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Abstract. In this paper we show how to extend a constructive type the-
ory with a principle that captures the spirit of Markov’s principle from
constructive recursive mathematics. Markov’s principle is especially use-
ful for proving termination of specific computations. Allowing a limited
form of classical reasoning we get more powerful resulting system which
remains constructive and valid in the standard constructive semantics of
a type theory. We also show that this principle can be formulated and
used in a propositional fragment of a type theory.

1 Introduction

1.1 Overview

The main goal of this paper is to support limited classical reasoning in a generally
intuitionistic framework. We use a squash operator for this purpose. This oper-
ator can creates a proposition stating that a certain type is non-empty without
providing an inhabitant, i.e. squash “forgets” proofs. It was first introduced in
[6] and also used in [15] and MetaPRL system [9,10]. Using squash it is possible
to define the notion of squash–stability, which is similar to self–realizability.

The squash operator can be considered as a modality. The propositional logic
equipped with this modality can express a principle that allows turning classical
proofs of squash–stable propositions into constructive ones. This principle is
valid in a standard type theory semantics if we consider it in the classical meta-
theory. Therefore this principle does not destroy the constructive nature of type
theory in the sense that we can always extract a witness term from a derivation.

It turns out that this principle implies Markov’s principle providing us a
propositional analog of Markov’s principle. It is rather surprising that such ana-
log exists because normally one needs quantifiers in order to formulate Markov’s
principle.

We also show an equivalent way of defining the same principle using a mem-
bership type instead of the squash operator.
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1.2 Markov’s Constructivism

Constructive mathematics is interesting in Computer Science because of program
correctness issues. There are several approaches to constructivism (see [4,5,19]
for an overview). We are especially interested in the constructive recursive math-
ematics (CRM) approach developed by Markov [12,13] and in constructive type
theories (especially those that are based on Martin-Löf type theory [14]) since we
believe them to be highly relevant to Computer Science. In this paper we demon-
strate how to apply the ideas of CRM to a constructive type theory thus creating
a more powerful type theory that combines the strengths of both approaches to
constructive mathematics.

According to Markov’s CRM approach, all objects are algorithms, where
algorithms are understood as finite strings in a finite alphabet. All logical con-
nectives are understood in a constructive way. That is, a statement is true if
and only if there exists an algorithm that produces a witness of this statement.
For example, the witness for ∀x.A(x)∨ ¬A(x) is an algorithm that for a given x
tells us either that A(x) is true (and provides a witness for A(x)) or that ¬A(x)
is true (and provides a witness for ¬A(x)). That means that ∀x.A(x) ∨ ¬A(x)
is true only for decidable predicates A. Since not all predicates are decidable,
Markov’s school has to reject the rule of excluded middle.

Note that a witness of a proposition does not “prove” that proposition. For
example, ∀x.A(x) ∨ ¬A(x) is true when there is a decision algorithm for A, but
it does not mean that there is a proof 1 that this algorithm works properly (i.e.
always terminates and gives the correct answer). In this respect the construc-
tive recursive mathematics differs from the Brouwer–Heyting–Kolmogorov’s in-
tuitionism. We will return to the topic of differences between “proof witnesses”
and “algorithm witnesses” in Section 1.4.

The question arisen in the CRM is which means is one allowed to use in
order to establish that a particular algorithm is indeed a witness for the given
proposition? This is not an obvious question since the termination problem is
undecidable. Even if algorithm terminates for every input, we can not test it
explicitly, because there are infinitely many possible inputs. But to establish
that an algorithm is applicable to an object a, the algorithm does not have to
be executed explicitly from the beginning to the end. According to Markov [13]
we can prove this by contradiction. That is, we are allowed use some classical
reasoning to prove that a particular algorithm has some particular properties.

