Operators
COM S 113

February 1, 1999

Announcements

Textbook status (1st ed.?)

Read K&R Chapter 2 by Wednesday

New assignment will be out Wednesday

Initial Comments on Assignment 1

Comment characters // not allowed

Squaring numbers without pow()

Using fewer int variables

const Type Qualifier

Can be applied to declaration of any variable | even

function parameters

Speci es that variable’s value won’t be changed; for
arrays, says that the array elements won’t be changed

const double e = 2.71828182845905;
const char msgl[] = "warning: ";

int strlen(const charl[]);

Arithmetic Operators

Binary arithmetic ops are +, -, *, /, and modulus op-

erator %,.
Unary + and - have highest precedence of arithmetic
operators. *, /, and % are next, and binary + and - are

lowest.

Associativity is left-to-right

Relational Operators

Relational operators have lower precedence than arith-

metic operators

>, >=, <, and <= have the same precedence

== and != are lower

Examples: i < 1lim-1 a>b == c>d

Logical Operators

&& and || have lower precedence than relational oper-

ators, with && above ||

\Short-circuit evaluation'] evaluation stops when truth

or falsehood of an expression is known

Example: a & b || ¢

Logical Operators (continued)

Numerical value of relational or logical expression is 1

for true, O for false

Unary negation operator ! has high precedence (same

as unary + and -)

Example: if (!valid) same as if (valid == 0)

What does !!'x do?

Assignment Operators

Assignment operators (such as =) have very low prece-

dence, right-to-left associativity

Examples: a=b=c+d; What does a=b+c=d; do?

When variable on left side of assignment is repeated

Immediately onright, asini = i + 2, can rewrite with

assignment operator: i += 2

Assignment Operators (continued)

expri1 op= exprp almost equivalent to

expr, = (expri1) op (expr)

Example: x =y + 1 means x = x *x (y + 1) rather

than x = x * y + 1

Value of assignment expression is value of left operand

after assignment

Example Expressions

while ((c = getchar()) !'= EOF)

i<lim-1 && (c = getchar()) !'= ’\n’ && c != EOF

10

Increment and Decrement Operators

++ and -- operators have very high precedence (same

as ! and unary + and -)
Examples:
for (i=0; i<10; i++) printf("%d\n");

for (i=9; i>=0; i--) printf("%d\n");

11

Increment and Decrement Operators (continued)

May be used as pre x operators (like ++n) or post x

(like n++), but only to variables (not expressions)

Di erence is whether increment happens before or af-

ter value Is used

If n IS 5, consider x = n++; Versus x = ++n;

12

Increment Operator Example (K&R p. 47)

/* squeeze: delete all c from s */
void squeeze(char s[], int c) {
int i, j;
for (i = j = 0; sli] '= ’\0’; i++)
if (s[i] !'= c)
s[j++] = sl[il;

s[j] = ’\0’;

13

Increment Operator Example (K&R p. 48)

/* strcat: add t to end of s; s must be big enough */
void strcat(char s[], char t[]) {

int i, j;

i=3=0;

while (s[i] != ’\0’) /* find end of s */
i++;

)

while ((s[i++] = t[j++]) !'= ’\0’) /* copy t */

.
)

14

Pitfall: Evaluation Order Unspecified
ali] = i++; /* wrong */
printf ("/%d %d\n", ++n, pow(2, n)); /* wrong */

printf("Hello ") + printf("there!\n"); /* wrong */

15

Type Conversions

Automatic type conversions used when operands have

di erent types

Normally narrower operand converted to type of wider

one, but lossy assignments are legal

Nonsensical expressions (like using float as array sub-

script) are disallowed

16

Explicit Type Conversion with Casting
(type-name) expression

The expression is converted to the named type using
the normal conversion rules

Example: sqrt((double) n) converts n to a double but
doesn’t modify n

How many conversions in this? double x = (int) sqrt(2);

17

Example of char as Integer

/* atoi: convert s to integer */
int atoi(char s[]) {

int 1, n = 0;

for (i = 0; s[i] >= ’0’ && s[i] <= ’9’; ++1i)
n =10 *x n + (s[i] - ’0?);

return n;

18

Conditional Expressions

if (a > b) z = a; else z = b;
can be written as

z=(a>b) ? a: b; /* z = max(a, b) */

General form: exprqi 7 expro : exprs

Precedence very low || just above assignment opera-

tors

19

Conditional Expressions (continued)

If expro and exprg are of di erent types, conversion

rules applied

Consider the type of this, if £ is float and n IS int:

(n>0) ?27f :n

20

Examples of Conditional Expressions

printf("You have ’d item/s.\n", n, n==1 7 "" : "s");

for (i = 0; i < n; i++)

printf ("%6d/%c", alil,
(i%410==9 || i==n-1) 7 ’\n’ : > ?);

21

Comma Operator

Lowest precedence of any operator in C

#include <string.h>

void reverse(char s[]) { /* reverse string s in place */
int ¢, 1, j;
for (i = 0, j = strlen(s)-1; i < j; i++, j——) {

c = slil; slil] = s[jl; slj] = c;

22

Comma Operator (continued)

Commas separating function arguments, variables in
declarations, etc. are not comma operators and do

not guarantee evaluation order
Use commas very sparingly
for (i = 0, j = strlen(s)-1; i < j; i++, j--)

c = sl[il], sl[i] = s[jl, sl[j] = c;

23

