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Abstract

The NuPRL system [3] was designed for interactive writing of machine—checked
constructive proofs and for extracting algorithms from the proofs. The extracted
algorithms are guaranteed to be correct which makes it possible to use NuPRL as
a programming language with built-in verification[1/5/7/8/9/10]. However it turned
out that proofs written without algorithmic efficiency in mind often produce very
inefficient algorithms — exponential and double-exponential ones for problems that
can be solved in polynomial time.

In this paper we present some general principles of efficient programming in con-
structive type theory as well as describe a case study that shows how these prin-
ciples apply to particular problems. We consider the proof of the Myhill-Nerode
automata minimization theorem from the NuPRL automata library [4] which leaded
to a double—exponential (in time) extracted program. Systematic use of the pre-
sented principles allowed us to build a new complexity cautious proof leading to
polynomial-time algorithm extracted by the same NuPRL extractor.

We believe that the principles presented in this paper in combination with other
methods may lead to an efficient technique of programming-by-proofs.

Key Words and Phrases: automata, constructivity, Myhill-Nerode theorem,
NuPRL, program extraction, program verification, programming by extracts, state
minimization.

1 Introduction

The NuPRL system [3] is capable of extracting and executing the computa-
tional content of constructive theorems even when it is only implicitly men-
tioned. For example, given a NuPRL proof of the pigeon-hole principle in
the form for any natural number n and for any function f from {0,1,...,n}

I Provided that the trusted parts of the NuPRL system work correctly.
(©2000 Published by Elsevier Science B. V.
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to {0,1,...,n — 1} there exists a pair of numbers 0 < i < j < n such that
f(@) = f(j), we can extract a program which takes n, f and computes such
t,7. In other words, NuPRL can be regarded as a programming language with
build-in verification: a proof is both a program and its verification at the same
time.

However the computational efficiency of some NuPRL proofs turned out
to be very poor, since they were written without paying attention to efficiency
issues.

In the current paper we are presenting some methods that can be used to
write efficient proof-programs (section 2). Then we are going to demonstrate
how these methods allowed us to write efficiency cautious proofs in NuPRL. In
this respect NuPRL is similar to other programming languages, where there
often exist slow programs and faster programs, computing the same function.

In particular, we give an exposition of the results of revising the NuPRL
proof [4] of Myhill-Nerode automata minimization theorem which is a formal-
ization of [6]. The convenient modular structure of NuPRL theories allowed
us to only rewrite the proofs of several inefficient lemmas in order to fix the
entire proof. This eliminated all known unnecessary exponential-time proofs
from the NuPRL Automata Library and, in particular, the extract from the
minimization theorem became polynomial.

We will start by giving a brief overview of the NuPRL Automata Library
(section [3). Then, in sections 56/ and [7) we will describe three most inefficient
proofs from the library and show how the principles described in section 2
were applied to turn them from exponential and double-exponential (in time)
to polynomial ones.

2 General Principles of Efficient Proof—Programming

Here is a short review of general principles of the computationally efficient
programming in the NuPRL type theory, introduced in this work.

One of the basic observations concerning programming by extract is that
quite often very elegant proofs yield surprisingly inefficient extracts — such
as an exponential-time program extracted from the early proof of the pigeon-
hole principle. Therefore one can not just write some proof and hope that
the extract would do something efficient. We believe that one should start
writing a proof while already having some understanding of how the extracted
algorithm should work. Some of the principles presented below correspond
to well-known principles of efficient programming in traditional imperative
languages. But what is new here, is the “translation” of those principles to
the “language” of proof-programming as well as the observation that these
principles work quite well even for proof-programming.

Use “expensive” statements non-computationally. When it is known
or suspected that a certain statement would yield a computationally expensive
extract, we should try to avoid using that statement in computational con-
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text. We can still use it in non-computational context such as proving that a
certain “bad” state is impossible (and, as a result, our algorithm would not
get stuck). See section [5.3] for an example of an application of this principle.