1.3 Markov’s Principle

The Markov school uses the intuitionistic predicate arithmetic with an additional
principle (known as Markov’s principle):

∀x.(A(x) ∨ ¬A(x)) → ¬¬∃x.A(x) → ∃x.A(x) (1.1)

1 In this paper we use terms proof and derivation interchangeably.
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where variables range over natural numbers. Note that this principle does not
hold for Brouwer–Heyting–Kolmogorov’s intuitionism, thus Markov’s principle
distinguishes these two schools of constructivism.

Here is the justification of this principle in the CRM framework. Assume
∀x.(A(x) ∨ ¬A(x)). Then there exists an effective procedure that for every x
decides whether A(x) or ¬A(x). To establish (1.1), we need to write a program
that produces the witness of ∃x.A(x). We can achieve that by writing a program
that will try every natural number x and check A(x) until it finds such an x
that A(x) is true. We know that it is impossible that such x would not exist
(because of ¬¬∃x.A(x)). Therefore it is impossible that this algorithm does not
terminate. Hence according to recursive constructivism it eventually stops.

Markov’s principle is an important technical tool for proving termination
of computations. Adding Markov’s principle to a traditional constructive type
theory would considerably extend the power of the latter in a pivotal class of
verification problems.

1.4 Type Theory

We assume the type theory under consideration adheres to the propositions–as–
types principle. This principle means that a proposition is identified with the
type of all its witnesses. A proposition is considered true if the corresponding
type is inhabited and is considered false otherwise. This makes terms an element
of a type and a witness of a proposition synonyms. The elements of a type are
actually λ–terms, i.e. programs that evaluates to a “canonical” element of this
type.

We also assume that the type theory is extensional. That is, to prove that
a term f is a function from A to B, it should be sufficient to show that for
any a ∈ A the application fa eventually evaluates to an element of the type B.
This allows us to deal with recursive functions that we can prove will always
terminate. We will use the fix operator to define recursive functions, where
fix(f.p[f ]) is defined as (λx.p[xx])(λx.p[xx]), i.e. fix is the operator with the
following property fix(f.p[f ]) �→ p[fix(f.p[f ])]. Although the general typing
rule for fix

f : A → A � p[f ] ∈ A → A

� fixf.p[f ] ∈ A → A

is unsound, but for some particular p we can prove that fix(f.p[x]) is a well-
typed function.

Note that in an extensional type theory a witness of a proposition T is not the
same as a derivation of a proposition T . In general, a witness (i.e. an element) of
the type T may potentially range from full encoding of some derivation of T to
a trivial constant. For example, if V is an empty type, then every function has
type V → W , e.g. a function λx.foo is an element of (A ∧ ¬A) → ⊥ (although
λx.foo does not encode any derivations of proposition (A∧¬A) → ⊥). Note that
the question of whether a particular term is a witness of a particular proposition
is in general undecidable.



Markov’s Principle for Propositional Type Theory 573

We assume that the type theory has a membership type – “t ∈ T” which
stands for the proposition “t is an element of type T”. The only witness of a
membership proposition is a special constant •2.

We assume that t ∈ A implies A. The inverse should also be true:

Property 1.1. If we can prove Γ � A then there is a term t such that Γ � t ∈ A.

Remark 1.2. The reason we want judgments of the form Γ � T and not just
Γ � t ∈ T is that we are interested in type theories that can be used as a
foundation for theorem provers. In a theorem prover situation we want user to
be able to state and prove a judgment of the for Γ � T and have the system
“extract” t from the resulting derivation instead of being required to figure out
and provide t upfront.

In this paper we present several formal derivations. These derivations were
machine–checked in the MetaPRL system [10]. The rules used in those derivations
are summarized in Appendix A. The results of Sections 2, 3 and 4 are valid for
any type theory containing this set of rules and satisfying Property 1.1. The
results of the sections Sections 5 and 6 also require an intentional semantics.
NuPRL is an example of a type theory that satisfies all these constraints.

However, most of our ideas can be easily applied to an even wider class of
type theories. For example, typing rules are not really essential. Additionally,
we do not need a membership type to express Markov’s principle, we can use
the squash operator instead (Section 4). And as Section 7 shows, our form of
Markov’s principle can be used even in a purely propositional fragment of type
theory without arithmetic and quantifiers.

