new group leader must be chosen. This
occurs in one of two ways. If the node that initiated the
route rebuilding is a multicast group member, it becomes
the new multicast group leader. On the other hand, if it
was not a group member and has only one next hop for
the tree, it prunes itself from the tree by sending its next
hop a MACT message with the P_flag set. On receiving
the MACT, the node notes that the message came from
its link to the group leader. This indicates that a net-
work partition has occurred and that the next hop has
pruned itself from the tree. If this node is a multicast
group member, it becomes the new group leader. Other-
wise, it also prunes itself from the tree, and this process
will continue until a multicast group member is reached.

In the event that the node that initiated the rebuild-
ing is not a group member and has more than one next
hop, it cannot prune itself from the tree because doing
so would leave the tree partitioned. Instead, it selects
the first of its next hops and unicasts a MACT with the
GL_flag (group leader) set. This flag indicates that the
next group member to receive the MACT should become
the new group leader. Hence, if the next hop receiving
this message is a group member, it becomes the group
leader. Otherwise, if it is not a group member, it simi-
larly selects one of its next hops and unicasts a MACT
with the GL_flag set. This process continues until a mul-
ticast group member is reached.

After becoming the new multicast group leader, the
node broadcasts a Group Hello across its connected part
of the network (partition). This message has the U_flag
(update) set, indicating that it is the new group leader
and all nodes should update their multicast route table
and request table information accordingly.

After a multicast tree link breakage is discovered, if
the node upstream of the break is a not a group member,
and if the link breakage causes this node to become a leaf
node, it sets a timer and waits for the tree branch to be
reestablished through it. If it does not receive a MACT
from a downstream node within route_expirationmsec,
either another node was chosen as the next hop on the
tree, or the network has become partitioned and the link



Parameter Name Meaning Value
allowed hello_ loss # of Allowed Hello Losses 2
group.hello_interval | Frequency of Group Hello Broadcasts 5 sec
hello_interval Frequency of Hello or Other Broadcasts 1000 msec
max_retrans Maximum # of Retransmissions 10
mtree build Time to Wait to Receive a MACT 2000 msec
retransmit_time Time to Wait for Data Packet Retransmissions | 1000 msec
revroute_ life Time to Keep Reverse Route Entries 3000 msec
route_expiration Lifetime of Route Table Entry 3000 msec
rreqretries Max # of RREQ Retransmissions 2
rtediscovery_timeout | Max Time to Wait for a RREP 1000 msec

Table 1: Simulated Parameter Values.

could not be reestablished. In either case, it prunes itself
from the tree in the manner described in Section 4.5.2.

4.6.2 Reconnecting Partitioned Trees

After the multicast tree becomes disconnected due to a
network partition, there are two group leaders. If the
partitions reconnect, a node eventually receives a Group
Hello for the multicast group that contains group leader
information that differs from the information it already
has. If this node is a member of the multicast group,
and if it is a member of the partition whose group leader
has the lower IP address, it can initiate the reconnec-
tion of the multicast tree. The node must already be
a member of the group in order to minimize the num-
ber of tree branches of the group, and its group leader
must have the lower IP address so that only one of the
group leaders attempt to rebuild the tree, thereby avoid-
ing loops.

If a node meets the above criteria, it unicasts a RREQ
with the R_flag (repair) set to its group leader. The
R_flag indicates that the RREQ needs special handling.
The group leader, after receiving such a RREQ, grants
the node permission to rebuild the tree by unicasting
a RREP back to the node. It notes that it has given
this node rebuilding permission and must not grant any
other node such permission unless the current rebuild
fails. Again, this is to prevent multiple nodes from at-
tempting repairs (which would likely cause the formation
of loops).

After receiving a RREP granting it rebuilding per-
mission, the node unicasts a RREQ to the other group
leader, using the node from which it received the Group
Hello as the next hop. This RREQ contains the current
value of the partition’s multicast group sequence number.
When it receives the RREQ, the other group leader notes
the set B_flag, takes the larger of its record of the group’s
sequence number and the received sequence number for
the group, and increments this value by one. It then
unicasts a RREP back to the source node. This group
leader becomes the leader of the reconnected tree. As the
RREP travels back to the source, it grafts a branch on
to the tree. Having noted the E_flag, the next time the
group leader sends a Group Hello, it sets the U_flag. All
members formerly contained in the other partition (in-
cluding the partition’s group leader) note the new group
leader information, and the merging of the two trees is
then complete.

