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ABSTRACT
Trends in high-performance computing are making it nec-
essary for long-running applications to tolerate hardware
faults. The most commonly used approach is checkpoint
and restart (CPR) - the state of the computation is saved
periodically on disk, and when a failure occurs, the compu-
tation is restarted from the last saved state. At present, it
is the responsibility of the programmer to instrument appli-
cations for CPR.

Our group is investigating the use of compiler technology
to instrument codes to make them self-checkpointing and
self-restarting, thereby providing an automatic solution to
the problem of making long-running scientific applications
resilient to hardware faults. Our previous work focused on
message-passing programs.

In this paper, we describe such a system for shared-
memory programs running on symmetric multiprocessors.
This system has two components: (i) a pre-compiler for
source-to-source modification of applications, and (ii) a run-
time system that implements a protocol for coordinating
CPR among the threads of the parallel application. For
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the sake of concreteness, we focus on a non-trivial subset of
OpenMP that includes barriers and locks.

One of the advantages of this approach is that the abil-
ity to tolerate faults becomes embedded within the appli-
cation itself, so applications become self-checkpointing and
self-restarting on any platform. We demonstrate this by
showing that our transformed benchmarks can checkpoint
and restart on three different platforms (Windows/x86,
Linux/x86, and Tru64/Alpha). Our experiments show that
the overhead introduced by this approach is usually quite
small; they also suggest ways in which the current imple-
mentation can be tuned to reduced overheads further.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming, Parallel Pro-
gramming

General Terms: Reliability, Experimentation

Keywords: Fault-tolerance, Checkpointing, Shared-
memory Programs, OpenMP

1. INTRODUCTION
The problem of making long-running computational sci-

ence programs resilient to hardware faults has become crit-
ical. This is because many computational science programs
such as protein-folding codes using ab initio methods are
now designed to run for weeks or months on even the fastest
available computers. However, these machines are becoming
bigger and more complex, so the mean time between failures
(MTBF) of the underlying hardware is becoming less than
the running times of many programs. Therefore, unless the
programs can tolerate hardware faults, they are unlikely to
run to completion.

Fault tolerance has been studied extensively by the dis-
tributed systems community. However, the goal in that con-
text is to ensure high availability of critical systems like air
traffic control systems and web servers, so most solutions
rely on some form of redundancy. The goal of fault toler-



ance in the context of high-performance computing is dif-
ferent - it is to minimize the expected time to completion
of the program, given some probability of hardware failure.
High real-time availability is not a goal, so redundancy is
not the right approach to finding good solutions.

The most commonly used approach in the high-
performance computing arena is checkpoint and restart
(CPR). The state of the program is saved periodically dur-
ing execution on stable storage; when a hardware fault is
detected, the computation is shut down and the program is
restarted from the last checkpoint1. Most existing systems
for checkpointing such as Condor [14] take System-Level
Checkpoints (SLC), which are essentially core-dump-style
snapshots of the computational state of the machine. A dis-
advantage of SLC is that it is very machine and OS-specific;
for example, the Condor documentation states that “Linux
is a difficult platform to support...The Condor team tries
to provide support for various releases of the Red Hat dis-
tribution of Linux [but] we do not provide any guarantees
about this.” [8]. Furthermore, system-level checkpoints by
definition cannot be restarted on a platform different from
the one on which they were created.

In most programs however, there are a few key data struc-
tures from which the entire computational state can be re-
covered; for example, in an n-body application, it is suffi-
cient to save the positions and velocities of all the parti-
cles at the end of a time step. In Application-Level Check-
pointing (ALC), the application program is written so that
it saves and restores its own state. This has several ad-
vantages. First, applications become self-checkpointing and
self-restarting, eliminating the extreme dependence of SLC
implementations on particular machines and operating sys-
tems. Second, if the checkpoints are created appropriately,
they can be restarted on a different platform. Finally, in
some applications, the size of the saved state can be reduced
dramatically. For example, for protein-folding applications
on the IBM Blue Gene machine, an application-level check-
point is a few megabytes in size whereas a full system-level
checkpoint is a few terabytes. For applications on most plat-
forms, such as the IBM Blue Gene and the ASCI machines,
hand-implemented ALC is the default.

