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Abstract

As systems become more complex, conducting cycle-
accurate simulation experiments becomes more time con-
suming. Most approaches to accelerating simulations at-
tempt to choose simulation points such that the performance
of the program portions modeled in detail are representative
of whole-program behavior. To maintain or build the cor-
rect architectural state, “fast-forwarding” models a series
of instructions before a desired simulation point. This fast-
forwarding is usually performed by functional simulation:
modeling the effects of instructions without all the details
of pipeline stages and individual p-ops. We present an-
other fast-forwarding technique, SimSnap, that leverages
native execution and application-level checkpointing. We
demonstrate the viability of our approach by moving check-
pointed versions of SPLASH-2 benchmarks between an Al-
pha 21264 system and SimpleScalar Version 4.0 Alpha-Sim.
Reduction in experiment times is dramatic, with minimal
perturbation of benchmark programs.

1 Introduction

Architectural simulation is the main tool computer archi-
tects use to explore new designs. Simulators vary in the de-
tails they model, and different kinds are suited for different
types of evaluation: gate-level for low-level functional eval-
uation and timing analysis; trace-driven when relative tim-
ing of events is unimportant to the experiment; and cycle-
accurate, execution-driven simulation for evaluating most
microarchitectural components. The more detail modeled,
the slower the simulation. As architectures and systems be-
come more complex, conducting a single, cycle-accurate
simulation experiment can take from days to weeks.

To reduce the time per experiment, architects may use
reduced workloads [13], or may choose to run detailed sim-

ulation only on pieces of an application. The portions mod-
eled may come from the beginning, or may be chosen (e.g.,
by random sampling) further into the application’s execu-
tion. In the latter case, some fast-forwarding mechanism
is used to model the program’s execution up to the por-
tion(s) of interest. Functional simulation is one means of
implementing fast-forwarding [5, 11, 12, 22]. The parts
of the application chosen to be modeled in detail (simula-
tion points) affect the statistics generated by the experiment:
ideally, one would choose those portions having the most
influence on overall program behavior [15, 22, 23]. For
instance, Sherwood et al. demonstrate that many popular
benchmark programs exhibit periodic behavior in terms of
dynamically executed basic blocks [23]. Choosing instruc-
tion stream fragments with a dynamic basic block profile
similar to that for full execution can yield detailed simula-
tion statistics representative of those from full execution.

Performing detailed, cycle-accurate simulation on only
representative points of the instruction stream dramatically
reduces the time to conduct a simulation experiment. Un-
fortunately, functionally simulating program behavior up to
the simulation point at which to begin cycle-accurate mod-
eling can still take a significant amount of time. In fact, ex-
ecution times of such hybrid simulations are in many cases
dominated by the functional simulation time, which can be
up to several days for SPEC 2000 codes [6, 23].

To further reduce experiment time, we substitute func-
tional simulation with native, real-time execution, using
checkpointing to transfer application state to a simulator at
a desired simulation point. Our technique — SimSnap —
fully encapsulates any checkpointing and restart functional-
ity within the application and hence allows any application
to restart itself within any simulator using the same ISA and
data-type sizes. Due to this encapsulation, also known as
Application-Level Checkpointing (ALC), SimSnap requires
no external support, especially no modification of the simu-
lator.



cycle-accurate | functional
benchmark simulation | simulation
barnes 8960 209
fft 11975 195
lu-cont. 37682 348
ocean-cont. 10433 132
radix 4083 78
water-n? 19615 252
[ Average | 9177 | 202 |

Table 1. Simulated vs. Native Run-time Factors

To quantify the potential of this approach, Table 1 shows
slowdown for both cycle-accurate and functional simu-
lation compared to native execution for codes from the
Splash2 [24] suite (Table 2 gives parameters used for these
runs). On average, functional simulation is 45 times faster
than cycle-accurate simulation, but is still 202 times slower
than native execution.

SimSnap is based on the the Cornell Checkpoint Com-
piler (C?) [2, 3]. C? transparently transforms a given ap-
plication into a checkpoint-enabled code by introducing the
necessary functionality to track, save, and restore its inter-
nal state. In this paper, we use the methods of the C3 system
to transform a set of scientific benchmarks. Using a check-
point generated by the native execution of the code, we are
able to continue with simulated execution from where the
checkpoint was taken. Likewise, we can resume native ex-
ecution of the code using a checkpoint generated during the
simulated execution. Comparing simulation statistics and
dynamic basic block profiles for the original and instru-
mented applications shows that SimSnap fast-forwarding
minimally perturbs the target application.