5 Simulations and Results

We have simulated AODV using an event-driven, packet-
level simulator called PARSEC [2], which was developed
at UCLA as the successor to Maisie [1]. The PARSEC
language is suited to the simulation of dynamic topolo-
gies and routing algorithms. The main objective of the
simulations is to show that AODV accurately builds a
multicast tree on-demand, and that this tree can be used
to efficiently route data packets between multicast group
members.

5.1 Simulation Environment

Our simulations were run using a network composed of
50 nodes. Nodes are initially placed randomly within
a fixed-size I x L area. During the simulation, nodes
are free to move anywhere within this area. Each node
has a predefined speed between zero and one meter per
second. It then travels towards a random spot within
the L x L area. The node moves until it reaches that
spot, then chooses a rest period from a uniform distribu-
tion between 60 and 300 seconds. After the rest period,
the node travels towards another randomly selected spot.
This process repeats throughout the simulation, causing
continuous changes in the topology of the underlying net-
work.

The communication radius R..az of the nodes is a
major contributor to the interconnection pattern of the
ad-hoc network. In our simulations, the communication
radius is held constant at 10m. Two nodes can com-
municate directly, and are thus considered each other’s
neighbors, if they are less than R,,q, distance apart. If
they are farther apart than R4, they cannot hear each
others transmissions.

The channel model used in the simulation is CSMA.
Before beginning a transmission, carrier sensing is per-
formed by a node to determine whether any of its neigh-
bors are transmitting. If a node detects an ongoing trans-
mission by a neighbor, it calculates an exponential back-
off based on the number of times it has attempted the
retransmission and waits this amount of time before sens-
ing the channel again. A node attempts to transmit a
packet max retrans times before dropping the packet.

Nodes in the simulation may suffer from the hidden
terminal problem [21]. If node A transmits to node B,
and node C, unable to hear node A’s transmission, simul-
taneously transmits to node B, the packets are assumed
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Figure 3: Goodput Ratio as a Function of Speed.

to collide at node B and both packets are dropped.

Data sessions begin at randomly selected times through-
out the simulation. Data packets are 64 bytes in length
and the number of data packets transmitted per session
is a geometric distribution with average 3,000. The data
rate is 1.0 Mbit/sec. The simulations were run for 300
seconds, and new sessions are generated throughout the
simulation. New data sessions are generated according
to a geometric distribution with average of 25 minutes.
This amounted to eight generated sessions per unicast
simulation. In addition, once a node is a member of the
multicast group, it generates new sessions for that mul-
ticast group according to a geometric distribution with
average of 12 minutes. This produced approximately fif-
teen data sessions per multicast simulation. Because ses-
sions are generated throughout the simulation, we keep
track of and account for any data packets in transit at
the end of the simulation.

As stated earlier, multicast group membership is dy-
namic. Non-group members are also able to create ses-
sions and send data packets to members of the multicast
group.

Table 1 gives the values of the essential parameters
for the AODV simulation. The parameter values were
chosen because they minimize network congestion while
allowing the algorithm to operate as quickly and as ac-
curately as possible.

5.2 Results and Discussion

To examine the accuracy of AODV’s multicast opera-
tion, we ran simulations of both unicast and multicast
communication. In [18], we present various simulations
of AODV which demonstrate that AODV’s unicast op-
eration is both accurate and efficient. The unicast and
multicast simulations discussed here use the parameter
values given in Section 5.1. We examine the results pro-
duced by the simulations to show that AODV’s mul-
ticast performance is comparable to its unicast perfor-
mance. Particularly, we examine the goodput ratio and
the amount of control overhead produced by the simu-
lations. We define the goodput ratio as the number of
data packets received compared to the number of data
packets sent.