Induction steps are the main source of computational complexity.
In traditional imperative programming languages most time is usually spent
inside various loops and programmers often have to concentrate their efforts on
making loops more efficient. In programming by extract, loop code is usually
extracted from a proof of some induction step. Consequently, proof writers
have to concentrate on writing efficient proofs for induction steps.

Usually the first step towards making an induction step efficient is coming
up with a good induction statement. Here are some methods of doing it:

Turn loop invariants into induction statements. In situations where
the proof writer has some idea how the loop is going to work, it is often
beneficial to try to find some invariant of that loop and reverse engineer it into
such a proof that its extract actually works as the desired algorithm. In this
way the loops of the algorithm are usually programmed by using inductions
in the proof, the “if” operator is usually programmed using something like
Decipe tactics and so on. All the examples in this paper make use of this
method.

Use existential quantifiers as memory. When the induction statement
has a form Vz Ju, v, w,... (where x is the object we are doing induction on),
u,v,w, ... represent the objects that are being computed and saved at each
loop iteration. Using, for example, Va : 17 3y : Ty 3z : T3. A(z,y) A B(z,y, 2)
instead of just Vx : T} Jy : T». A(z,y) prevents us from producing an algorithm
that goes back and recomputes z every time it is needed.

Use lists as memory. Evaluate a sufficient amount of data in advance
so that the extracted algorithm gets to reuse it instead of recomputing it each
time it is needed. Under this approach one has to put all the necessary data in
several lists by asserting and proving that a list with certain properties exists
and look through these lists when necessary (see sections 6.2 [7.2 and 7.3 for
examples of an application of this idea.).

3 NuPRL Automata Library

3.1 Introduction to Automata Library

In this section we are going to give a short overview of the NuPRL Automata
Library. This library is based on the Hopcroft — Ullman book [6]. A detailed
description of the NuPRL Automata Library can be found in [4].

Two versions of the library are available — the older one, which is described
in [4] and which contains several inefficient proofs, and the new one, in which
the objects are organized into theories® differently and in which the inefficient

2 In NuPRL a theory is a collection of abstraction definitions, theorems (along with proofs)
and, possibly, some tactics code and/or comments.
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proofs have been replaced by more efficient ones. All the theories constituting
each version of the library are available on the Web. The original theories can
be found at http://nuprlauto-b.nogin.org/ and the updated ones — at
http://nuprlauto.nogin.org/.

Below you can find a theory-by-theory description of those parts of the
updated library that are needed for better understanding of this paper. We
provide many definitions in detail because slight difference in details can make
writing proofs and especially writing efficient constructive proofs much easier
or much more difficult. Some common NuPRL notations are also explained.

3.2 FniTE SETS theory?

In this theory it is defined what it means for a set s to be finite®:
Fin(s) == 3n:N. 3f :Nn — s. Bij(Nn;s; f)

where Nn is the NuPRL notation for the type {0,...,n—1} and Bij(Nn;s; f)
says that f is a bijection between Nn and s. From this definition it follows
that the equality between elements of a finite set is decidable. This theory
also proves several properties of finite sets and of lists of elements of a finite
set. In particular, it proves that Nn itself is finite and that the set of fixed
length lists of elements of a finite set is finite.

Finally, the pigeon-hole principle is proved (see also section [5).

3.3 LANGUAGE theory®

This theory gives a definition of a language. A language over some alphabet
Alph is a predicate over Alph List (finite lists of elements of Alph). The theory
also gives definitions of language operations: intersection, union, product and
complement.

3.4 ActioN SETs theory®

An action set over some type T is a pair consisting of a carrier type car and
an action function that takes a t € T and ¢ € car and produces ¢ € car:
ActionSet(T) == car : U x (T — car — car). Another way to think about
it is that an action set assigns an action car — car to each element of T.
The theory also gives a definition of the multi-action function that naturally
extends the definition of the action function from the single elements of 7" to
lists of elements of T

(S: L« s) ==, if null(L) then s else (S.acthd(L)(S:tl(L) < s)) fi

3 http://nuprlauto.nogin.org/finite_sets/

4 See section 8 for a discussion of this definition and possible alternatives.
® http://nuprlauto.nogin.org/language/

6 http://nuprlauto.nogin.org/action_sets/
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where S.act is defined to be the second element of S - i.e. S’s action, hd
and tl are list head and tail operations, null(L) is true iff L is an empty
list and ==, means that this definition is recursive”™. Informally, a list [ €
T List corresponds to a multi-action that is equal to a composition of actions
corresponding to elements of [.