In this paper, we describe a semi-automatic system for
providing ALC for shared-memory programs, particularly in
the context of Symmetric Multi-Processor (SMP) systems.
Applications programmers need only instrument a program
with calls to a function called potentialCheckpoint() at
places in the program where it may be desirable to take a
checkpoint (for example, because the amount of live state
there is small). Our Cornell Checkpointing Compiler (C3)
tool then automatically instruments the code so that it can
save and restore its own state. We focus on shared-memory
programs written in a subset of OpenMP [24] including par-
allel regions, locks, and barriers. Since OpenMP is the dom-
inant standard for shared-memory programming, this choice
provides us access to a large number of different experi-
mental platforms. We have successfully tested our check-
point/restart mechanism on a variety of OpenMP platforms
including Windows/x86 (Intel compiler), Linux/x86 (Intel

1Strictly speaking, CPR provides a solution only for fail-
stop faults, a fault model in which failing processors just
hang without doing harmful things allowed by more com-
plex Byzantine fault models in which a processor can send
erroneous messages or corrupt shared data [16]

compiler), and Tru64/Alpha (Compaq/HP compiler). Of
course, our approach is not tied to OpenMP and is applica-
ble to any shared-memory programming model or API.

The system described here builds on our previous work on
ALC for message-passing programs [5, 4]. By combining the
shared-memory work described here with our previous work
on message-passing programs, it is possible obtain fault tol-
erance for hybrid applications that use both message-passing
and shared-memory communication.

The remainder of this paper is structured as follows. In
Section 2, we briefly discuss prior work in this area. In
Section 3, we introduce our approach. There are two main
problems: (i) how do threads save their local states and
the global state, and (ii) how do we coordinate state-saving
between different threads? These questions are addressed
in Sections 4 and 5 respectively. In Section 6, we present
experimental results. Finally, we discuss ongoing work in
Section 7.

2. PRIOR WORK
Alvisi et al. [11] is an excellent survey of techniques devel-

oped by the distributed systems community for recovering
from fail-stop faults.

The bulk of the work on CPR of parallel applications has
focused on message-passing programs. Almost all of this
work uses system-level checkpointing, but there are major
differences in the protocols used to co-ordinate processes
for taking checkpoints. Blocking techniques bring all pro-
cesses to a stop before taking a global checkpoint. Hardware
blocking was used on the IBM SP-2 to take system-level
checkpoints. Software blocking techniques take checkpoints
when processes reach a global barrier [27]. In non-blocking
checkpointing, a global coordination protocol implemented
by exchanging control messages is used to orchestrate the
state saving of individual processes. Usually, a distinguished
process called the initiator is responsible for initiating and
monitoring the protocol; processes communicate with other
processes to co-ordinate the taking of checkpoints but make
no assumptions about the states of other processes. The
Chandy-Lamport protocol is perhaps the most well-known
non-blocking co-ordination protocol [6].

In the high-performance computing applications commu-
nity, hand-coded application-level checkpointing at global
barriers is the norm. The Dome project explored hand-
coded ALC within the context of an object-oriented lan-
guage for computational science applications [3]. Recently,
our research group has pioneered preprocessor-based ap-
proaches for implementing ALC (semi-)automatically [5, 4].
In addition to showing that existing SLC protocols like the
Chandy-Lamport protocol do not work with ALC, we have
designed and implemented novel protocols that do.

Checkpointing for shared memory systems has not been
studied as extensively. The main reason for this is that
shared memory architectures were traditionally limited in
their size and hence fault tolerance was not a major con-
cern. With growing system sizes, the availability of large-
scale NUMA systems, and the use of smaller SMP configura-
tions as building blocks for large-scale MPPs, checkpointing
for shared memory is growing in importance.