In the first simulations, a room size of 50m x50m is
used. This size room, with 50 nodes and a transmis-
sion radius of 10m, allows the vast majority of nodes
to be able to reach all other nodes, in one or more hops,
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Figure 4: Control Overhead for Unicast Simulations.

throughout the simulation. This enables us to verify that
AODV builds a multicast tree between group members
and then maintains that tree throughout the lifetime of
the group. With this room size there are few, if any,
partitions of the multicast tree. We performed simula-
tions of both unicast and multicast communication in
the 50m x50m room.

In the second set of multicast simulations described,
the room size is increased to 85mx85m while the trans-
mission radius is held at 10m. With a room this large
there are many small network partitions which are iso-
lated from each other. Many of these network parti-
tions contain multicast group members. As the simula-
tion progresses and nodes move about the room, we are
able to verify that group members recognize when they
come into contact with another partition and that conse-
quently the multicast trees merge and one group leader is
selected. A unicast simulation of the 85m x85m network
is not included because, with such a sparsely connected
network, it is a frequent occurrence that a route to a
desired destination does not exist.

Each class of simulations was run for six different
speeds of node movement. The speeds ranged from 0 m/s
to 1 m/s. For each movement speed, ten simulation runs
were completed, where each run had a different initial
network configuration. The results of these simulations
were averaged together to produce the resulting graphs.

In the multicast simulations, there is one multicast
group which nodes may choose to join. No unicast ses-
sions are created; all data traffic is multicast. As nodes
decide to join the multicast group, they broadcast RREQs
in the manner described in Section 4.1. Hence, at the be-
ginning of the simulation, there are no multicast group
members. The number of multicast group members then
increases and decreases as nodes decide to join and leave
the group. At any given time in the simulation, there are
as many as 10 nodes which are members of the multicast
group. A node may send data packets to the multicast
group regardless of whether it is a member of the mul-
ticast group. If a node is not a member of the group, it
finds a route to the multicast group and then transmits
its data packets along that route. In the unicast simula-
tion, however, all generated sessions are point-to-point.
Any node can potentially be selected as a sender or a
receiver for a given session.

Because nodes are frequently moving and routes be-
tween nodes break, the goodput ratio is not likely to be
100%. AODV does not retransmit data packets that are
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Figure 5: Control Overhead for 50mx50m Multicast
Simulations.

lost due to node movement, and hence does not guaran-
tee packet delivery. However, it does find good routes for
IP’s best-effort delivery, and the goodput ratio is high.
Figure 3 indicates the achieved goodput ratio for each
of the simulation scenarios at different speeds. The
50m x 50m multicast simulations show a slightly decreased
goodput ratio compared to the results of the similar uni-
cast simulations. This results from the fact that, while
each data packet in the unicast simulations must only
be received by one node, each data packet in the mul-
ticast simulations must be received by multiple nodes.
That is, every member of the multicast group in the
connected portion of the network must receive the data
packets. This results in an increased likelihood of colli-
sions. Although nodes buffer packets while they rebuild
routes, packets that are sent during reconstruction of tree
branches have the possibility of being lost if the nodes
on each end of the break are not a part of the recon-
nected branch. This is due to the fact that there are no
retransmissions of data packets. Hence there is a greater
likelihood of packet loss in the multicast simulations since
there are many more routes which must be maintained.
The multicast simulations of the 85m x85m network
demonstrates AODV’s operation under continual net-
work partitions and merges. Because the connectivity
of the network is so low, most multicast group members
are singleton members of their partition, and hence they
are group leaders. However, whenever two network parti-
tions, each having one or more multicast group members,
merge, the multicast trees must also merge and an over-
all group leader must be chosen. Similarly, whenever a
portion of the network with two or more group members
partitions, where each of the network components then
has one or more group members, the component with-
out the group leader must choose a new group leader.
In the simulations of speed 0 m/s, the goodput ratio is
high because there were typically between only one and
three multicast group members in a single partition, and
so the data packets did not need to be delivered to a
large number of group members. As the speed of move-
ment of the nodes increases, however, the goodput ratio
decreases. With such a small communication radius in
a large room, group members often no sooner discover
each other than they are out of transmission radius of
each other. This is especially true in the .8 m/s and
1.0 m/s simulations. Nodes reconnect the tree and start
sending data packets; and then the tree quickly becomes
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Figure 6: Control Overhead for 85mx85m Multicast
Simulations.

partitioned again. The data packets in transit must be
dropped.