2 Constructive Recursive Mathematics in a Type Theory
with a Membership Type

Suppose one has proved that A implies t ∈ T and ¬A also implies t ∈ T .
Then classically we can conclude that T is inhabited. Moreover the philosophy
of recursive constructivism allows us to conclude that T is true constructively,
because we can explicitly provide a constructive object t as an element of T .
In other words, since the witness of T (which is just t) does not depend on the
proof of t ∈ T , then T has a uniform witness regardless whether A is true or not
(although the proof that t is a witness of T may depend on A).

This argument establishes that the following type theory rule is valid accord-
ing to recursive constructivism:

Γ ; x : A � t ∈ T Γ ; y : ¬A � t ∈ T Γ � AType

Γ � t ∈ T (2.1)

This rule formalizes exactly the philosophy of the recursive constructivism.
2 MetaPRL system [9,10] uses the unit element () or “it” as a •, NuPRL uses Ax and
[18] uses Triv.



574 Alexei Kopylov and Aleksey Nogin

Remark 2.1. Note that in NuPRL–like type theories t ∈ T is well-formed only
when t is in fact an element of T . Therefore the rule stating that ¬¬(t ∈ T )
implies t ∈ T would be useless. On the other hand, in NuPRL type theory (2.1)
is equivalent to

Γ � (s ∈ T ) Γ � (t ∈ T ) Γ � ¬¬(s = t ∈ T )

Γ � s = t ∈ T (2.2)

but the proof of (2.2) ⇒ (2.1) is very NuPRL–specific.

3 Squashed Types and Squash–Stability

Below we will assume that our type theory contains a “squash” operator. For
each type A we define a type [A] (“squashed A”) which is empty if and only if
A is empty and contains a single element • when A is inhabited. Informally one
can think of [A] as a proposition that says that A is a non-empty type.

We define the squash operator as a primitive type constructor with the
following rules (cf. [15])3:

Γ � A

Γ � [A]
(Isq)

Γ � A

Γ � • ∈ [A]
(Msq)

Γ ; x : A; ∆ � [B]

Γ ; v : [A]; ∆ � [B]
(Esq) (v, x are not free in ∆, B)

Γ � [t ∈ T ]

Γ � t ∈ T
(MembershipSqstable)

Γ � AType

Γ � [A]Type
(Wsq)

Note that (Esq) and (MembershipSqstable) can be replaced by one rule

Γ ; x : A; ∆[•] � t ∈ T

Γ ; v : [A]; ∆[v] � t ∈ T
(E2

sq) (v, x are not free in ∆, t, T )

The (Isq) rule allows us to prove that A � [A]. Note that [A] does not
imply A, because [A] does not provide a witness for A. We can only derive that
[A] � ¬¬A.

Squash operator allows us to formulate an important notion of squash sta-
bility. Although [A] does not provide a witness for A in general, in some cases

3 In a type theory that has a set type (also sometimes called “subset type”) construc-
tor, the squashed type [A] can also be defined as {x : Unit | A} where Unit is a
singleton type which contains only • and x is a variable that does not occur in A.
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we know what witness would be in the case when A is non-empty. For example
we know that if t ∈ T is true, then • is the witness for the type t ∈ T . We will
refer to such types as squash–stable types. For such types we can conclude that
[A] � A.

Definition 3.1. A type T is squash–stable (in context Γ ) when Γ ; x : T � t ∈ T
is provable for some t that does not have free occurrences of x.

Using squash operator we can formulate the squash stability as a proposition
in a type theory.