Existing approaches for shared memory have been re-
stricted to SLC and are bound to particular shared memory
implementations. Both hardware and software approaches
have been proposed. SafetyNet [25] is an example of a
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Figure 1: Overview of the C3 system.

hardware implementation. It inserts buffers near processor
caches and memories to log changes in local processor mem-
ories as well as messages between processors. While very
efficient (SafetyNet can take 10K checkpoints per second),
SafetyNet requires changes to the system hardware and is
therefore not portable. Furthermore, because it keeps its
logs inside regular RAM or at best battery-backed RAM
rather than some kind of stable storage, SafetyNet is lim-
ited in the kinds of failures it is capable of dealing with. Re-
Vive [19] is another approach to hardware shared memory
fault tolerance. Based on a combination of message logging
and checkpointing it also provides high efficiency at the cost
of portability.

On the software side, Dieter et al. [9] and the Berkeley
Labs Linux Checkpoint/Restart [10] provide checkpointing
for SMP systems. The former approach augments the na-
tive thread library to coordinate checkpoints across the ma-
chine and implements a special protocol for synchronization
primitives, similar to the one presented in this paper. The
latter system uses dynamically loadable kernel modules to
directly control the thread scheduler and force consistency
among all threads. In contrast to our solution, however,
both approaches are bound to a particular thread library
and kernel version, are non-portable, and require root priv-
ileges for their installation.

In addition, several projects have explored checkpointing
for software distributed shared memory (SW-DSM) [15, 23,
7, 13, 28]. They are all implemented within the SW-DSM
system itself and exploit internal information about the state
of the shared memory to generate consistent checkpoints.
They are therefore also bound to a particular shared mem-
ory implementation and do not offer a general and portable
solution.

3. OVERVIEW OF APPROACH
Figure 1 describes our approach. The C3 pre-compiler

reads C/OpenMP application source files and instruments
them to perform application-level saving of shared and
thread-private state. The only modification that program-

mers must make to source files is to insert calls to a func-
tion called potentialCheckpoint() at points in the pro-
gram where a checkpoint may be taken. Ideally, these should
be points in the program where the amount of live state is
small.

It is important to note that checkpoints do not have to be
taken every time a potentialCheckpoint() call is reached;
instead, a simple rule such as ”checkpoint only if a certain
quantum of time has elapsed since the last checkpoint” is
used to decide whether to take a checkpoint at a given lo-
cation. Checkpoints taken by individual threads are coordi-
nated by the protocol described in Section 3.1.

The output of the pre-compiler is compiled with the na-
tive compiler on the hardware platform, and linked with a
library that implements a coordination layer for generating
consistent snapshots of the state of the computation. This
layer sits between the application and the OpenMP runtime
layer, and intercepts all calls from the instrumented applica-
tion program to the OpenMP library. This design permits
us to implement the coordination protocol without mod-
ifying the underlying OpenMP implementation. This pro-
motes modularity, eliminates the need for access to OpenMP
library code, which is proprietary on some systems, and al-
lows us to easily migrate from one OpenMP implementation
to another. Furthermore, it is relatively straightforward
to combine our shared-memory checkpointer with existing
application-level checkpointers for MPI programs to provide
fault tolerance for hybrid MPI/OpenMP applications.

3.1 Protocol
We use a blocking protocol to co-ordinate the saving of

state by the individual threads. This protocol has three
phases, shown pictorially in Figure 2.

1. Each thread calls a barrier.

2. Each thread saves its private state. Thread 0 also saves
the system’s shared state.

3. Each thread calls a second barrier.

We assume that a barrier is a memory fence, which is
typical among shared memory APIs. It is easy to see that
if the application does not itself use synchronization oper-
ations such as barriers, its input-output behavior will not
be changed by using this protocol to take checkpoints (we
discuss synchronization operations in Section 5). The only
effect of the protocol from the perspective of the application
is to synchronize all threads and enforce a consistent view
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Figure 2: High-level view of checkpointing protocol



of the shared state by using a memory fence operation (nor-
mally implemented implicitly within the barrier). This state
may not be identical to the system’s state had a checkpoint
not been taken. However, it is a legal state that the system
could have entered since all consistency models only define
the latest point at which a memory fence operation can take
place, not the earliest (that is, it is always legal to include
an additional memory fence operation). Furthermore, it is
obvious that the state visible to each thread immediately
after the checkpoint is identical to the state saved in the
checkpoint.