Figures 4, 5, and 6 represent the number of control
packets that are generated during the simulations. The
unicast simulations work as expected, with the number of
RREQs and subsequent RREPs increasing as the rate of
movement and link breakages increases. The 50m x50m
multicast simulations work similarly, with the number of
RREQs, RREPs and MACTs increasing with the speed
of movement. There are more RREQs produced in the
multicast simulations than in the unicast simulations due
to the greater number of routes which must be main-
tained.

Because there are many small clusters of nodes in
the 85m x85m multicast simulations, each of which may
contain multicast group members, there are many differ-
ent group leaders for the multicast group. Consequently,
there are many more Group Hellos generated in these
simulations than in the comparable 50m x50m multicast
simulations, since the multicast group in the 50m x50m
network was generally not partitioned. However, because
network connectivity in these networks is low and there
are numerous isolated network components, the over-
all impact of the increased number of Group Hellos is
small. Like the other network scenarios, the 85mx85m
multicast simulation shows an increase in the number of
RREQs and RREPs as the speed of movement increases.
However, after .6 m/s, these simulations show a slight de-
crease in the number of RREPs and MACTSs generated.
With the faster movement speeds and the small transmis-
sion radius relative to the room size, network partitions
often only momentarily came into contact, and thus do
not have enough time to reconnect two partitions of the
same multicast tree. Since the trees do not have time
to reconnect, one of the group leaders does not need to
relinquish its group leader status. Hence the number of
Group Hello messages produced begins to increase again
for faster movement speeds.

Packet loss in the simulations is the result of either
a collision, or a node transmitting a packet to a node
that has been its next hop along the path, but this next
hop has already moved out of transmission range from
the sending node and hence does not receive the packet.
AODV is able to find a route to the multicast group each
time it is needed, and it is able to successfully main-
tain the links of the multicast tree for the lifetime of the
group. The lifetime of the multicast group begins when



(a) The Partitioned Network before the Merge

(b) The Network after the Merge

Figure 7: Network Snapshot Before and After Multicast Tree Merge.

the first node requests to join the group and continues
until the end of the simulation. If AODV were to be
run over a MAC-sublayer protocol such as IEEE 802.11,
data packets would rarely be dropped. However, AODV
does not require such a protocol, because even without
an underlying M AC-sublayer protocol, its performance
is good.

One other result from the simulations to examine is
the route acquisition latency. The route acquisition la-
tency is the time between when a node discovers it needs
a route to some destination, and the time that it ac-
quires that route and can begin using it. Because a
node wishing to join the multicast tree must always wait
route discovery_timeout before selecting its next hop
and unicasting a MACT, that timeout will be a lower
bound on the latency for acquiring a multicast route.
For more details on the route acquisition latency for uni-
cast routes, please see [18].

As an illustrated example of the merging operation,
Figure 7 represents a snapshot of the nodes in the sim-
ulation immediately prior to and following a merge of
two partitions of the multicast tree. In the figure, the
solid diamonds are the group leaders, the partially filled
smaller diamonds are multicast group members, and the
unfilled circles are nodes in the network that are not
group members. The dark solid lines represent links on
the multicast tree, while the light dashed lines illustrate
that the two nodes the lines connect are capable of com-
munication. In Figure 7(a), nodes A, C, D, and E are
group leaders for their partitions of the network. Node
B is a member of node A’s group. Figure 7(b) shows
the partition containing node A and C after the merge.
C has joined the tree and given up its group leader sta-
tus, and A has remained the leader of the group. Notice
that no new branches between nodes A and B had to be
added to the tree.

6 Future Work

There are many areas of investigation that are relevant
to AODV. To begin, we plan to continue our simulations
of AODV, including the utilization of different channel

models to determine how the protocol will function in
a variety of environments. Though we do not feel that
differing channel models will have a significant impact on
AODV’s relative performance and the results obtained
from the simulations, we plan to complete simulations
with differing channel models to verify these claims.