Lemma 3.2. T is squash–stable in a context Γ if one can derive

Γ ; v : [T ] � T

Proof. Suppose T is squash–stable. Then we have the following derivation of
Γ ; v : [T ] � T :

Γ ; x : T � t ∈ T

Γ ; v : [T ] � t ∈ T
(E2

sq)

Γ ; v : [T ] � T

Now assume that Γ ; v : [T ] � T . Then for some term t we have Γ ; v : [T ] �
t ∈ T . Term t may depend on v, i.e. v may be a free variable of t. Let t = t[v].
Now let x be an arbitrary variable not occurring freely in t. Now we can derive
the following:

Γ ; x : T � T

Γ ; x : T � • ∈ [T ]
(Msq)

Γ ; v : [T ] � t[v] ∈ T

Γ ; x : T � t[•] ∈ T
(Let)

Therefore T is squash–stable.

We have already seen that t ∈ T is a squash–stable type. Squash type itself
is also squash–stable because we know that • ∈ [A] whenever [A] is true. Other
examples of squash–stable types include empty type (⊥), negations of arbitrary
types (¬A). Note that conjunction of two squash–stable types is also squash–
stable. But a disjunction of two squash–stable types is not necessarily squash–
stable since there is no way to figure out which of the disjuncts is true when we
only know that at least one of them must be true.

4 Classical Reasoning on Squashed Types

Squash operator gives us an alternative way of formulating constructive recursive
mathematics in a type theory. Let us consider a problem similar to the one we
have considered in Section 2.
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Suppose we have constructively proved that A → B and (¬A) → B. It means
that there is an algorithm that produces an element of B when A is true, and
another algorithm that produces an element of B when A is false. Classically we
know that B is true, because in each case we can produce an element of B. But
in the case when A is undecidable, B is not necessary known to be constructively
true, since we do not have a uniform algorithm for producing an element of B.
In intuitionistic mathematics we can only prove ¬¬B in this case.

Now suppose B is squash–stable. Then there exists an element b, such that
b ∈ B whenever B is non-empty. We know that B is not an empty type regardless
of whether A is true. The constant algorithm that returns b does not depend on
the truth of A. Therefore in constructive recursive mathematics we can conclude
that B is constructively true, because we have an element b such that b ∈ B.

This reasoning establishes the following rule:

Γ ; x : A � B Γ ; y : ¬A � B Γ ; v : [B] � B Γ � AType

Γ � B (4.1)

This rule allows us to turn classical proofs of squash–stable statements into
constructive ones. It is clear that rule (2.1) from Section 2 is a particular instance
of (4.1). We will show that these two rules are in fact equivalent. We can also
write a simpler version of the same rule:

Γ � ¬¬A Γ � AType

Γ � [A] (4.2)

This rules states that [A] ⇔ ¬¬A or informally, A is a non-empty type if and
only if it is not an empty type.

Another way to formulate the same principle is to allow classical reasoning
inside squash operator:

Γ � AType

Γ � [A ∨ ¬A] (4.3)

The following two theorems state that all the above rules are equivalent and
that they imply Markov’s principle. This shows that we can formulate Markov’s
principle in a very simple language – we only need propositional language with
the modal operator “squash”.

Theorem 4.1. The rules (2.1), (4.1), (4.2) and (4.3) are equivalent.

Proof. (4.1) ⇒ (2.1). Take B = (t ∈ T ). We know that t ∈ T is squash stable,
therefore we can apply rule (4.1) to derive (2.1).
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(2.1) ⇒ (4.2).

Γ ; x : A � A

Γ ; x : A � • ∈ [A]

Γ � ¬¬A y : ¬A; z : ¬¬A � ⊥
Γ ; y : ¬A � ⊥

(Cut)

Γ ; y : ¬A � • ∈ [A]
(E⊥, Cut)

Γ � AType

Γ � • ∈ [A]
(2.1)

Γ � [A]
(E∈)

(4.2) ⇒ (4.3).
It is easy to establish that ¬¬(A∨¬A) is an intuitionistic tautology. Therefore

we have the following derivation:

Γ � AType

Γ � ¬¬(A ∨ ¬A) Γ � AType

Γ � [A ∨ ¬A]
(4.2)

(4.3) ⇒ (4.1).