These properties ensure that we can restart the program
by restoring all shared memory locations to their check-
pointed values. Intuitively, if it was legal to flush all caches
and set every thread’s view of the shared memory to that
memory image, then by restoring the entire shared address
space to the image and flushing all the caches, we will return
the system to an equivalent state.

The recovery algorithm follows from this, and is described
below.

1. All threads restore their private variables to their
checkpointed values and thread 0 restores all the
shared addresses to their checkpointed values.

2. Every thread calls a barrier.
This recovery barrier is necessary to make sure that
the entire application state has been restored before
any thread is allowed to access it.

3. Every thread continues execution.

Having discussed the overall checkpointing approach, we
now deal with two remaining questions.

1. How do we identify and save all the private and shared
state in the system? This is addressed in Section 4.

2. How do we deal with synchronization constructs such
as locks and barriers in the application program? This
is addressed in Section 5.

4. SAVING STATE
The application-level state of a program consists of

its heap, global variables, local variables, and call stack.
OpenMP distinguishes between private and shared vari-
ables. Private variables are local to a thread, so they can
only be saved by that thread. Shared variables on the other
hand are visible to all threads, so they can be saved by any
thread. In OpenMP, the heap is always shared while local
and global variables may be either shared or private. The
call stack of each thread is always private.

In saving the application state, C3 follows an approach
similar to that taken by Dome [1] and used in our previ-
ous work on distributed-memory checkpointing [4, 5]. The
checkpoints produced by this method are not portable in the
sense that they cannot be restarted on a different architec-
ture or configuration; there is ongoing work on this in our
group.

4.1 Heap
To save the heap, we use our own implementation of the

heap library to keep track of all dynamic memory alloca-
tions and de-allocations. At checkpoint time, any thread

can identify and save exactly those portions of the heap
that are currently allocated to the application. On recov-
ery, the library restores heap locations to the values saved
in the checkpoint. Heap objects are restored to their origi-
nal addresses, so the problem of relocating pointers does not
arise.

4.2 Call Stack
Saving the state of the call stack is more intricate because

the position in the program where the checkpoint was taken
has to be recorded without reference to machine-specific
constructs like program counters. To accomplish this, we
use a special pc stack. At the start of the program, the
pc stack is empty. Before every function call from which a
potentialCheckpoint() call can be reached, the compiler
inserts an instruction to push the unique ID of the call onto
the pc stack, followed by a goto label. Each function call
is also followed by an instruction to pop the call ID off the
pc stack. Thus, at any given point in time the pc stack

will contain the chain of calls that led the program’s exe-
cution from main() to the current function. An example of
this transformation is shown in Figure 3.

On restart, the pc stack is used to restore the original call
stack. At the top of each function, the compiler places code
that looks at the position in the pc stack corresponding to
the current function. The value at that position identifies
the function call that was made inside this function. The
code then jumps to the label that was placed right before
that function call, skipping all the work that was done in
the body of the function up to that point and perform the
call. This process is repeated in each function until control
is returned to the potentialCheckpoint() call where the
checkpoint was taken. When the potentialCheckpoint()

call return, the call stack will look just as it did at the time
of the checkpoint.

This approach works for single-threaded applications.

func1() {

target = read_pc_stack();

switch(target) {

case 0: goto label_0;

case 1: goto label_1;

...

}

...

push(pc_stack,0);

label_0:

func2();

pop(pc_stack);

...

push(pc_stack,1);

label_1:

omp_set_num_threads(read_original_num_threads())

#pragma omp parallel

{ parallel code }

pop(pc_stack);

...

}

Figure 3: Recording the dynamic call sequence.