This paper lays the groundwork for our system, pro-
vides a demonstration of the feasibility of the approach, and
serves as a snapshot of current progress. We are encouraged
by initial results: our methods show promise for efficiently
migrating application execution between a native environ-
ment and a cycle-accurate simulation engine. The benefits
of this research direction are manifold: using native exe-
cution to bring a program to completion after modeling a
simulation point provides a small measure of validation of
the simulation model; using detailed simulation is useful in
debugging new checkpointing protocols; and the process of
merging checkpointing and simulation-point technologies
has inspired optimizations in both areas.

2 Related Work
2.1 Related Simulation Techniques

In Section 1 we discuss some of the problems with mod-
ern simulation experiments; here we briefly survey a few

recent approaches to those problems. Space limitations pre-
clude us from discussing more than just the solutions that
are complementary to or could be viable alternatives to the
approach we propose with SimSnap.

The MinneSPEC input set for the SPEC CPU 2000
benchmark suite provides reduced workloads that allows
computer architects to conduct simulation experiments rel-
atively quickly using existing simulators. Although derived
from the standard SPEC CPU 2000 workloads, the SPEC
CPU benchmarks using MinneSPEC should be considered
a separate benchmark suite, since the benchmark programs
exhibit different behaviors from their executions using the
official inputs, MinneSPEC constitutes a valuable tool for
exploring a large parameter space efficiently, allowing ar-
chitects to choose which configurations to simulate in detail
with the full workloads [14].

Another approach samples portions of benchmark execu-
tion, performing warmup functional simulations of a certain
number of instructions (called pre-cluster instructions) be-
fore detailed simulation begins [5, 11]. Doing so attempts
to create the correct cache and branch predictor states (i.e.,
the states that would exist if full execution were simulated)
for the portions of the benchmark being simulated in de-
tail. Haskins and Skadron exploit Memory Reference Reuse
Latencies (MRRLS) to choose the number of pre-cluster,
warm-up instructions to simulate functionally before a de-
sired simulation point [12]. An MRRL represents the num-
ber of instructions that elapse between successive refer-
ences to a given address. This method of selecting warm-up
periods about halves simulation running times with minimal
effect on IPC accuracies.

Generating accurate statistics requires that simulation
points be chosen carefully: Sherwood et al. find that sim-
ulating the first million instructions yields an average error
of 85% for SPECint 2000, and fast-forwarding one billion
and then simulating 100 million yields an average error of
51% [23]. SimPoint uses Basic Block Distribution Analysis
combined with machine learning approaches to clustering
analysis to concisely summarize the behavior of an arbi-
trary section of execution in a program. This information
can then be used to select representative samples to be sim-
ulated in detail, greatly reducing simulation time without
sacrificing statistical accuracy.

Our research agenda includes using the SimSnap frame-
work to model SPEC 2000 benchmarks using SimPoint
techniques and native execution to fast-forward between
multiple simulation points. We expect our code additions
for recording state and taking checkpoints will have mini-
mal effect on the simulation points for these benchmarks,
but we have yet to verify this.



2.2 Checkpointing

Checkpointing refers to saving program state, usually
to stable storage, so that it may be reconstructed later.
Checkpointing provides the backbone for rollback recovery
(fault-tolerance), playback debugging, and process migra-
tion. Early checkpointing efforts provide building blocks
for protocols that enforce correct semantics in distributed
simulation environments (as in Time Warp [10]) or that de-
termine the global state of a distributed system [4]. Here
we focus on checkpointing techniques most closely related
to the approach we use in SimSnap.