Γ � AType

Γ � [A ∨ ¬A]
(4.3)

Γ ; x : A � B Γ ; y : ¬A � B

Γ ; z : A ∨ ¬A � B
(E∨)

Γ ; z : A ∨ ¬A � [B]
(Isq)

Γ ; v : [A ∨ ¬A] � [B]
(Esq)

Γ ; [B] � B

Γ � B
(Cut)

Theorem 4.2. Using one of these rules one can prove Markov’s principle in a
type theory:

∀x : N.(A(x) ∨ ¬A(x)) → ¬¬∃x : N.A(x) → ∃x : N.A(x)

Proof. We need to show that the following sequent is derivable:

d : ∀x : N.(A(x) ∨ ¬A(x)); v : ¬¬∃x : N.A(x) � ∃x : N.A(x)

The proof is just a formalization of Markov’s reasoning [13]. We are given the
element d of the type ∀x : N.(A(x)∨¬A(x)). That means that d is an algorithm
that given a natural number x decides whether A(x) holds. Now we construct a
function fd that would find an x such that A(x). Let fd be the following function

fix
(
f.λx.decide

(
d(x); a. 〈x, a〉 ; b.f(x+ 1)

))

that is a function such that

fd(x) =
{ 〈x, a〉 , if A(x) is true and a ∈ A(x)

fd(x+ 1), if A(x) is false



578 Alexei Kopylov and Aleksey Nogin

If we are given natural n such that A(n) is true, then we have a bound for
computation of f(n − k). One can prove that ∀k ≤ n.fd(n − k) ∈ ∃x : N.A(x)
by induction on k. Therefore fd(0) ∈ ∃x : N.A(x). Then we have the following
derivation:

d : ∀x : N.(A(x) ∨ ¬A(x)); n : N; u : A(n) � fd(0) ∈ ∃x : N.A(x)

d : ∀x : N.(A(x) ∨ ¬A(x)); ∃x : N.A(x) � fd(0) ∈ ∃x : N.A(x)
(E∃)

d : ∀x : N.(A(x) ∨ ¬A(x)); [∃x : N.A(x)] � fd(0) ∈ ∃x : N.A(x)
(E2

sq)

Now we are left to show that ¬¬∃x : N.A(x) implies [∃x : N.A(x)]. This is true
because of the rule (4.2).

5 Semantical Consistency of Markov’s Principle

Theorem 5.1. The rule (4.3) (as well as its equivalents – (2.1), (4.1) and (4.2))
is valid in S. Allen’s semantics [1,2] if we consider it in a classical meta-theory.

Proof. We need to show that Γ � [A ∨ ¬A] is true when A is a type. It is clear
that [A ∨ ¬A] is a well–formed type. To prove that it is a true proposition we
have to find a term in this type. Let us prove that • is the witness of [A ∨ ¬A].
Since we are in a classical meta-theory, for every instantiation of variables in-
troduced by Γ , A is either empty or not. If A is non-empty, then A ∨ ¬A is
non-empty and so • ∈ [A ∨ ¬A]. If A is an empty type, then ¬A is non-empty
type and so, • is again in [A ∨ ¬A]. Therefore • ∈ [A ∨ ¬A] always holds.

Note that we can not prove that Γ � A ∨ ¬A is valid even using a classical
meta-theory, because there is no uniform witness for for A ∨ ¬A.

Corollary 5.2. The rule (4.3) (and its equivalents) is consistent with the Nu-
PRL type theory containing the theory of partial functions [7].

Note however that the rule of excluded middle Γ � A ∨ ¬A is known to be
inconsistent with the theory of [7]. In particular, in that theory we can prove
that there exists an undecidable proposition. That is, for some P the following
is provable:

¬(∀n : N.P (n) ∨ ¬P (n)) (5.1)

Therefore even using rule (4.3) we can not prove that

[∀n : N.P (n) ∨ ¬P (n)]

(which would contradict (5.1)). But we can prove a weaker statement

∀n : N.[P (n) ∨ ¬P (n)]

that does not contradict (5.1).
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6 Squash Operator as Modality

The squash operator can be considered as an intuitionistic modality. It turns
out that it behaves like the lax modality (denoted by ©) in the Propositional
Lax Logic (PLL) [8]. This logic was developed independently for several different
purposes (see [8] for an overview).