Finally, the pumping lemma is proved. This lemma states that for any
action set S with a finite carrier of size n if some multi-action [ goes from A
to B (A, B € S.car), then there exists a multi-action I’ of length < n that also
goes from A to B. Indeed, by pigeon-hole principle, if [ has over n elements,
multi-action [ has to visit some element C' € S.car at least twice. That means
that we can remove the section of [ that corresponds to a loop from C to C
and obtain a shorter multi-action that still takes A to B. We can repeat this
operation until we get a multi-action that is short enough.

3.5 DETERMINISTIC AUTOMATA theory®

This theory gives a definition of deterministic automata over some alphabet
and a set of states. The automata are defined as triples of a transition function,
an initial state, and a function that tells whether a state is a final state:

Automata(Alph; States) ==
act : (States — Alph — States) X init : States x (States — B)

where B is a boolean type”. The theory also defines the operations da, I(a)
and F'(a) that return the three components of an automaton a. Then the
theory gives definitions of what state the automaton DA is in after processing
an input string [ and whether the input string [ is accepted:

DA(l) ==, if null(l) then I(DA) else ((6DA) DA((I)) hd(l)) fi
DA(l) | == F(DA) DA(l)

Finally, the rReaca_DEC theorem proves that it is decidable™ whether some

state of an automaton DA is reachable from [(DA) (see also section [6.2).

3.6 MyHILL-NERODE THEOREM theory™

7 NuPRL systems implements recursive definitions using the Y-combinator.

8 http://nuprlauto.nogin.org/det_automata/

9 NuPRL uses propositions as types approach, so it may be undecidable whether a propo-
sition is true or not. On the other hand, boolean type contains only two elements — tt
and ff and it is decidable whether a boolean is true or not.

10Tf NuPRL proves that ¢ is a function, then ¢ must represent a total computable function.
Because of that, we can define decidability of a proposition P(z) over some type T as
Vo : T. P(x) V —P(x), which is the same as a dependent function = : T — P(z) V = P(z).
"http://nuprlauto.nogin.org/myhill_nerode/
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First a relation Rl.: x Rlpy iff Yz : AList. L(2Qz) < L(zQy) (where L is
some language and @ is the list append operator) is defined. Then it is proved
that for any language L, Rl; is an equivalence relation. The relation Rg,
is defined similarly for the case when a language is defined using a function
Alph List — B instead of a predicate!?.

Also in this theory, the Mn_23_LEM_1 lemma is proved. MN_23_LEM_1 states
that for any equivalence relation R on Alph List such that for any z,y,z €
Alph List, x Ry implies (2@Qx) R (2Qy), if the number of equivalence classes of
R is finite, then for any g € Alph List — B that respects R, the relation Rg,
is decidable (see also section [7).

Finally, the Myhill-Nerode automata minimization theorem is proved. For
information on the proof see [4]. Here we are only going to outline the mini-
mization procedure that gets extracted from the proof.

Given an automaton DA, first the reachable states are taken using the
decision procedure extracted from reacu_peEc. Then we take x Ry to be the
relation DA(x) = DA(y) (automaton goes to the same state after seeing either
x or y), g(x) to be DA(x) | and then use equivalence classes of Rg, as the
states of the minimal automaton. Finally, the decision procedure extracted
from mM~n_23_LEM_1 lemma is used to enumerate the states.

3.7 The rest of the library

The rest of the library includes a definition and properties of non-deterministic
automata, proofs of the existence of a deterministic automaton equivalent to
a given nondeterministic automaton and other theorems. For information on
these parts of the library see [4].