System-Level Checkpointing (SLC) encodes the state of
a process by capturing the contents of its address space, plus
the process-specific data structures in the operating system.
SLC is most often provided by the operating system, or by
a library linked to the application. It is therefore trans-
parent to the application programmer, but also not able to
take advantage of application-specific optimization oppor-
tunities. SLC has been used to facilitate process migration
for load-balancing in parallel systems [16, 21]. Plank et
al. develop efficient, portable checkpointing in Unix [18].
SLC is frequently easy to use compared to other checkpoint-
ing techniques — it usually requires nothing extra from
the programmer — but it may save significantly more state
than that necessary to restart the process correctly. Fur-
thermore, SLC process descriptions are specific to a given
system. Plank et al. increase the efficiency of their ap-
proach by developing memory exclusion techniques to re-
duce the amount of state saved [19]. This SLC approach
is then expanded by the addition of a user-directed check-
pointing infrastructure, yielding a hybrid approach that ex-
ploits data flow equations allowing the compiler to gener-
ate correct memory exclusion calls for both clean and dead
variables [17].

Application-Level Checkpointing (ALC) techniques are
integrated within the application, enabling it to checkpoint
and restart itself without external system support and to op-
timize the checkpointing process using application specific
information. ALC is mostly applied manually by the appli-
cation programmer during program development. Apply-
ing it transparently is still an area of active research and
may be implemented by a compiler, preprocessor, run-time
library, or some combination of these. Nonetheless, ALC
strives to provide the portability that SLC cannot, and with
portability comes greater process migration capabilities and
fault tolerance. For instance, Ferrari et al. look at a hetero-
geneous checkpoint/restart mechanism based on automatic
code modification [9]. They introduce the notion of process
introspection, or modifying the program to capture its own
internal, dynamic state in a form such that the program can
be restarted (recovered) on a different architecture. Con-
sisting of a set of semi-automated tools built around a flexi-

ble, abstract design pattern for constructing checkpointable
programs, their system constitutes the first portable, extend-
able, platform-independent checkpointing mechanism.

Ferrari et al’s system is targeted at large-scale,
high-performance, heterogeneous distributed environments;
other approaches target environments more limited in size,
architectural variety, or application scope. For instance,
Dome (Distributed Object Migration Environment) sup-
ports checkpointing and restart for Networks of Worksta-
tions via a C++ library of data parallel objects [1]. ALC pro-
vides the necessary support for heterogeneity: the check-
point and restart mechanisms are placed within Dome’s
C++ objects, which allow processes to be restarted on dif-
ferent numbers of machines and different architectures in
a manner that is semi-transparent to the programmer. The
Porch system supports portable ALC for programs written
in a subset of C [20].

All these ALC approaches must insert code to save
the function call sequence along with run-time meta-
information on data sizes, alignment, and layout. The meta-
information allows the checkpointer to convert all data to a
universal checkpoint format. Special routines adjust stack
and heap pointers appropriately, allowing the data layout
from the checkpointed system to be “translated” to the ap-
propriate layout for the restart system. In many cases the
ALC infrastructure is added manually, which can be a te-
dious and error-prone process. Instead, we rely on an au-
tomatic preprocessor, the C system, which transparently
instruments C source code to checkpoint itself. The C? in-
strumentation inherently alters the given application, which
can lead to slight perturbations in execution. We discuss our
tools and the consequences of using them in the following
sections.

3 SimSnap Approach

Figure 1 illustrates the differences among common ap-
proaches to simulation experiments: Full Simulation (Full);
Fast Forwarding to regions of interest (FF); switching be-
tween Fast Forwarding and Full Simulation to avoid mul-
tiple forwarding passes, each starting from the beginning
of the benchmark, but continuing to different simulation
points (Switch); and native execution with checkpointing
using SimSnap (CP). The left side of the figure conveys the
relationships among the number of benchmark instructions
modeled (on this side, the top of the figure corresponds to
the beginning of the benchmark), and the right side con-
veys the corresponding relative relationships with respect
to wall-clock time spent using each method.

With SimSnap, the application saves and restores its own
state without external intervention. The restore can there-
fore be done within any binary-compatible simulator by
simply running the restore routine within the application.
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Figure 1. Instructions Executed and Time Spent in Simulation

In other words, the restore process is simulated along with
the rest of the application without the simulator being aware
of it.

Using SimSnap requires several steps:

1. Instrument application for ALC. The C? preproces-
sor adds code to track program location and state, as
well as routines to store and retrieve a checkpoint.

