C Preprocessor (continued)
COM S 113

February 15, 1999

Announcements

Should have read just about all of K&R through
Chapter 7

All previous assignments & quizzes graded

Assignment 4 available, due in a week

Simple Macro Definitions

#define NULL O

#define EOF (-1)

#define GET getc(stdin)

#define begin { /* allows compound statements */

#define end } /* like: while (e) begin ... end */

Comments in replacement strings are legal | they
just become part of the replacement. What

problems could occur?

Parameterized Macro Definitions

#define getchar() getc(stdin)
#define putchar(x) putc(x, stdout)
#define MAX(x,y) ((x)>(y)7(x):(y))
#define MIN(x,y) ((x)>(y)7(y):(x))
#define UPPER(c) ((c)-’a’+’A’)

/* assumes c is lowercase letter */

#define LOWER(c) ((c)-’A’+’a’)

Example Effect of Parameterized Macro

while ((c = getchar()) != EOF)
putchar (UPPER(c)) ;

Is transformed into

while ((c = getc(stdin)) !'= (-1))

putc(((c)-’a’+’A’), stdout);

Macro Parameters as String Constants

Suppose we want a macro PRINTI with one

parameter that when called with max, it expands to

printf("max = %d\n", max)

Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf("x = /d\n", x)

means that PRINTI(max) will expand to

printf("x = d\n", max)

since the preprocessor does not scan string

constants for replacement

Macro Parameters as String Constants (cont.)

#define PRINTI(x) printf(x "= /d\n", x)

means that PRINTI(max) will expand to

printf (max "= ’%d\n", max)

which also 1s not what we want

Macro Pararmeters as String Constants (cont.)
Solution is to use # operator; using #x In a
replacement string expands to the value of the
parameter enclosed in double quotes

#define PRINTI(x) printf(#x " = %d\n", x)

Then PRINTI(max) expands to

printf ("max" " = %d\n", max)

Pasting Items in Macro Definitions

Parameters adjacent to ## operator are substituted,
the ## Is removed, and result is rescanned

#define RedApple 3
#define GreenApple 5
#define Apple(x) x#i#Apple

So Apple(Red) expands to RedApple which is
rescanned to produce 3

Rescanning

After macro invocation replaced by corresponding

body, the result is rescanned for further macro
Invocations

However, a macro name mentioned within its own
body Is not expanded

SO #define sizeof (int) sizeof IS legal and does not
produce In nite recursion

10

Removing Macro Definitions

#undef identifier

unde nes the macro de nition of identifier

An identi er de ned as a macro must be unde ned
before It can be rede ned unless the redefinition is

iIdentical to the original definition

11

Predefined Macros

__LINE__ Current line number in source le
__FILE__ Source le name

__DATE__ Date of compilation in form "Mmm dd yyyy"
__TIME__ Time of compilation in form "hh:mm:ss"
_STDC__ Value of 1 means ANSI-conforming

These can’t be removed with #undef

12

File Inclusion

Actually three forms of #include:

#include "fname"
#include <fname>
#include sequence-of-chars

In third form, macro substitutions are performed on
seqguence of characters, and result must match one

of the rst two forms

13

Conditional Compilation

Selective compilation of portions of programs, such
as only those portions necessary for a particular

system

Advantages:

1. It provides a compile-time parameterization
facility, so you can generate programs that have

di erent kinds of structures
14

2. Greater storage e ciency because extraneous

code i1s not included

3. Greater time e ciency because decisions made at

compile time

Conditional Compilation (continued)

#if constant-expression
lines for true case

#tendif

constant-expression must be an integral constant
expression that does not use sizeof or a cast or an

enumeration constant

15

Conditional Compilation (continued)

It can use the defined operator (same syntax as
sizeof), which returns true If its operand is currently

de ned as a macro

#if 'defined(MAX_STK_SIZE)
##tdefine MAX _STK _SIZE 128
#tendif

16

Conditional Compilation (continued)

The preprocessor also supports #else and #elif,

which behave as you’d expect

#if defined(u370)

#define BUFSIZ 4096

#elif defined(vax) || defined(u3b)
#define BUFSIZ 1024

#endif

17

Conditional Compilation (continued)

typedef struct {
#if defined(vax) || defined(u3b)
int _cnt; unsigned char *_ptr;
#else
unsigned char *_ptr; int _cnt;
#endif
unsigned char *_base;
char _flag, _file;
} FILE;

18

Conditional Compilation (continued)

Also provided are two special forms of #if:

#ifdef identifier
#ifndef identifier

These behave like the following:

#if defined identifier

#if !defined identifier

19

Using Conditional Compilation for Disabling

Large Blocks of Code

#if O
lots of code here
that can even contain /* comments */

#endif

20

Error Directive

#terror token-sequence

Causes the preprocessor to write a message that

Includes the token sequence

#if ! (defined ABC || defined DEF)

#terror "You must define either ABC or DEF!"

#tendif

21

Error Directive (continued)

Since the tterror directive requires a token-sequence,

the following is not allowed:

#error What’s going on?

The single quote Is treated as starting a character
constant, and since It Is never closed, this is illegal

Similarly, using unmatched double quotes is an error
22

Null Directive

A line containing just the character # is ignored.

23

Sample Implementation of assert macro

#ifdef NDEBUG
#define assert(e) ((void)O0)
#else
#define assert(e) (void) ((e) || \
(__assert(#e, __FILE__, __LINE__), 0))
#endif

24