One of AODV’s biggest sources of protocol overhead
arises from the system-wide broadcasts that are used to
disseminate RREQs. There are other protocols (notably
CEDAR [20]) that establish a distinguished set of cores
that are given the responsibility of managing the dissemi-
nation of such control messages. We believe that AODV
could benefit from the integration of such mechanisms
into its route discovery process.

On another front, it has been shown [4] that buffer-
ing can be used to enable smooth handoff, for instance in
the context of Mobile IP [19]. This same idea of smooth
handoff and buffering can be adapted to the context of
AODV. When a link is broken in a routing path, subse-
quent re-establishment could be accompanied by delivery
of some number of buffered packets.

Clearly, security is a major concern. Key distribution,
authentication, and encryption in the ad-hoc networking
context remain largely unsolved problems. We would
like to specify an authentication procedure to avoid the
disruption of valid routes by malicious nodes.

Reliable delivery of packets is another major concern.
The current state of AODV does not provide for guaran-
teed delivery of data packets. However, AODV could be
enhanced to provide this service. AODV’s basic multi-
cast algorithm elegantly lends itself to improvements al-
ready done for multicast in networks of stationary nodes,
such as those described for Scalable Reliable Multicast
(SRM) in [7].

There have been numerous proposals for scaling ad-
hoc network protocols to greater node populations. One
such proposal is gathering sub-populations into clusters
and restricting the dispersal of route table information
based on whether a desired destination is in a local or
in a remote cluster. To the extent that such techniques
are beneficial, we believe that they can equally well be
adapted for use with AODV. As the tradeoffs for control
traffic between cluster maintenance and route discovery



become better understood, we will endeavor to incor-
porate clustering techniques into AODV. The gains in
scalability will probably be even more favorable for mul-
ticast operations than for unicast, since our multicast
algorithm places more reliance on network-wide broad-
casts.

We have recently defined Quality of Service (QoS)
extensions for AODV to enable route establishment be-
tween nodes that have certain well-defined traffic flow
requirements. We would like to perform further simula-
tions to verify our intuition that AODV will retain its
high degree of efficiency and accuracy, even when the re-
quirements for establishing valid routes are broadened to
include QoS constraints.

Mobile TP [15] has been standardized within the IETF
to enable seamless roaming for mobile nodes. However,
Mobile TP assumes that a mobile node has been assigned
a home address and that there is a home agent that can
receive packets destined for the mobile node. Since there
may not be any such home network in an ad-hoc net-
work, it is not easy to see how Mobile IP can be applied.
However, if just one of the ad-hoc network nodes has
connectivity to the global Internet, it becomes possible
for every mobile node in the ad-hoc network to achieve
connectivity to the global Internet. Furthermore, any
such mobile node can send a Mobile IP Registration Re-
quest to its home agent to describe its current care-of
address, as described in [12]. We would like to augment
AODV, and its recently proposed transit networking ex-
tension, to implement this type of Mobile IP connectivity
and make it available to all AODV nodes. This would
also allow AODYV nodes to subscribe to Internet-based
multicast groups.

7 Conclusion

We have presented a routing protocol for ad-hoc mobile
networks that is capable of unicast, broadcast, and multi-
cast communication. AODV has an advantage over other
ad-hoc network routing protocols because it provides all
three types of communication without being dependent
on or requiring the use of any additional routing proto-
cols. The main features of AODV are as follows:

e Unicast, Broadcast, and Multicast communication
is provided.

e Routes are established on-demand with small delay.

o Multicast trees connecting group members are main-
tained for the lifetime of the multicast group.

o Link breakages in active routes are efficiently re-
paired or reestablished.

o All routes are loop-free through the use of destina-
tion sequence numbers.

e Inactive routes are quickly aged out because they
are likely to go stale.

Through simulation, we have shown that AODV is
able to obtain a high goodput ratio for both unicast
and multicast communication. Additionally, it is able
to offer this communication with a minimum of control
packet overhead. AODYV is an excellent choice for es-
tablishing communication within an ad-hoc network. It
is suitable for a variety of applications, including con-
ferencing, emergency search-and-rescue operations, and

community-based networking. We look forward to con-
tinuing to enhance AODV by reducing the need for system-
wide broadcasts, incorporating security and reliable de-
livery mechanisms, exploring QoS extensions, and imple-
menting Mobile IP connectivity.
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