However, shared memory applications use multiple threads,
and in restoring the call stack, the system needs to re-
store the threads themselves. In OpenMP, the syntax for
thread creation uses a pragma to declare that a particu-
lar block of code should be run in parallel, and a call to
omp set max threads() to specify the number of threads to
be used. Thus, to recreate threads on recovery, we treat
these parallelization pragmas just like function calls. We
precede them with a pc stack push and a label, and follow
them by a pc stack pop, as shown in Figure 3. Furthermore,
omp set max threads() is used to ensure that the number
of threads on recovery is the same as the number of threads
during the original execution. Finally, since each thread has
its own call stack, a separate pc stack needs to be main-
tained for each thread.

4.3 Local Variables
Although the algorithm described above restores the func-

tion calls on the call stack, the local variables within those
functions are left uninitialized. Therefore, technique is
needed to save and restore the variables themselves. Since
the variables are stored on the call stack, we C3 uses a stack
of ”stack value descriptors”, called the svd stack. There
is one svd stack for each thread. A stack value descriptor
contains the variable’s size as well as a pointer to it.

At the start of every function from which a
potentialCheckpoint() can be reached, the compiler
inserts code to push the descriptor (size and pointer) of
each function argument and all the local variables onto the
svd stack. At the end of each function, all the previously
pushed descriptors are popped. Thus, at any given point
in the program’s execution, the svd stack contains the
addresses and sizes of all the local variables of the functions
above the current point in the call stack. At checkpoint
time, these addresses and sizes are used to access the values
of all the local variables for the purpose of checkpointing
them. An example of this transformation is shown in
Figure 4.

In OpenMP, only local variables common to all threads
can be declared as shared. Therefore, thread 0 will have
every shared local variable on its svd stack, and it is re-
sponsible for saving them.

On restart, after the system has recreated the call
stack and control returns to the original call to
potentialCheckpoint(), the restored svd stack is used to
restore the state of all the local variables. Note that if the
call stack starts at the same address as it did during the

func1(char q){

int x;

push(svd_stack, &q, sizeof(char));

push(svd_stack, &x, sizeof(int));

...

func2();

...

pop();

pop();

}

Figure 4: Recording the location of stack variables.

original execution, the addresses of all local variables will
be the same as before, thus ensuring that all of the pro-
gram’s original pointers are still valid. While the OpenMP
standard does not guarantee that thread stacks start at spe-
cific locations, it has been our experience that in most im-
plementations stack start points do not differ by more than
several words between different executions of the same pro-
gram. Therefore, we provide the illusion of an unchanged
stack start address by using alloca() to pad the start of the
stack with a variable amount of data depending on where
the thread stack is placed by the operating system.

Global variables are handled in a similar manner. Because
they are available throughout the execution of the program,
it is possible to push them onto the svd stack at the start
of main(). Local function variables that have been declared
static have lifetimes identical to those of global variables.
Thus, during preprocessing the compiler turns them into
global variables and checkpoints them accordingly.

5. SYNCHRONIZATION CONSTRUCTS
A blocking protocol like the one described in Section 3.1

must ensure that its use does not introduce deadlocks into
the program. Deadlock may occur if synchronization con-
structs like locks and barriers are used, because a thread
may be blocked until some synchronization condition has
been met, but all other threads may be waiting for that
thread at a barrier, wanting to take a checkpoint.

In some situations, the checkpoint protocol itself may fail.
Figure 5 shows an example of this problem, created when
an application barrier crosses a checkpoint region. In this
figure, threads 1 and 2 take a checkpoint before they en-
counter the application barrier, whereas thread 0 reaches
this barrier before it reaches the next potential checkpoint
location. In this situation, threads 1 and 2 will reach their
first checkpoint barrier while thread 0 is waiting on its ap-
plication barrier. In OpenMP, any barrier call on a thread
will match a barrier call on another thread even if the two
barriers are not in the same locations in the source code. As
a result, all three threads will pass their respective barriers.
However, while threads 1 and 2 record their checkpoints,
thread 0 will continue computing, potentially polluting the
checkpoint.