2. Choose code region(s) of interest. The means to
accomplish this depend on the concrete simulation
method. Examples include checkpointing after a fixed
number of instructions; checkpointing at desired sim-
ulation points, as in the SimPoint approach [23]; or
checkpointing after reaching a user-specified location
in the code.

3. Execute natively to beginning of a region. The ap-
plication runs on a host compatible with the simulated
machine.

4. Create checkpoint. When the application reaches a
location specified in the second step, it activates the
checkpoint routines inserted by the ALC preprocessor,
and dumps its state to disk.

5. Restore application within simulator. The applica-
tion begins executing within the simulator in restore
mode, i.e., the application loads the checkpoint and re-
stores its state.

6. Perform cycle-accurate simulation during region of
interest. After the restore completes, the simulator
models the chosen region.

7. Repeat three to six, as required. If more than one
region of interest is to be modeled, the application

execution continues to take the remainder of the re-
quired checkpoints. In our current framework, these
are loaded into separate instances of the simulator.

An additional advantage of SimSnap is that it is possible
to store the checkpoints on disk for later use. It is there-
fore not necessary to rerun the fast forwarding process for
each experiment, as long as only the simulation environ-
ment changes and not the application (which is the most
common case in architectural research).

Since the same binary is used for native execution and
simulation, it is possible to checkpoint and restore in both
environments. This can be used for fast simulation valida-
tion: after completing cycle-accurate simulation, the appli-
cation checkpoints its state, and completes with native exe-
cution. Results can then compared with those of a pure, na-
tive execution, verifying the functional correctness the sim-
ulated portions in the SimSnap approach.

4 ALC Instrumentation via C?

The C3 system consists of two components: a source-
to-source compiler (the C3 pre-compiler) that converts the
code of an application into that of a semantically equiva-
lent version that can save and restore its own state; and a
library (the C? runtime) that contains checkpointable im-
plementations of several standard C library functions, plus
utility functions used by the inserted code. The output of
the pre-compiler is passed to the native compiler, where it is
compiled and linked with the runtime, producing an ALC-
enabled application.



4.1 Checkpoint Insertion

The C? system requires no modifications to the
input program, other than marking checkpoint loca-
tions with a pragma statement. There are two types
of checkpoint locations, each marked with a different
pragma statement. Those marked (#pragma ccc
Pot ent i al Checkpoi nt) are converted by the pre-
compiler into code to take a checkpoint if the runtime
determines that one should be taken. This could be used
to take a checkpoint after a specified amount of time
has passed, after a specified number of instructions have
been executed, or if the runtime has received a signal
from another process. Locations marked (#pr agma ccc
Expl i ci t Checkpoi nt (expression)) are con-
verted by the pre-compiler into code to take a checkpoint
whenever the specified expression holds true. For example,
the expression could be used to allow for a checkpoint to
be taken upon entering a critical section of the code. The
modified application can only checkpoint and restart at the
specified locations, so static analysis can be used to reason
about the behavior of the application at those points. The
pre-compiler uses the results of such analysis to optimize
checkpointing.

4.2 The C? Pre-Compiler

The code the pre-compiler inserts must ensure 1) that the
application resumes at the instruction immediately follow-
ing where a checkpoint was taken, and 2) that the appli-
cation’s variables are saved and restored correctly. A pro-
gram’s variables are saved as binary data, and on restart, the
system must restore each variable to its original address —
this insures that a dereferenced pointer will still point to the
proper object after restart. Accomplishing this requires two
separate mechanisms: one to track the execution location,
and one to track the application’s data.

4.2.1 Checkpointing Application Location

The tracking mechanism involves more than just saving the
application PC, it includes saving all information necessary
to correctly rebuild the program stack. The C? system uses
a data structure called the Position Stack (PS) to record and
recreate the application’s position in both its dynamic exe-
cution and its static program text. Figure 2 illustrates the
C? application transformation and PS manipulation. The
pre-compiler inserts a unique label at each checkpoint loca-
tion, and performs call-graph analysis to insert a label be-
fore every function call that might eventually lead to such
a location. The pre-compiler inserts code to push and pop
the appropriate values onto the PS as these labels are en-
countered during execution: when a potential checkpoint

functionl()
{
...
function2();
1.
#pragma ccc Potenti al Checkpoi nt
1. ..

