
Operators

COM S 113

February 1, 1999

Announcements

Textbook status (1st ed.?)

Read K&R Chapter 2 by Wednesday

New assignment will be out Wednesday

1

Initial Comments on Assignment 1

Comment characters // not allowed

Squaring numbers without pow()

Using fewer int variables

2

const Type Qualifier

Can be applied to declaration of any variable|even

function parameters

Speci�es that variable’s value won’t be changed; for

arrays, says that the array elements won’t be changed

const double e = 2.71828182845905;

const char msg[] = "warning: ";

int strlen(const char[]);

3

Arithmetic Operators

Binary arithmetic ops are +, -, *, /, and modulus op-

erator %.

Unary + and - have highest precedence of arithmetic

operators. *, /, and % are next, and binary + and - are

lowest.

Associativity is left-to-right

4

Relational Operators

Relational operators have lower precedence than arith-

metic operators

>, >=, <, and <= have the same precedence

== and != are lower

Examples: i < lim-1 a>b == c>d

5

Logical Operators

&& and || have lower precedence than relational oper-

ators, with && above ||

\Short-circuit evaluation"|evaluation stops when truth

or falsehood of an expression is known

Example: a && b || c

6

Logical Operators (continued)

Numerical value of relational or logical expression is 1

for true, 0 for false

Unary negation operator ! has high precedence (same

as unary + and -)

Example: if (!valid) same as if (valid == 0)

What does !!x do?
7

Assignment Operators

Assignment operators (such as =) have very low prece-

dence, right-to-left associativity

Examples: a=b=c+d; What does a=b+c=d; do?

When variable on left side of assignment is repeated

immediately on right, as in i = i + 2, can rewrite with

assignment operator: i += 2

8

Assignment Operators (continued)

expr1 op= expr2 almost equivalent to

expr1 = (expr1) op (expr2)

Example: x *= y + 1 means x = x * (y + 1) rather

than x = x * y + 1

Value of assignment expression is value of left operand

after assignment

9

Example Expressions

while ((c = getchar()) != EOF) ...

i<lim-1 && (c = getchar()) != ’\n’ && c != EOF

10

Increment and Decrement Operators

++ and -- operators have very high precedence (same

as ! and unary + and -)

Examples:

for (i=0; i<10; i++) printf("%d\n");

for (i=9; i>=0; i--) printf("%d\n");

11

Increment and Decrement Operators (continued)

May be used as pre�x operators (like ++n) or post�x

(like n++), but only to variables (not expressions)

Di�erence is whether increment happens before or af-

ter value is used

If n is 5, consider x = n++; versus x = ++n;

12

Increment Operator Example (K&R p. 47)

/* squeeze: delete all c from s */

void squeeze(char s[], int c) {

int i, j;

for (i = j = 0; s[i] != ’\0’; i++)

if (s[i] != c)

s[j++] = s[i];

s[j] = ’\0’;

}

13

Increment Operator Example (K&R p. 48)

/* strcat: add t to end of s; s must be big enough */

void strcat(char s[], char t[]) {

int i, j;

i = j = 0;

while (s[i] != ’\0’) /* find end of s */

i++;

while ((s[i++] = t[j++]) != ’\0’) /* copy t */

;

}
14

Pitfall: Evaluation Order Unspecified

a[i] = i++; /* wrong */

printf("%d %d\n", ++n, pow(2, n)); /* wrong */

printf("Hello ") + printf("there!\n"); /* wrong */

15

Type Conversions

Automatic type conversions used when operands have

di�erent types

Normally narrower operand converted to type of wider

one, but lossy assignments are legal

Nonsensical expressions (like using float as array sub-

script) are disallowed

16

Explicit Type Conversion with Casting

(type-name) expression

The expression is converted to the named type using

the normal conversion rules

Example: sqrt((double) n) converts n to a double but

doesn’t modify n

How many conversions in this? double x = (int) sqrt(2);

17

Example of char as Integer

/* atoi: convert s to integer */

int atoi(char s[]) {

int i, n = 0;

for (i = 0; s[i] >= ’0’ && s[i] <= ’9’; ++i)

n = 10 * n + (s[i] - ’0’);

return n;

}

18

Conditional Expressions

if (a > b) z = a; else z = b;

can be written as

z = (a > b) ? a : b; /* z = max(a, b) */

General form: expr1 ? expr2 : expr3

Precedence very low|just above assignment opera-

tors

19

Conditional Expressions (continued)

If expr2 and expr3 are of di�erent types, conversion

rules applied

Consider the type of this, if f is float and n is int:

(n > 0) ? f : n

20

Examples of Conditional Expressions

printf("You have %d item%s.\n", n, n==1 ? "" : "s");

for (i = 0; i < n; i++)

printf("%6d%c", a[i],

(i%10==9 || i==n-1) ? ’\n’ : ’ ’);

21

Comma Operator

Lowest precedence of any operator in C

#include <string.h>

void reverse(char s[]) { /* reverse string s in place */

int c, i, j;

for (i = 0, j = strlen(s)-1; i < j; i++, j--) {

c = s[i]; s[i] = s[j]; s[j] = c;

}

}
22

Comma Operator (continued)

Commas separating function arguments, variables in

declarations, etc. are not comma operators and do

not guarantee evaluation order

Use commas very sparingly

for (i = 0, j = strlen(s)-1; i < j; i++, j--)

c = s[i], s[i] = s[j], s[j] = c;

23