4 Sources of Exponential Complexity

In the existed proof [4] three sources of exponential-time complexity have been
detected '

(i) pigeon-hole principle (see sections 4/ and [5)
(ii) decidability of the state reachability (see sections 10 and [6)
(iii) decidability of the equivalence relation on words induced by the automata

language (the Mn_23_LEM_1 lemma — see sections 12 and [7))

Now, after the proofs of these lemmas have been analyzed and rewritten,
the resulting extracted programs became polynomial. Whereas it took about
24 hours to evaluate the extract from the old version of the minimization
theorem applied to a certain small automaton, the new extract applied to the

12 A function from AlphList to type of propositions P.
13We had to search for sources of exponential complexity manually. Hopefully, Ralph
Benzinger’s work [2] would lead to a tool capable of doing that automatically.
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same automaton was evaluated during only about 40 seconds on the same
computer?

The current proof of the minimization theorem illustrates that program-
ming by extract can really work.

5 Pigeon-Hole Principle

5.1 Performance

For algorithms extracted from both old and new proofs of this principle the
worst case is the case when the only pair of ¢ > j such that f(i) = f(j) is
it =1, 7 = 0. That is why for performance comparison we took the function
F = Mz.if (z=0) then 0 else x —1 fi and evaluated the extract from
the proof applied to this F' and different n. The following table shows how
long it took for the evaluator to get the answer:

n | old proof | new proof
10 | 7.6 sec 1.8 sec
12 1 29.1 sec | 2.3 sec
20 | > 20 min | 5.2 sec

5.2 Original Exponential Proof

The main part of the pigeon-hole principle is proved in the proLE_AUX lemma ™ :

Vn:{l..}.Vf:N(n+1) — Nn.
Fi:Nn+1). Fj:{(i+1)..(n+1)"}. fi=fj

where {1...} is the NuPRL notation for the set of positive integers and {m..n~}
is a notation for {i | m <1i < n}.

A NuPRL proof was done by induction.
Base. (n = 1) Obviously, f(0) = f(1) (=0).
Induction step. 1f there exist such 0 < k < n that f(n) = f(k), then we
can take i = k, j = n. Otherwise, the function ¢ = Az.if (f(z) =
n —1) then f(n) else f(z) fi is a function from Nn to N(n — 1) and we
can use the induction hypothesis. Then we can easily prove that if g(i) = ¢(j),
then 1(i) = 1))

14 All performance numbers in this paper were produced on relatively old hardware. If tested
on modern hardware, they should become significantly smaller. Also currently NuPRL
interprets the extracted terms. If compiled, the performance of extracted programs should
be much better.

5http://nuprlauto-b.nogin.org/automata_1/phole_aux..html
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For the printout of the NuPRL proof of the induction step, see the Ap-
pendix (section [9).
The extracted algorithm was:
(i) Take ng =n, fo = f.
(ii) At the kth step:
(a) Compare (fxng) with (fi ) for all 0 <@ < ny.
(b) If for some i (frn) = (fr4), then i = ¢ and j = ny is an answer.
(c) Else take ngyq =ng — 1,
ferr =Ax:Nn. if (fyxz=ng —1) then fpng else frx fi
(iii) On n — 1th step (n,—1 =1) i =0, j = 1 is an answer.

The problem with this algorithm is that in order to calculate (fy i) for
some %, the evaluator needs to calculate f._; twice and calculate f;_o four
times and so on up to the fy, which gets calculated 2* times.

This proof can be fixed by using

g=Xx:Nn. ((A\y. if (y=n—1) then fn else y fi) (f x)).

The refined proof will work in polynomial time® but it will be much slower
than the proof described in 5.3l

5.3 Polynomial Proof

The new version of the proof is also called the pHOLE_AUX lemma”:

Vn:{l..}.Vf:Nn+1) = Nn. 3 : N(n+1). 35 : Ni. fi=fj

Proof The proof is done by induction over n.
Level 1 - Base. Obviously, f(1)=f(0) (=0)
Level 1 - Induction step. Clearly, the proof of this induction step is the main
source of computational complexity. We decided that proof-programming an
algorithm that would make a recursive call with n = n — 1 (as in old proof)
would be inefficient, so we need to prove the induction step without using the
induction hypothesis computationally.

