Recursive Structures and 1I/0
COM S 113

February 10, 1999



Announcements

Read K&R Chapter 6



sizeof Operator

EXxpressions \sizeof expression' and \sizeof (type

name)" yield integral size in bytes

If given an expression, the expression is not evaluated

Type of sizeof expression Is size_t, de ned In

<stddef .h>



Cannot be applied to functions, bit elds, or objects

of incomplete type



sizeof Operator (continued)

int main() {
char a[100];
int b[50];

printf("sizeof al14] is %d\n", sizeof al[14]);
printf("sizeof a is %d\n", sizeof a);

printf("sizeof b[14] is %d\n", sizeof b[14]);
printf("b has %d elements\n", sizeof b / sizeof b[0]);



Pointers to Structures

Expensive to pass large structures between functions

Instead pass pointer to structure:

void printpoint(struct point *pp) {
printf (" (%d,%d)", (xpp).x, (xpp).y); }

int main() { struct point origin = { 0, 0 };

printpoint (&origin) ; +



Pointers to Structures (continued)

Operator -> is shorthand for accessing a eld given a

structure pointer

void printpoint(struct point *pp) {
printf (" (%d,%d)", pp—>x, pp—>Vy);
/* same as (kpp).x and (*pp).y */



Pointers to Structures (continued)

Operators -> and . associate left-to-right, have

maximum precedence along with () and []

For example, ++pp->x increments eld x, not the

pointer pp



Memory Allocation Functions

All four declared in <stdlib.h>

void *malloc(size_t size) allocates size bytes and
returns a pointer to the new space If possible;

otherwise It returns null pointer

void *calloc(size_t n, size_t size) Same as
malloc(n * size) except that allocated storage is

zeroed



Memory Allocation Functions (continued)

void *realloc(void *ptr, size_t size) changes size
of previously allocated object to size and returns
pointer to new space If possible; otherwise it returns

null pointer

void free(void *ptr) deallocates previously allocated

storage



Self-Referential Structures

#include <stdlib.h>

typedef struct node {
int datum;
struct node *next;

} node;



node *newlist(void) {
node *t = malloc(sizeof (node));
if (t == NULL) fatal("newlist: out of storage");
t->next = NULL;

return t;

void freelist(node *1list) {
if (list->next !'= NULL) freelist(list->next);
free(list);

10



int empty(node *1list) {

return list->next ==

int in(node *1list, int

node x*xt;

for (t = list->next;
if (t->datum == d)

return O;

NULL;

t

= NULL; t

return 1;

t->next)

11



void insert(node *1list, int d) {
if (!in(list, d)) {
node *t = malloc(sizeof (node));
if (t == NULL)
fatal("insert: out of storage");
t->datum = d;
t->next = list->next;

list->next = t;

12



void delete(node *1list, int d) {
node *xt;
for (t = list;
t->next !'= NULL && t->next->datum !'= d;
t = t->next) /* null statement */ ;
if (t->next !'= NULL) {
node *del = t->next;
t->next = del->next;

free(del);

13



Example Use of List

int main() {
node *list = newlist();
insert(list, 4); insert(list, 8); insert(list, 12);
delete(list, 4); delete(list, 7); delete(list, 12);
printf ("The list is Ysempty\n",
empty(list) ? "" : "not ");

freelist(list);

14



Input and Output Streams

All 170 iIs done through \streams''; two kinds: text

and binary

Text streams are sequences of lines, each of which is

a sequence of characters terminated by a newline

Binary streams are sequences of characters

corresponding to the internal representation of data

15



Streams (continued)

Streams are created by opening les

Streams are referenced using stream pointers (of

type FILE *, de ned in <stdio.h>

Normally three standard streams are automatically

opened: stdin, stdout, and stderr

16



Stream Functions

All stream functions described in K&R section Bl

Whenever a function takes a stream as a parameter,

the stream is the rst parameter

17



Using Output Streams

putc Write a character to the speci ed stream
(macro)

fputc Same as putc (but a function)

putchar Write a character to stdout

puts Write a string to stdout

fputs Write a string to the speci ed stream

printf Write the list of values to stdout according
to the format string

fprintf Write the list of values to the speci ed

stream according to the format string

18



Example: Writing to Streams

#include <stdio.h>

#include <stdlib.h>
void fatal(char *s) {

fprintf (stderr, "Error, %s\n", s);

exit (EXIT_FAILURE); /* defined in <stdlib.h> x/

19



Using Input Streams

getc Get next char from speci ed stream
(macro)

fgetc Same as getc (but a function)

getchar Get next char from stdin

scanf Read values from stdin according to format
string

fscanf Read values from speci ed stream accord-
Ing to format string

gets Get a string from stdin

fgets Get a string from speci ed stream

20



Warning: Never Use gets!

char *gets(char *s) reads from stdin until newline,
replacing newline with ’\0’

char *fgets(char *s, int n, FILE *stream) reads
until newline or until n — 1 characters read,
appending ’\0’

Danger with gets(): possible for user to overrun
array bounds

21



Accessing Files

Open les with fopen(), close them with fclose()

FILE *fopen(const char *fname, const char *mode)

Note: mode IS a string, not a character!

22



Text File Modes

"r" Open text le for reading
"w" Create text le for writing (truncates)
"a" Open or create text le for appending

"r+" Open text le for update (read and write)
"w+" Create text Ile for update (truncates)
"a+" Open or create text le for update & appending

Most commands to read from text streams return

EOF (de ned In <stdio.h>) on error condition

23



File Access Example

Suppose our employee database le has lines like the

following:

mharris 5162 5-7421
fleming 5162 5-7421
liz 4126 5-8593

24



We could de ne a structure like this:

#include <stdio.h>

#include <stdlib.h>

struct {
char name[20], room[5], phonel7];
} db[100];

25



int main() {
FILE *fp;
char *dbfile = '"database.txt";

int 1 = 0;

if ((fp = fopen(dbfile, "r")) == NULL) A
fprintf(stderr, "Can’t open 7%s\n", dbfile);
exit (EXIT_FAILURE);

26



while (fscanf(fp, "%s¥kshs",
db[i] .name, dbl[i].room,
db[i] .phone) == 8) A{
printf ("Read record %d for name ’%s’\n",
i, db[i] .name);
i++
t
fclose(fp);

27