}
(a) Before C3

functionl()
if(restart)
goto (PS.iten(i++))
1. ..
PS. push(1);
| abel _1:
function2();
PS. pop();
...
PS. push(2);
i f(ccc_NeedToCheckpoint())
ccc_TakeCheckpoint () ;
| abel _2:
PS. pop() ;
1. ..
}

(b) After C3

Figure 2. Position Stack Manipulation

location is reached and a checkpoint is taken, the runtime
saves the PS to the checkpoint file. Each checkpoint thus
contains a record of the call sequence leading to the spe-
cific checkpoint location to which the checkpoint file data
corresponds.

Immediately upon restart, the runtime system pads the
stack via calls to al | oca() such that all successive func-
tions have their stack frames at the same addresses as be-
fore the checkpoint. The runtime then restores the PS be-
fore handing control to the original mai n() function. Each
procedure, in turn, uses the PS to call the same function it
had called immediately before the checkpoint. When con-
trol arrives at the innermost function, the application jumps
to just below where the checkpoint was taken. In this man-
ner, the stack is rebuilt with the local variables occupying
the same addresses as they had before the restart, the pro-
gram’s dynamic position is as it was when the checkpoint
was taken, and the program’s position in the static text is
restored to the point immediately following the code that
saved the checkpoint.

To ensure the restarting application does not execute any
code that may affect its state until after that state has been
entirely restored, the pre-compiler needs to replace the com-
plex arguments (those that require computation to evaluate)
passed to a labeled function with temporary variables con-
taining the appropriate values. Similarly, to insure that the
PS correctly reflects which function call is currently active,
the pre-compiler needs to decompose certain complex state-
ments, such as a statement containing two calls to check-
pointable functions, or a return statement that makes a call
to one.



4.2.2 Checkpointing Application Data

The techniques described above ensure that each of the
restarting application’s stack frames begin at the same vir-
tual address as in the original run. The pre-compiler uses a
second structure, the Variable Description Stack (VDS), to
save and restore the values held by the stack variables. At
the location where a variable enters scope, the pre-compiler
inserts code to push the variable’s address and size onto the
VDS. Where a variable leaves scope, code is inserted to pop
that record from the VDS. Figure 3 shows such manipula-
tions.

function(int a)
int b[10];
int c;

...

(a) Before C3

function(int a)

int b[10];

VDS. push(&a, sizeof(a));

VDS. push( &b, sizeof(b));

{
int c;
VDS. push(&c, sizeof(c));
1. ..
VDS. pop() ;

}
VDS. pop() ;
VDS. pop() ;

(b) After €3

Figure 3. Manipulating the Variable Description
Stack

When a checkpoint is taken, for each item on the VDS,
the C3 runtime copies the specified number of bytes from
the given address to the checkpoint. It also saves the VDS
as part of the checkpoint. On recovery, after the stack is
rebuilt, the VDS is restored and used to copy the values
from the checkpoint file back to the proper addresses.

Global, local, and file-scoped static variables are pushed
and popped as if they were local to the application’s
mai n() function. In order to handle these variables, C?3
requires access to all of an application’s source files. Each
local and file-scoped static variable is replaced with an ap-
propriately renamed global variable. A declaration of each
of these variables is created in the file that contains the def-
inition of the application’s mai n() . Similarly, if such a
variable is of a type declared by a t ypedef , the system
copies the corresponding t ypedef declaration to that file
as well.

4.2.3 Analysis-Driven Optimizations

To minimize the amount of perturbations made to the ap-
plication code, the C? pre-compiler performs some static
analysis and code restructuring to reduce the number of in-
serted instructions that are dynamically executed. Above,
we discussed how a call-graph analysis is used to determine
which functions could possibly lead to a checkpoint loca-
tion, and how the pre-compiler will only insert labels (and
manipulate the PS) before calls to them. Additionally, and
more importantly, functions that are determined to never be
on the call stack when a checkpoint is taken do not need to
have their local variables saved; therefore, no pushes and
pops to the VDS need to be inserted within them.