PLL is the extension of intuitionistic logic with the following rules (in Gentzen
style):

Γ � A

Γ � [A]
Γ ; A � [B]
Γ ; [A] � [B]

PLL+ is PLL+(¬[⊥]), i.e. PLL+ has an additional rule:

Γ ; A � ⊥
Γ ; [A] � ⊥

PLL∗ is PLL++([A] ↔ ¬¬A). We can write this axiom as the rule in Gentzen
style:

Γ ; ¬A � ⊥
Γ � [A]

PLL+ and PLL∗ are decidable and have natural Kripke models [8]. They meet
cut elimination property. PLL+ has the subformula property. PLL∗ also has the
subformula property if we define ¬A to be a subformula of [A].

Theorem 6.1. Let A be a propositional formula with the squash modality. Let
Γ be a set of hypothesis of the form x : (pType) for all propositional variables p
in A. Then

(i) PLL+ � A iff Γ � A is derivable in the type theory without 4.3
(ii) PLL∗ � A iff Γ � A is derivable in the type theory with 4.3

Proof. From left to right this theorem can be proved by induction on derivation
in PLL+ (PLL∗). The right to left direction needs a semantical reasoning. We
will only outline the proof for PLL∗.

Let A′ be the formula A where all subformulas of the form [B] are replaced
by ¬¬B. If Γ � A is derivable in the type theory with 4.3 then this sequent
is valid in the standard semantics in classical meta-theory (Theorem 5.1). Since
[B] ↔ ¬¬B is true in this semantics then Γ � A′ is also true. A′ is a modal-free
formula. Therefore A′ is a valid intuitionistic formula. Hence A′ is derivable in
the intuitionistic propositional logic. Since we have [B] ↔ ¬¬B in PLL∗, we can
derive A in PLL∗.

Remark 6.2. It is possible to consider the lax modality in PLL+ as the diamond
modality in the natural intuitionistic analog of S4 (in the style of [20]) with an
additional rule ✷A ↔ A. Note that since in intuitionistic logics ✷ and ✸ are not
interdefinable, ✷A ↔ A does not imply ✸A ↔ A.
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Example 6.3. We can prove some basic properties of squash in PLL+:
[A] → ¬¬A
[A] ↔ [[A]]
[A ∧ B] ↔ ([A] ∧ [B])
[A → B] → ([A] → [B]), but ([A] → [B]) → [A → B] is true only in PLL∗

[¬A] ↔ ¬[A]
([A] ∨ [B]) → [A ∨ B], however [A ∨ B] �→ [A] ∨ [B] even in PLL∗

We can express the notion of squash–stability in this logic as sqst(A) =
[A] → A.

Example 6.4. The following properties of squash-stability are derivable in PLL+:
sqst(⊥)
sqst(¬A)
sqst([A])
sqst(A) ∧ sqst(B) → sqst(A ∧ B), but sqst(A) ∨ sqst(B) �→ sqst(A ∨ B)
sqst(B) → sqst(A → B)

In PLL∗ we can also prove
sqst(A) → (¬¬A → A)

7 Example: What Logic Do We Use in the Court?

It is clear that we do not use pure classical logic in the court. Let us consider
the following cases.

Case 7.1. One night a jewelry shop was robbed. The same night a barber shop
was robbed in another town. It was clear that these two robberies were com-
mitted by different people. There were two suspects, X and Y for both cases.
It was determined that no one else could have committed these crimes. Is this
information enough to sentence someone?