To find 7,7 we decided to go over all pairs 0 < j < i < n and to check
whether f(i) = f(j)*. We check i’s from n down to 1 and for each i, the j’s
from ¢ — 1 down to 0. To program this algorithm we used our loop invariants
into induction statements principle. Obviously, the invariant of the loop over
1’s is that we have not found the correct 7, j yet and that such a pair still exists

16 This is because NuPRL evaluator is essentially call-by-need.
"http://nuprlauto.nogin.org/finite_sets/phole_aux..html

18 The goal of this case study was to get the time complexity down to some reasonable
polynomial, but not necessarily to the smallest possible one, so we do not consider this to
be too inefficient.
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ahead of us, so we asserted that

Viii : N(n 4 1). Vii : {(iii + 1)..(n + 1)~ }. Vjj : Nii. =(fii = fjj) =
(Fi:N(igi+1). 35 : Ni. fi = fj)

“We checked allvi’s from n down to 1ii+1 and haven’t found a necessary pair.
So there is a pair 0 < j < i <iii such that f(i) = f(5)”.

This statement is proved by induction:
Level 2 — Base. 11 = 0 and we want to prove that

Vii s {1..(n+1)"}. Vjj : Nii. —(fii = fj)) = ...

By the level 1 induction hypothesis we prove that the premise of this im-
plication is false. This argument is similar to the old proof, but from the
algorithmic standpoint here we are saying that we are going to find our i, j
before hitting i = 0

Level 2 — Induction Step. Check whether there is a jj in {0..7i¢~ } such that
(fii) = (f7j7) ™. If such jj is found, then we are done. Otherwise we can
use the level 2 induction hypothesis to prove the main goal which corresponds
to making a recursive call with ¢ := 27 — 1 in our algorithm.

6 State Reachability

VAlph, St : U. YAuto : Automata(Alph; St).
Fin(Alph) = Fin(St) = Vs : St. Dec(3w : Alph List. Auto(w) = s)

“For any finite automaton over a finite alphabet and for any state of that
automaton the property this state is reachable s decidable.”

6.1 Original FExponential Proof

In the old version of the library the proof of the decidability of the state
reachability is inside the proof of the Mn_12 theorem ™" .
First, the pumping lemma! was used to prove that

(3t : Alph List (Auto(t) = s)) &
(Fk : N(n+1). 3t : {l: AlphList | ||l|| = k}. Auto(t) = s)

Y NuPRL is capable of automatically proving that properties like 355 : Niii. (fjj = fiii)
are decidable.

2Ohttp://nuprlauto-b.nogin.org/automata_3/mn_12..html

21 see section (7l or http://nuprlauto-b.nogin.org/automata_1/pump thm cor..html
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where [|l|| is the length of list [. Then the proof of the decidability of
Jk:N(n+1). 3t: {l: Alph List | ||l|| = k}. Auto(t) = s

used twice the auTo2 LEMma_6%? which states that for every finite set T
VP:T —P. (Vt:T. Dec(P(t))) = Dec(3t:T. P(t))

The algorithm extracted from the proof of auvro2_remma_6 simply checks
P(t) for all t in T from f(n — 1) down to f(0) or to the first ¢ such that P(t)
holds (where n is the cardinality of 7" and f is the “enumerating” function
that comes from definition of “finite”). So the algorithm extracted from the
proof of the decidability of state reachability just checked all words in the
alphabet Alph whose length is less or equal to the number of states.

6.2 New Polynomial Proof

As per lists as memory principle, we are going to compute the list of all
reachable states and then to check whether some state is in the list each time
we need to know whether some state is reachable. According to the existential
quantifiers as memory principle, we need to prove the existence of the list of
all the reachable states.