Another optimization involves hoisting nested scope
declarations. To illustrate, assume that the variable c in Fig-
ure 3 was declared inside a loop body — the code to push
and pop ¢ to the VDS would be executed for each iteration.
Instead of doing this, the C pre-compiler will move (and
rename uniquely) c to the function-level scope, so that it
is pushed and popped only once. Similarly, if a loop body
contains only one call to a labeled function, the push and
pop to the PS are moved outside the loop body, provided
there are no unusual escapes from the body (e.g. got o).

4.3 (3 Runtime

The C3 runtime is a set of functions that perform two
different duties — they are responsible for the saving and
restoring of application state, and they provide a check-
pointable implementation of select functions from the stan-
dard C library. The most interesting of these functions are
those that implement the memory allocator — since these
are the routines that affect our infrastructure most, only
these are discussed here. (Most standard library functions
do not need any special checkpointing considerations.) The
C? pre-compiler converts all calls from the standard (e.g.
mal | oc() ) function to calls of the version provided in the
runtime (e.g. CCC_nal | oc()).

In addition to the usual requirements of providing an ap-
plication with an efficient mechanism to support the cre-
ation and freeing of dynamic memory objects, C3’s alloca-
tor must ensure that when an application is restarted from
a checkpoint: every allocated object will be restored to the
same virtual address it originally held, that all such objects
contain the same data as they did at checkpoint time, and
that future calls to malloc and free behave correctly.

The C? allocator manages heap objects in a pool of
memory that it requests from the operating system. For
simplicity’s sake, we model that pool as a contiguous re-
gion of bytes. On restart, the C* system requests the same
pool of memory from the operating system, copies objects’
data from the checkpoint file into the proper addresses, and
reconstructs the free lists.



Most SLC systems checkpoint the heap by saving the
entire region of memory over which the native allocator
has control. An advantage that C® has over such systems
is that, because it implements its own memory allocator, it
only needs to save the portion of the pool that was actually
used. Another, even greater advantage is that C® need not
save objects that have been deallocated. For certain codes,
the amount of deallocated memory can be significant; not
saving that memory can dramatically decrease the overhead
of taking a checkpoint. The allocator still must guarantee
that future calls to mal | oc and f r ee behave as expected.

5 Simulation Engine

By using ALC and letting the application checkpoint
and restart itself without the support of system components,
the restore process is simulated along with the application
execution. This technique can be used with any binary-
compatible simulator, as long as it supports all system calls
required by the C? system along with those required by the
application. Most importantly, this includes the ability to
take a snapshot of the heap of the application and to restore
that heap snapshot at the original virtual memory addresses.
For instance, the C® CCC_nmal | oc() allocates memory
within an explicitly managed region of virtual memory that
has been allocated using the nmap() system call. This
allows the specification of the starting address for the re-
guested memory chunk, matching memory layouts from the
original run and restored execution.

For this study we use SimpleScalar Version 4.0 Alpha-
Sim [8]; this is the latest version of one of the most
widely used simulation infrastructures for Computer Archi-
tecture research. Unfortunately, the publicly available ver-
sion of the simulator does not have an implementation for
nmap( ) . Given that this simulator executes system calls by
proxy, we developed a mmap() proxy that manages a heap
allocated in the application’s virtual memory space as main-
tained by the simulator. The resulting code for mmap() is
about 20 lines of C.

6 Early Experiences

We configure the simulator as closely as possible to the
validated model of a Compag DS-10L Alpha Server, as de-
scribed in previous studies [7, 8]. The memory system is
a 64KB, two-way associative L1 cache with 64-Byte lines
and three-cycle latency followed by a 2MB direct-mapped
L2 cache with a 13-cycle latency. We use the default eight-
entry victim cache, and eight MSHRs per cache. This ver-
sion of the simulator models the bus and the SDRAMs, in
contrast to previously released versions of the toolset.

For our initial experiments, we use six codes from the
Splash-2 suite of benchmarks. These numerically inten-

sive kernels and applications are designed for the evalua-
tion of shared memory architectures; we use them for this
initial study because we had already instrumented them
with the C3 state-saving methods for research into the is-
sues surrounding ALC for shared memory applications.
All benchmarks demonstrate a cyclic behavior in that they
have well defined loops for the manipulation of the in-
put data set. In instrumenting the codes, we place our
(#pragma ccc Pot enti al Checkpoi nt) statements
at the inner edges of these loops, as that seems to be a rea-
sonable place where an architect may wish to commence
cycle-accurate simulation. A listing of the problem sets for
the benchmarks and a description of the (#pr agma ccc
Pot ent i al Checkpoi nt) locations can be found in Ta-
ble 2. Table 2 also lists the sizes of the heap checkpoint file
for each of the applications.