Let us formulate this problem in logic. Let

– J stand for “the jewelry shop was robbed”,
– Jt stand for “t is guilty in the robbing of the jewelry shop”,
– B stand for “the barber shop was robbed”,
– Bt stand for “t is guilty in the robbing of the barber shop”,
– Gt stand for “t is guilty”.

where t is X or Y .

We know the following:

1. J ∧ B (the jewelry and barber shops were robbed)
2. (¬JX ∧ ¬JY ) → ¬J (no one but X or Y robbed the jeweler)
3. (¬BX ∧ ¬BY ) → ¬B (no one but X or Y robbed the barber)
4. ¬(Jt ∧ Bt), where t = X,Y (no one could rob both shops)
5. Jt → Gt, where t = X,Y (Criminal Law)
6. Bt → Gt, where t = X,Y (Criminal Law)
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Using this assumptions one can classically prove GX and GY . Here is the
proof that X is guilty in the prosecutor’s words.

“X is guilty! Only X and Y could rob the jeweler. If X robbed the jewelry
shop, then he is guilty. Suppose for a moment that X is innocent in this robbery.
Then Y robbed the jewelry shop. Therefore he could not have robbed the barber.
Hence the barber was robbed by X, because no one else did this. Again X is
guilty.”

Should the jury accept this classical reasoning? Even if they were convinced
by the prosecutor, they would be unable to bring in a verdict of “guilty” on X
since such verdict must specify a particular crime of which X is found guilty. This
is especially clear if the punishment for robbing jewelry shops is different from
the punishment for robbing barber shops. Judge would not be able to “extract a
constructive element” (i.e. determine the sentence) from the prosecutor’s proof.

In terms of Section 3, Gt is not a squash–stable proposition.

Case 7.2. The jewelry shop was robbed again. Now there were three suspects,
two twin brothers X and Y , and their friend Z. At the trial, it was determined
that only X, Y and Z were able to commit the robbery. It was also determined
that the shop was robbed by at least two robbers. One of the twins X or Y was
seen in another town at the night of the crime, but unfortunately, since they are
twins, there was no way to determine exactly who it was. Can jury find someone
guilty?

It is easy to see that we can prove that Z is guilty using classical reasoning.
But as we have learned from the previous case classical proofs are not sufficient in
court. However this case differs from the previous one! We can prove (classically,
of course) not only that Z is guilty, but also that Z is guilty of a particular
crime. Therefore the judge has enough information to pass sentence on Z.

In the terms of Section 3 we can said that while the proposition “Z is guilty”
is not squash–stable, the proposition “Z robbed a particular jewelry store on a
certain date” is squash–stable (since we know how to pass a sentence when this
proposition is true). This assumption together with the rule (4.1) allows us to
bring Z to justice.

Here is a formal constructive proof (again Jt stands for “t robbed the jewelry
shop” and Gt stands for “t is guilty”):

X or Y has
an alibi

JX � ¬JY

two of suspects
are robbers

¬JY � JX ∧ JZ

JX � JZ

(Cut)

two of suspects
are robbers

¬JX � JY ∧ JZ

¬JX � JZ

JZ is squash–stable

[JZ] � JZ

� JZ

(4.1)

� GZ

(Criminal Law)
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8 Related Work

Our notion of squash–stability is very similar to the squash–stability defined in
[9, Section 14.2] and to the notion of computational redundancy [3, Section 3.4].

The squash operator we use is similar to the notion of proof irrelevance [11,17].
Each object in a proof irrelevance type is considered to be equal to any other
object of this type. In [17] proof irrelevance was expressed in terms of a certain
modality �. If A is a type then �A is a type containing all elements of A consid-
ered equal. Using NuPRL notation we can write �A = A//True, where A//P
is a quotient of a type A over relation P . We can prove the following chain:

A → �A → [A] → ¬¬A

The main difference between [A] and �A is that there is no uniform element for
�A. Therefore �A is not squash–stable and [A] does not imply �A. However it
seems that modal logic of � modality is the same as logic of squash (i.e. PLL+).