In order to prove it, we use a more general notion of action sets (see section
3.4) which will allow us to reuse this theorem later (see section[7.2). Obviously,
automata can be regarded as action sets where the carrier is the set of states
and the action is the automata transition function. Here is what we prove
(rREACH_AUX lemma®?):

VAlph : U. VS : ActionSet(Alph). Vsi : S.car.
Fin(S.car) = Fin(Alph) = (3RL : S.car List Vs : S.car.
(Jw : AlphList. (S : w « si) = s) < mem_f(S.car;s; RL)),

where mem_f (T, a, L) stands for “a of type T' is an element of T" List L”.
The idea of our algorithm is to keep all the states we already know to be
reachable in a list and for each state s from that list to go over all the letters of
the alphabet to get all the states immediately reachable from s and to repeat
this procedure until no new states can be added to our list. For efficiency,
we want to make sure that we only compute the transition function once for
any pair s, « of a reachable state and an alphabet letter. In order to do that,
we are going to keep a list of all reachable states for which we have already
computed the transition function in RL, and a list of all states immediately

22http://nuprlauto-b.nogin.org/automata_2/auto2_lemma_6..html
Zhttp://nuprlauto.nogin.org/det_automata/reach_aux..html
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reachable from RL — in RLa. This means that we want to have the following
invariant:

After adding n states to RL (putting the initial state si into RL does not
count as a step) at least one of the following two statements is true:

(i) RL consists exactly of all reachable (from si) elements of S.car

(ii) RL consists of n + 1 distinct reachable elements of S.car and if we go
over the first k letters of the alphabet, we can have the RLa with the
following three properties:

(a) all elements of S.car immediately reachable from the elements of RL
(other than its head, which was just added) are either in RL or in
RLa (possibly both)

(b) for any letter a out of the first k letters of the alphabet, the element
(S.acta hd(RL)) should appear in either RL or RLa (or both)

(c) all elements of RLa are reachable (from si)

We turned this invariant into a statement of the rEacH_LEMMA 24

VAlph : U. VS : ActionSet(Alph). ¥si : S.car.
Vnn : N.Vf: Nnn — Alph. Vg : Alph — Nnn.
hspace2mmEFin(S.car) = InvFuns(Nnn; Alph; f;g) = (Vn: N
ARL :{y - {x: S.car List | 0 < [[z[[ Af[z]| <n+ 1} | yl([yll = D] = si}
(Vs : S.car. (Jw : AlphList. (S : w « si) = s) < mem_f(S.car; s; RL))
V([|RL|| =n+1 A (Vi :N||RL||. Vj : Ni. ~(RL[i] = RL[j]))
A (Vs : S.car. mem_f(S.car; s; RL) = (Jw : Alph List. (S : w « si) = s))
A(VEk:N. kE <nn= (3RLa : S.car List
(Vi : {1..|]|RL||"}. Ya : Alph.
mem_f(S.car; S.act a RL[i]; RL) V mem_f(S.car; S.act a RL[i]; RLa))
A (Va : Alph. ga < k = mem_f(S.car; S.act a hd(RL); RL)
Vmem_f(S.car; S.act a hd(RL); RLa))
A (Vs : S.car. mem_f(S.car; s; RLa) =
(Jw : Alph List. (S : w « si) = s))))))
where RL[i] is the i-th element of RL. reacH_LEMMA states that given an
alphabet Alph, an action set S over this alphabet, an initial element sz in the

S.car, nn — the size of Alph; and functions f and ¢ that give us a one-to-one
correspondence between Alph and Nnn, we can satisfy our invariant for every

24http://nuprlauto.nogin.org/det_automata/reach_lemma..html
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natural number n.

Now we need to reverse engineer the algorithm into a proof of this state-
ment. We start (base case, n = 0) with si as the only element of RL. Then
we take empty RLa (for k = 0) and we go from k = 1 up to k = nn (proof by
induction) adding S.act (f (k — 1)) si to RLa at each step.

In the main cycle (induction step of the main induction) we take elements
from RLa (list induction) and check whether it is already in RL until either
we’ve found some element s in RLa but not in RL or RLa becomes empty. If
RLa becomes empty, then we can prove (by list induction on w) that statement
(1) holds, so we are done. And if we’ve found such an s, then we add it to
the top of RL and then we take the rest of RLa as a new RLa for k = 0 and
then start a cycle (induction) for k from 1 up to nn adding S.act (f (k—1))s
to RLa on each step.

To prove rREacH_AUX We take n equal to the size of S.car, get the correspon-
dent RL from reacuH LEmMMA and then use the pigeon—hole principle to prove
that (2) can not hold — the number of distinct elements in RL can not be
larger than the total number of elements in S.car.