6.1 Instrumentation Overhead

Since ALC instruments the application to save its own
state, we would expect simulation statistics (such as IPC
and cache miss rates) of the ALC version to be differ-
ent from those of the uninstrumented version. Ideally, we
would like these differences to be small. Figure 4 shows a
comparison of several simulation statistics for each bench-
mark. The bars represent a normalized comparison of the
instrumented code to the original code. For all of the appli-
cations, the results are encouraging. For most statistics, the
measured change is less than 3% in the instrumented code,
although there are a few notable exceptions.

The lu-c (lu-continuous) kernel shows an increase in the
IPC by nearly 10% for the instrumented code over the orig-
inal code. We believe this variation can be traced to the L1
data cache hit rate for lu-c, which is measured to be almost
3% greater in the instrumented code. With a higher cache
hit rate, there would be fewer stalls waiting for data from
memory, and thus, a higher measured IPC. The increase in
the L1 cache hit rate is difficult to attribute directly to the
instrumentation code. We expected to see a slight decrease
in this statistic due to increased occupancy for the instru-
mentation data structures, but, across the board, we see a
slight increase, except in the case of barnes and radix. This
increase cannot be due to the instrumentation code warming
the caches, since the instrumentation code does not directly
access any data structure associated with the original code
except when checkpointing. The measurements presented
here do not include checkpoint overhead. Neither can the
increase be due to the instrumentation code itself; this code
is executed very few times compared to the original pro-
gram. Instead, we believe that the increase is due to either a
change in the compiled code for the instrumented version,
or a change in memory contents because of address skew-
ing due instrumentation data structures. Finally, our cus-



[ benchmark | problem size | checkpoint location | checkpoint size (MB) |
barnes 16384 bodies, 4 steps | in code.C after each time step (call to st epsysten() ) 51.8
fft 220 points after each call to FFT1DOnce() 50.7
lu-c 512 %512 matrix at the end of the outermost loop of | u() 21
ocean-c 514x514 ocean, 4 steps in slavel.C after each time step (call to sl ave2() ) 58.6
radix 5 Million keys at the end of the main loop of sl ave_sort () 45.0
water-n? 512 molecules, 4 steps in mdmain.C at the end of each time step 0.5

Table 2. Application-Level Checkpoint Characteristics

tom memory allocation routine might be better suited for
the data structures in these benchmarks than the standard
mal | oc. Verifying these hypotheses is part of our research
agenda.

We also saw an increase in IPC for the ocean-c (ocean-
continuous) and radix benchmarks. Here, we cannot link
this increase to the L1 data cache hit rate as that statistic
was unchanged for ocean-c, and reduced for radix between
the two runs. Instead, the increase is probably related to the
increase in the number of instructions executed in the instru-
mented version. We believe that these additional instruc-
tions are either directly related to the instrumented code,
or can be attributed to a change in the compilation of the
base code due to the insertion of the instrumentation code.
Further, we expect that these additional instructions execute
with an IPC higher than the rest of the code, thus boosting
the total IPC.

One other statistic that shows a surprising result is the
number of instructions executed for water-n? and barnes. In
both cases, the instrumented code shows a slight decrease.
We attribute this to a difference between the custom mem-
ory allocation procedure versus the standard mal | oc call.

Another way that we quantify the amount of change our
instrumentation introduces is by analyzing the dynamic ba-
sic block profile of the benchmark executions. We measure
a subset of the changes by noting the number of basic blocks
executed that correspond to instrumentation code from the
C? library. Our results are shown in Table 3.