As far as we know Markov’s principle in type theory was considered only by
Erik Palmgren in [16]. He proved that a fragment of intentional Martin-Löf type
theory is closed under Markov’s rule:

Γ � ¬¬∃x : A.P [x]

Γ � ∃x : A.P [x]

where P [x] is an equality type (i.e. P [x] is t[x] = s[x] ∈ T . It is easy to see that
this formulation of Markov’s rule is not valid for type theories with undecidable
equality and, in particular, in extensional type theories.

A The “Minimal” Set of Rules

The judgments of the type theory are the sequents of the following form

x1 : A1;x2 : A2[x1]; . . . ;xn : An[x1, . . . , xn−1] � C[x1, . . . , xn]

This sequent is true if we have a uniform witness t[x1, . . . , xn] such that for every
x1, . . . , xn if xi ∈ Ai[x1, . . . , xi−1] then t[x1, . . . , xn] is a member of C[x1, . . . , xn].

The inference rules are presented below4. For every type constructor we have
a well-formedness rule (W ), an introduction rule (I), an elimination rule (E)
and a membership introduction rule (M).
Syntax rules:

Γ ;x:A;∆[x]�A (ax) Γ ;∆�A Γ ;x:A;∆�C
Γ ;∆�C (Cut) Γ�a∈A Γ ;x:A�C[x]

Γ�C[a] (Let)

Membership:
Γ�t∈A

Γ�(t∈A) Type (W∈) Γ�t∈A
Γ�•∈(t∈A) (M∈) Γ�AType

Γ�•∈(AType) (MType)

Γ ;x:A;∆[x]�x∈A (I∈) Γ�t∈A
Γ�A (E∈)

4 Some of this rules are redundant. For example most of introduction rules are deriv-
able from their membership introduction counterparts. The (Let) rule is derivable
from the (Cut) rule using function type.
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Disjunction:
Γ�AType Γ�BType

Γ�A∨BType (W∨) Γ�a∈A
Γ�inl a∈A∨B (M1

∨)
Γ�b∈B

Γ�inr b∈A∨B (M2
∨)

Γ�A
Γ�A∨B (I1∨)

Γ�B
Γ�A1∨A2

(I2∨)
Γ ;x:A;∆[inl x]�C[inl x] Γ ;y:B;∆[inr y]�C[inr y]

Γ ;z:A;∆[z]∨B�C[z] (E∨)

Universal quantifier:
Γ ;x:A�B[x] Type
Γ�∀x:A.B[x] Type (W∀)

Γ ;x:A�fx∈B[x]
Γ�f∈∀x:A.B[x] (M∀)

Γ ;x:A�B[x]
Γ�∀x:A.B[x] (I∀)

Γ ;f :∀x:A.B[x];∆[f ]�a∈A
Γ ;f :∀x:A.B[x];∆[f ]�fa∈B[a] (E∀)

Existential quantifier:
Γ ;x:A�B[x] Type
Γ�∃x:A.B[x] Type (W∃)

Γ ;x:A�a∈A Γ ;x:A�b∈B[a]
Γ�〈a,b〉∈∃x:A.B[x] (M∃)

Γ ;x:A�a∈A Γ ;x:A�B[a]
Γ�∃x:A.B[x] (I∃)

Γ ;x:A;y:B[x];∆[〈x,y〉]�C[〈x,y〉]
Γ ;z:∃x:A.B[x];∆[z]�C[z] (E∃)

False:

Γ�⊥Type (W⊥) Γ ;x:⊥;∆[x]�C (E⊥)

Computation:
Γ�b∈T
Γ�a∈T where a �→ b Usual reduction rules: λx.a[x] b −→ a[b], etc

Arithmetic:
Induction, etc

We assume the following definitions:

A → B = ∀x : A.B A ∧ B = ∃x : A.B, where x is not free in B
¬A = A → ⊥ fix(f.p[f ]) = (λx.p[xx])(λx.p[xx])

We can establish the property 1.1 in this fragment by a straightforward in-
duction on the derivation.
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