
C Preprocessor (continued)

COM S 113

February 15, 1999

Announcements

Should have read just about all of K&R through

Chapter 7

All previous assignments & quizzes graded

Assignment 4 available, due in a week

1

Simple Macro Definitions

#define NULL 0

#define EOF (-1)

#define GET getc(stdin)

#define begin { /* allows compound statements */

#define end } /* like: while (e) begin ... end */

Comments in replacement strings are legal|they

just become part of the replacement. What

problems could occur?
2

Parameterized Macro Definitions

#define getchar() getc(stdin)

#define putchar(x) putc(x, stdout)

#define MAX(x,y) ((x)>(y)?(x):(y))

#define MIN(x,y) ((x)>(y)?(y):(x))

#define UPPER(c) ((c)-’a’+’A’)

/* assumes c is lowercase letter */

#define LOWER(c) ((c)-’A’+’a’)

3

Example Effect of Parameterized Macro

while ((c = getchar()) != EOF)

putchar(UPPER(c));

is transformed into

while ((c = getc(stdin)) != (-1))

putc(((c)-’a’+’A’), stdout);

4

Macro Parameters as String Constants

Suppose we want a macro PRINTI with one

parameter that when called with max, it expands to

printf("max = %d\n", max)

5

Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf("x = %d\n", x)

means that PRINTI(max) will expand to

printf("x = %d\n", max)

since the preprocessor does not scan string

constants for replacement

6

Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf(x "= %d\n", x)

means that PRINTI(max) will expand to

printf(max "= %d\n", max)

which also is not what we want

7

Macro Pararmeters as String Constants (cont.)

Solution is to use # operator; using #x in a

replacement string expands to the value of the

parameter enclosed in double quotes

#define PRINTI(x) printf(#x " = %d\n", x)

Then PRINTI(max) expands to

printf("max" " = %d\n", max)

8

Pasting Items in Macro Definitions

Parameters adjacent to ## operator are substituted,

the ## is removed, and result is rescanned

#define RedApple 3

#define GreenApple 5

#define Apple(x) x##Apple

So Apple(Red) expands to RedApple which is

rescanned to produce 3

9

Rescanning

After macro invocation replaced by corresponding

body, the result is rescanned for further macro

invocations

However, a macro name mentioned within its own

body is not expanded

So #define sizeof (int) sizeof is legal and does not

produce in�nite recursion
10

Removing Macro Definitions

#undef identifier

unde�nes the macro de�nition of identifier

An identi�er de�ned as a macro must be unde�ned

before it can be rede�ned unless the redefinition is

identical to the original definition

11

Predefined Macros

__LINE__ Current line number in source �le
__FILE__ Source �le name
__DATE__ Date of compilation in form "Mmm dd yyyy"

__TIME__ Time of compilation in form "hh:mm:ss"

__STDC__ Value of 1 means ANSI-conforming

These can’t be removed with #undef

12

File Inclusion

Actually three forms of #include:

#include "fname"
#include <fname>
#include sequence-of-chars

In third form, macro substitutions are performed on

sequence of characters, and result must match one

of the �rst two forms

13

Conditional Compilation

Selective compilation of portions of programs, such

as only those portions necessary for a particular

system

Advantages:

1. It provides a compile-time parameterization

facility, so you can generate programs that have

di�erent kinds of structures
14

2. Greater storage e�ciency because extraneous

code is not included

3. Greater time e�ciency because decisions made at

compile time

Conditional Compilation (continued)

#if constant-expression

lines for true case

#endif

constant-expression must be an integral constant

expression that does not use sizeof or a cast or an

enumeration constant

15

Conditional Compilation (continued)

It can use the defined operator (same syntax as

sizeof), which returns true if its operand is currently

de�ned as a macro

#if !defined(MAX_STK_SIZE)

#define MAX_STK_SIZE 128

#endif

16

Conditional Compilation (continued)

The preprocessor also supports #else and #elif,

which behave as you’d expect

#if defined(u370)

#define BUFSIZ 4096

#elif defined(vax) || defined(u3b)

#define BUFSIZ 1024

#endif

17

Conditional Compilation (continued)

typedef struct {

#if defined(vax) || defined(u3b)

int _cnt; unsigned char *_ptr;

#else

unsigned char *_ptr; int _cnt;

#endif

unsigned char *_base;

char _flag, _file;

} FILE;

18

Conditional Compilation (continued)

Also provided are two special forms of #if:

#ifdef identifier

#ifndef identifier

These behave like the following:

#if defined identifier

#if !defined identifier
19

Using Conditional Compilation for Disabling

Large Blocks of Code

#if 0

lots of code here

that can even contain /* comments */

#endif

20

Error Directive

#error token-sequence

Causes the preprocessor to write a message that

includes the token sequence

#if !(defined ABC || defined DEF)

#error "You must define either ABC or DEF!"

#endif

21

Error Directive (continued)

Since the #error directive requires a token-sequence,

the following is not allowed:

#error What’s going on?

The single quote is treated as starting a character

constant, and since it is never closed, this is illegal

Similarly, using unmatched double quotes is an error
22

Null Directive

A line containing just the character # is ignored.

23

Sample Implementation of assert macro

#ifdef NDEBUG

#define assert(e) ((void)0)

#else

#define assert(e) (void)((e) || \

(__assert(#e, __FILE__, __LINE__), 0))

#endif

24

