C Preprocessor (continued)
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Announcements

Should have read just about all of K&R through
Chapter 7

All previous assignments & quizzes graded

Assignment 4 available, due in a week



Simple Macro Definitions

#define NULL O

#define EOF (-1)

#define GET getc(stdin)

#define begin { /* allows compound statements */

#define end } /* like: while (e) begin ... end */

Comments in replacement strings are legal | they
just become part of the replacement. What

problems could occur?



Parameterized Macro Definitions

#define getchar() getc(stdin)
#define putchar(x) putc(x, stdout)
#define MAX(x,y) ((x)>(y)7(x):(y))
#define MIN(x,y) ((x)>(y)7(y):(x))
#define UPPER(c) ((c)-’a’+’A’)

/* assumes c is lowercase letter */

#define LOWER(c) ((c)-’A’+’a’)



Example Effect of Parameterized Macro

while ((c = getchar()) != EOF)
putchar (UPPER(c)) ;

Is transformed into

while ((c = getc(stdin)) !'= (-1))

putc(((c)-’a’+’A’), stdout);



Macro Parameters as String Constants

Suppose we want a macro PRINTI with one

parameter that when called with max, it expands to

printf("max = %d\n", max)



Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf("x = /d\n", x)

means that PRINTI(max) will expand to

printf("x = d\n", max)

since the preprocessor does not scan string

constants for replacement



Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf(x "= /d\n", x)

means that PRINTI(max) will expand to

printf (max "= ’%d\n", max)

which also 1s not what we want



Macro Pararmeters as String Constants (cont.)
Solution is to use # operator; using #x In a
replacement string expands to the value of the
parameter enclosed in double quotes

#define PRINTI(x) printf(#x " = %d\n", x)

Then PRINTI(max) expands to

printf ("max" " = %d\n", max)



Pasting Items in Macro Definitions

Parameters adjacent to ## operator are substituted,
the ## Is removed, and result is rescanned

#define RedApple 3
#define GreenApple 5
#define Apple(x) x#i#Apple

So Apple(Red) expands to RedApple which is
rescanned to produce 3



Rescanning

After macro invocation replaced by corresponding

body, the result is rescanned for further macro
Invocations

However, a macro name mentioned within its own
body Is not expanded

SO #define sizeof (int) sizeof IS legal and does not
produce In nite recursion
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Removing Macro Definitions

#undef identifier

unde nes the macro de nition of identifier

An identi er de ned as a macro must be unde ned
before It can be rede ned unless the redefinition is

iIdentical to the original definition
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Predefined Macros

__LINE__ Current line number in source le
__FILE__ Source le name

__DATE__ Date of compilation in form "Mmm dd yyyy"
__TIME__ Time of compilation in form "hh:mm:ss"
_STDC__ Value of 1 means ANSI-conforming

These can’t be removed with #undef
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File Inclusion

Actually three forms of #include:

#include "fname"
#include <fname>
#include sequence-of-chars

In third form, macro substitutions are performed on
seqguence of characters, and result must match one

of the rst two forms
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Conditional Compilation

Selective compilation of portions of programs, such
as only those portions necessary for a particular

system

Advantages:

1. It provides a compile-time parameterization
facility, so you can generate programs that have

di erent kinds of structures
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2. Greater storage e ciency because extraneous

code i1s not included

3. Greater time e ciency because decisions made at

compile time



Conditional Compilation (continued)

#if constant-expression
lines for true case

#tendif

constant-expression must be an integral constant
expression that does not use sizeof or a cast or an

enumeration constant
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Conditional Compilation (continued)

It can use the defined operator (same syntax as
sizeof), which returns true If its operand is currently

de ned as a macro

#if 'defined(MAX_STK_SIZE)
##tdefine MAX _STK _SIZE 128
#tendif
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Conditional Compilation (continued)

The preprocessor also supports #else and #elif,

which behave as you’d expect

#if defined(u370)

#define BUFSIZ 4096

#elif defined(vax) || defined(u3b)
#define BUFSIZ 1024

#endif
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Conditional Compilation (continued)

typedef struct {
#if defined(vax) || defined(u3b)
int _cnt; unsigned char *_ptr;
#else
unsigned char *_ptr; int _cnt;
#endif
unsigned char *_base;
char _flag, _file;
} FILE;
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Conditional Compilation (continued)

Also provided are two special forms of #if:

#ifdef identifier
#ifndef identifier

These behave like the following:

#if defined identifier

#if !defined identifier
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Using Conditional Compilation for Disabling

Large Blocks of Code

#if O
lots of code here
that can even contain /* comments */

#endif
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Error Directive

#terror token-sequence

Causes the preprocessor to write a message that

Includes the token sequence

#if ! (defined ABC || defined DEF)

#terror "You must define either ABC or DEF!"

#tendif
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Error Directive (continued)

Since the tterror directive requires a token-sequence,

the following is not allowed:

#error What’s going on?

The single quote Is treated as starting a character
constant, and since It Is never closed, this is illegal

Similarly, using unmatched double quotes is an error
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Null Directive

A line containing just the character # is ignored.
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Sample Implementation of assert macro

#ifdef NDEBUG
#define assert(e) ((void)O0)
#else
#define assert(e) (void) ((e) || \
(__assert(#e, __FILE__, __LINE__), 0))
#endif

24