Here the results are also encouraging, as they show that
new basic blocks comprise only a small fraction of the to-
tal number of executed basic blocks. We expect that with a
larger number of new basic blocks, we will see a larger per-
turbation of the simulation statistics. This theory is shown
to hold true in the case of radix — this benchmark showed
the largest number of new basic blocks as well as the largest
change in IPC. These numbers only tell part of the story. We
believe that most of the (minimal) change to the simulation
statistics is due to changes in the way that the code compiles
due to instrumentation code being inserted. Our research
agenda includes determining the number of changed basic
blocks that are executed for a given instrumented bench-
mark, as well as the number of new basic blocks.

7 Conclusionsand Future Work

In this paper we have presented SimSnap — a method to
replace time-consuming fast forwarding via functional sim-
ulation with native execution. We use Application-Level
Checkpointing mechanisms to save program state at the
end of the native execution and to resume within a cycle-
accurate simulation. For this purpose, we use the C'3 system
to transparently instrument target applications with code for
state saving and restoration. Because it is the application
that saves and restores its own state, any simulator that can
execute the application can take advantage of restoring pro-
gram state from a checkpoint.

Using SimSnap, we have demonstrated the potential for
dramatic reductions of simulation experiment times, while
keeping the the perturbation of the simulation statistics due
to the instrumentation minimal. Although we use a spe-
cific simulator to demonstrate the utility of our approach,
our methods are widely applicable to any simulation envi-
ronment.

These initial results are encouraging, and hence we plan
to expand this work on several fronts. Most importantly, we
will reduce the already small amounts of perturbation intro-
duced into application codes by our instrumentation meth-
ods. We will expand the C3 system’s data flow analysis to
minimize the amount of state saved at a checkpoint. And we
will study optimizations that reduce the execution of state-
saving code such that we only save static variable pointers
when a checkpoint is scheduled to be taken.

In our current work, we perform the native execution of
the code on a machine whose ISA and architecture match
that of the machine being simulated. Because the SimSnap
checkpoint is at the application level, we postulate that it
is possible to run natively on a machine that does not have
the same ISA as the simulated machine. If we can demon-
strate this, it will further generalize the utility of the Sim-
Snap methods. This problem is akin to migrating applica-
tions within a heterogeneous grid computing environment.

To evaluate the general utility of SimSnap, we will use
SimPoint [23] to select checkpoint locations. We then in-
strument the SPEC CPU benchmark suite, and will of-
fer these instrumented SPEC codes and the accompanying
checkpoints to the research community. This will give re-
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Figure 4. ALC-Enabled vs. Uninstrumented Benchmarks
original version instrumented version instrumented version
benchmark basic blocks basic blocks C*3 library blocks
| | static [ dynamic | static | dynamic | % dynamicincrease | static | dynamic |
barnes 14741 | 389749369 | 15259 | 391377819 0.41 462 730
FFT 11321 | 170801497 | 11907 | 172584578 1.04 462 70593
lu-c 11188 94194286 | 11805 94298725 0.11 462 1382
ocean-c 13225 72074717 | 14106 73978821 2.64 462 12021
radix 8805 45015951 9423 46447626 3.18 437 840
water-n? 14334 | 152280215 | 14962 | 152318318 0.02 462 37729

Table 3. Application-Level Checkpoint Effects on Basic Block Counts

searchers easy access to fast and accurate simulation tech-
nology, and will help to achieve equivalent experimental se-
tups and comparable (and repeatable) results. The potential
uses for our technology are far-reaching. For instance, we
envision using SimSnap for extensive performance debug-
ging and engineering: a critical loop of an application could
be instrumented for state saving and restoration, and if the
real-time evaluation of a particular statistic (e.g., cache miss
rate) were to reach a given threshold, the application would
save a checkpoint. This could then be restored within a
cycle-accurate simulator, allowing for a detailed evaluation
of the anomaly. This approach would yield a powerful per-
formance analysis tool for application programmers, effi-
ciently combining the advantages of native execution and
detailed simulation information. Other applications include
experiment validation when partial simulation is used to
speed experiment time: running the remainder of the bench-
mark natively to completion allows us to better verify the
functional correctness of the simulator. We expect that ap-
plying this approach to parallel system simulation will ex-
pand the kinds and sizes of the experiments researchers can
perform. Finally, using ALC-enabled benchmarks that peri-
odically checkpoint their state makes long-running simula-
tions fault tolerant. We are eager to make our tools available
to the research community, which will no doubt find other
interesting uses for the technology we’re developing.
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