7 Decidability of Language Equivalence Relation

In both versions of the library this fact was proved in MN_23_LEM_1%7':

VAlph : U. VR : Alph List — Alph List — P
Fin(Alph) = EquivRel(Alph List; z,y.x Ry)
= Fin(z,y: (AlphList)//(x Ry))
= (Vz,y,z: AlphList. t Ry = (2Quz) R(zQy))
= (Vg:xz,y: (AlphList)//(x Ry) — B. Va,y : z,y : (AlphList)//(z Ry)
Dec(zRgy))

where z,y : T//(x Ry) is a quotient type®® and Ryg is (by definition and
ASSERT_IFF_EQ lemma ")

rRgy & Vz: AlphList. g (zQzx) = g (2Qy)

Phttp://nuprlauto-b.nogin.org/automata/mn_23_lem_1..html,
http://nuprlauto.nogin.org/myhill_nerode/mn_23_lem_1..html

26 The quotient type z,y : T//(z Ry) has the same members as the original type T, but
with R as its equality relation.
2"http://nuprlauto-b.nogin.org/automata/assert_iff_eq..html)
http://nuprlauto.nogin.org/myhill_nerode/assert_iff_eq..html
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7.1 Original Exponential Proof

The main scheme of the old proof resembles the one of the old proof of decid-
ability of state reachability. First, auro2_LEmma_02®

vI':U.VP:T — P.
(Vz : T. Dec(Px)) A Dec(Fz : T —(Pz)) = Dec(Vx : T. (Px))

is used. The proof of Dec(g (zQx) = ¢ (zQy)) is trivial, so the only fact left
to prove is

Dec(3w : Alph List. —(g (zQzx) = ¢ (2Qy)))

Then some sort of pumping has been used to prove that

Jw : Alph List. =(g (zQz) = ¢g(2Qy)) <
Jk :N(n*n-+1). 3z : {l: Alph List | ||l|| = k}. =((g (zQzx) = g (zQy))

where n is the size of x,y : (Alph List)//(x Ry). The pumping here was proved
directly, although the pump_THM_CcORR applied to something like the action set
Sp defined for the new proof could have been used. Then auTo2_LEmma 6 has
been used twice to establish the decidability.

So, the extracted algorithm had to check all words in the alphabet Alph
with the length up to n xn to get an answer.

7.2 Polynomial Proof

First we introduce a new action set Sp??. Its carrier is the set of pairs <
u,v > of equivalence classes defined as (z,y : (AlphList)//(x Ry)) % (z,y :
(Alph List)//(z Ry)) and its action is Aa : Alph. Auv. let < u,v >= uv in <
a::u,a:: v >. This definition is valid because u Rv = (a :: u) R(a :: v). We
can prove that Sp : w «—< u,v >=< wQu,wQuv > (as pairs of equivalence
classes).

Then we use reacH.LEMMA to get the list of all pairs “reachable” from
the pair < w,v > in this action set. Then, using a trivial list induction, we
compute the function g on both elements of each pair in that list and check
whether there exists a pair < u;,v; > in the list such that gu; # gv;.

7.8 Another Polynomial Proof

This version of the proof of Mx_23_LEM_1 is called Mn_23_LEM®!.
The difference between this proof and the previous one is that instead of

computing a list of “reachable” elements for each pair < u,v > we compute

28http://nuprlauto-b.nogin.org/automata_2/auto2_lemma_0..html
29 This notation does not appear in the actual proof.
30http://nuprlauto.nogin.org/myhill_nerode/mn_23_lem..html
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the list of all pairs < u,v > such that =(u Rgv) and then just check whether
our particular pair is in that list.

First, for each element s of Sp.car we compute the list of all elements
immediately reachable from s and we put all those lists into a big list of lists.
Then, using these lists we compute for each element s of Sp.car the list of all
elements from which s can be immediately reached (Back_Listiry®'). Then
we take the list of all elements of Sp.car and filter such pairs < u,v > in it
that gu = gv (Boor_LisTiFy®?). Then we take it as initial list and proceed
mostly as in reacH_aux but going backward (with Back_LisTiFy) instead of
going forward getting the list of all pairs < u,v > such that =(uRgv) in the
end.

