
Recursive Structures and I/O

COM S 113

February 10, 1999



Announcements

Read K&R Chapter 6

1



sizeof Operator

Expressions \sizeof expression" and \sizeof(type

name)" yield integral size in bytes

If given an expression, the expression is not evaluated

Type of sizeof expression is size_t, de�ned in

<stddef.h>

2



Cannot be applied to functions, bit �elds, or objects

of incomplete type



sizeof Operator (continued)

int main() {

char a[100];

int b[50];

printf("sizeof a[14] is %d\n", sizeof a[14]);

printf("sizeof a is %d\n", sizeof a);

printf("sizeof b[14] is %d\n", sizeof b[14]);

printf("b has %d elements\n", sizeof b / sizeof b[0]);

}
3



Pointers to Structures

Expensive to pass large structures between functions

Instead pass pointer to structure:

void printpoint(struct point *pp) {

printf("(%d,%d)", (*pp).x, (*pp).y); }

int main() { struct point origin = { 0, 0 };

printpoint(&origin); }

4



Pointers to Structures (continued)

Operator -> is shorthand for accessing a �eld given a

structure pointer

void printpoint(struct point *pp) {

printf("(%d,%d)", pp->x, pp->y);

/* same as (*pp).x and (*pp).y */

}

5



Pointers to Structures (continued)

Operators -> and . associate left-to-right, have

maximum precedence along with () and []

For example, ++pp->x increments �eld x, not the

pointer pp

6



Memory Allocation Functions

All four declared in <stdlib.h>

void *malloc(size_t size) allocates size bytes and

returns a pointer to the new space if possible;

otherwise it returns null pointer

void *calloc(size_t n, size_t size) same as

malloc(n * size) except that allocated storage is

zeroed
7



Memory Allocation Functions (continued)

void *realloc(void *ptr, size_t size) changes size

of previously allocated object to size and returns

pointer to new space if possible; otherwise it returns

null pointer

void free(void *ptr) deallocates previously allocated

storage

8



Self-Referential Structures

#include <stdlib.h>

typedef struct node {

int datum;

struct node *next;

} node;

9



node *newlist(void) {

node *t = malloc(sizeof(node));

if (t == NULL) fatal("newlist: out of storage");

t->next = NULL;

return t;

}

void freelist(node *list) {

if (list->next != NULL) freelist(list->next);

free(list);

}
10



int empty(node *list) {

return list->next == NULL;

}

int in(node *list, int d) {

node *t;

for (t = list->next; t != NULL; t = t->next)

if (t->datum == d) return 1;

return 0;

}
11



void insert(node *list, int d) {

if (!in(list, d)) {

node *t = malloc(sizeof(node));

if (t == NULL)

fatal("insert: out of storage");

t->datum = d;

t->next = list->next;

list->next = t;

}

}

12



void delete(node *list, int d) {

node *t;

for (t = list;

t->next != NULL && t->next->datum != d;

t = t->next) /* null statement */ ;

if (t->next != NULL) {

node *del = t->next;

t->next = del->next;

free(del);

}

}
13



Example Use of List

int main() {

node *list = newlist();

insert(list, 4); insert(list, 8); insert(list, 12);

delete(list, 4); delete(list, 7); delete(list, 12);

printf("The list is %sempty\n",

empty(list) ? "" : "not ");

freelist(list);

}

14



Input and Output Streams

All I/O is done through \streams"; two kinds: text

and binary

Text streams are sequences of lines, each of which is

a sequence of characters terminated by a newline

Binary streams are sequences of characters

corresponding to the internal representation of data

15



Streams (continued)

Streams are created by opening �les

Streams are referenced using stream pointers (of

type FILE *, de�ned in <stdio.h>

Normally three standard streams are automatically

opened: stdin, stdout, and stderr

16



Stream Functions

All stream functions described in K&R section B1

Whenever a function takes a stream as a parameter,

the stream is the �rst parameter

17



Using Output Streams

putc Write a character to the speci�ed stream

(macro)
fputc Same as putc (but a function)
putchar Write a character to stdout

puts Write a string to stdout

fputs Write a string to the speci�ed stream
printf Write the list of values to stdout according

to the format string
fprintf Write the list of values to the speci�ed

stream according to the format string

18



Example: Writing to Streams

#include <stdio.h>

#include <stdlib.h>

void fatal(char *s) {

fprintf(stderr, "Error, %s\n", s);

exit(EXIT_FAILURE); /* defined in <stdlib.h> */

}

19



Using Input Streams

getc Get next char from speci�ed stream

(macro)
fgetc Same as getc (but a function)
getchar Get next char from stdin

scanf Read values from stdin according to format

string
fscanf Read values from speci�ed stream accord-

ing to format string
gets Get a string from stdin

fgets Get a string from speci�ed stream

20



Warning: Never Use gets!

char *gets(char *s) reads from stdin until newline,

replacing newline with ’\0’

char *fgets(char *s, int n, FILE *stream) reads

until newline or until n− 1 characters read,

appending ’\0’

Danger with gets(): possible for user to overrun

array bounds
21



Accessing Files

Open �les with fopen(), close them with fclose()

FILE *fopen(const char *fname, const char *mode)

Note: mode is a string, not a character!

22



Text File Modes

"r" Open text �le for reading
"w" Create text �le for writing (truncates)
"a" Open or create text �le for appending
"r+" Open text �le for update (read and write)
"w+" Create text �le for update (truncates)
"a+" Open or create text �le for update & appending

Most commands to read from text streams return

EOF (de�ned in <stdio.h>) on error condition

23



File Access Example

Suppose our employee database �le has lines like the

following:

mharris 5162 5-7421

fleming 5162 5-7421

liz 4126 5-8593

24



We could de�ne a structure like this:

#include <stdio.h>

#include <stdlib.h>

struct {

char name[20], room[5], phone[7];

} db[100];

25



int main() {

FILE *fp;

char *dbfile = "database.txt";

int i = 0;

if ((fp = fopen(dbfile, "r")) == NULL) {

fprintf(stderr, "Can’t open %s\n", dbfile);

exit(EXIT_FAILURE);

}

26



while (fscanf(fp, "%s%s%s",

db[i].name, db[i].room,

db[i].phone) == 8) {

printf("Read record %d for name ’%s’\n",

i, db[i].name);

i++;

}

fclose(fp);

}

27