8 Possibilities for Further Improvement

Although the algorithms extracted from the new proofs in the NuPRL au-
tomata library work fast on small automata, a lot of further improvements
may be done in both the automata library and the NuPRL system itself to
make the proofs shorter, faster and more readable. Here are some of them.

(i) The NuPRL evaluator should be substantially rewritten. The current one
very often unnecessarily evaluates the same terms several times. Ideally,
the evaluator should be turned into a compiler.

(i) If mn_23_LEm would work faster than Mn_23_LeEm_1 with the new evaluator
(it works slower with the current one since it tries to recompute each list
anew when it is needed), then it should be used instead of mMn_23_LEM_1.
And the speed of the extract from mn_23_rLEM proof can easily be further
significantly improved if we take advantage of the particular structure of
our Sp — it can be regarded as some sort of product of two equal smaller
action sets.

(iii) New tactics should be written to make writing efficient proofs more auto-
matic. In particular, a tactic that adds a new existential quantifier to the
induction statement without destroying the existing (possibly unfinished)
proof needs to be written. Such tactic would correspond to declaring a
new variable.

(iv) More induction principles should be added to the system. For example,
an induction principle that allows us to refer to the induction hypothesis
for n = m for any m < n, not just n — 1.

(v) The definition of finite turned out to be very inconvenient. It would be
better to separate the “finiteness” from the decidability of the equality

3lhttp://nuprlauto.nogin.org/myhill_nerode/back_listify..html
32http://nuprlauto.nogin.org/myhill_nerode/bool_listify..html
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by using, for example, the following definitions:

Fin(T) == JFL :TUList. ¥t : T. mem_f(T,t, FL)
FinDec(T) == Fin(T) N Vt1,t2:T. Dec(tl =t2 € T)

(It can be easily proven in NuPRL that FinDec is equivalent to the
current definition of finite). If the automata library were rewritten with
these definitions, then many lemmas would have much shorter proofs
(especially ivv_or_rin_1s_FiN) and minimization would work faster, at least
with a new evaluator (above).

(vi) In the current version of the library (as well as in the previous ones) the
new abstraction mn_quo_append has been introduced, which is equal to
append but has special wellformedness lemma. It creates technical diffi-
culties in many lemmas. A better way is to prove an extra wellformedness
lemma for append itself.
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9 Appendix

Here is the printout of the NuPRL proof of the induction step from the original
proof of the pigeon—hole principle (see section [15). (Proofs of all wellformed-
ness subgoals are omitted).

1. n: {2...}

2. Vf:Nn — N(-1 +n). Fi:Nn. 3Fj:{Q +i)..n"}. fi=f]j
3. f: N(n + 1) — Nn

F 3i:N(1 +n). Fj:{1+1)..(L +n)~ . fi=1Fj

I

BY (Decide '3k:Nn. f n = f k! ...a)

w_
<
N\
(w}
N
—]
jus}
=
=
=
—
B
(7}
ct
Q
o
=]
s}
(]
M
~,
B
—_

.

BY (RWW "not_over_exists" 4 ...a)

|
4. Vk:Nn. —~(fn=7Ffk)
|
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BY With Ax:Nn. if (f x =, n - 1) then f n else f x fi | (D 2)
THENM Reduce (-1)

|

2. f: N@®+ 1) — Nn

3. Vk:Nn. —(f n=1fk)

4. di:Nn. 3Jj:{(1 + i)..n7}

if (f i =, n - 1) then f nelse f i fi =

if (f j =, n - 1) then f n else £ j fi

|

BY (ExRepD THENM InstConcl [lil;l§11 ...a)

|

4. i: Nn

5. j: {1+ 1i)..n7}

6. if (f i =, n - 1) then f n else f i fi =

if (f j =, n-1) then f n else f j fi

Hfi=f ]

|

BY MoveToConcl 6 THENM SplitOnConclITEs THENA Auto’
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