One approach to addressing these problems is to make
this the responsibility of the programmer. This is possi-
ble as long as the system uses a deterministic algorithm
to decide where to checkpoint (recall that in our approach,
potentialCheckpoint() calls only indicate places where
checkpoints may be taken). While this solution is simple,
our goal is to provide the programmer with as automated
a solution as possible. Therefore we have developed proto-
cols to deal automatically with these problems. These are
described next.

5.1 Barriers
The problem with barriers is actually deeper than is il-

lustrated in Figure 5. According to the OpenMP spec (as
well as other shared memory APIs), no thread may go past
a barrier until every other thread has at least reached the
barrier. Even if we could somehow resolve the problem de-
scribed above, consider what would happen upon recovery.
Thread 0 would recover in a state after the application bar-
rier while threads 1 and 2 would recover in a state before the
barrier, which is a violation of OpenMP barrier semantics.
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The solution is to ensure that no checkpointing region
ever crosses an application barrier. This is done by associ-
ating a potentialCheckpoint() call with every call to an
application barrier. Intuitively, the idea is to make sure
that if a situation like the one in Figure 5 occurs, thread 0
gets to know that it is at an application barrier while some
other thread wants to take a checkpoint. We must ensure
that thread 0 immediately takes a checkpoint and then goes
back to waiting at the application barrier.

One problem in implementing this approach is that by the
time another thread decides to take a checkpoint, thread 0
may already be blocked on its application barrier. The only
way to get it to notice the ongoing checkpointing is to return
control to the thread, which can only be done by allowing it
to pass the barrier.

For this purpose, we introduce a global checkpointFlag
variable to inform threads of the fact that a checkpoint is
ongoing. This flag is initialized to FALSE. When a thread
decides to take a checkpoint (in the pseudo-code of Fig-
ure 7, we assume this decision is encapsulated in a func-
tion called initiateCheckpoint(), which returns true if the
thread should take a checkpoint), it first sets the global
checkpointFlag to TRUE and then calls the first check-
point barrier. Once all threads have either reached their
first checkpoint barriers or an application barrier, all threads
will be released from their respective barriers. Each thread
that was trying to pass an application barrier now looks at
the checkpointFlag. If it is set to TRUE, then at least
one thread must have begun the global checkpoint. If it
is FALSE, then all threads must have passed an application
barrier and no checkpoint has been requested by any thread.

If the checkpointFlag is discovered to be TRUE, then any
thread that has not already begun a checkpoint must begin

ccc_barrier(){

#pragma omp barrier

while(checkpointFlag){

// only do this if checkpoint started while

// waiting on application barrier

save application state

checkpointFlag=FALSE

#pragma omp barrier

// trying to wait on application barrier again

#pragma omp barrier

}

}

potentialCheckpoint(){

// update checkpointFlag

#pragma omp flush(checkpointFlag)

// if time to checkpoint or others checkpointed

if (checkpointFlag or initiateCheckpoint()){

checkpointFlag = true;

#pragma omp barrier

save application state

checkpointFlag = FALSE

#pragma omp barrier

}

}

Figure 7: Pseudocode for barrier implementation.

one immediately. Fortunately, since it has already passed
a barrier, this barrier can be treated as the first checkpoint
barrier and the thread must simply execute the remainder of
the checkpoint protocol: record its portion of the checkpoint
and call the second checkpoint barrier.

Once the checkpoint has been recorded, the
checkpointFlag variable is reset to FALSE by all threads
before the second barrier is passed (indeed, it is sufficient
for any one thread to reset the flag). Threads resume work
after passing the second checkpoint barrier. In particular,
threads that were originally waiting on application barriers
before they were forced to take a checkpoint go back to
waiting on these barriers until all threads reach an applica-
tion barrier or until another global checkpoint is started in
which case the process described above is repeated.

The pseudocode for potentialCheckpoint() and the code
that we use to replace OpenMP barriers is given in Figure 7.

This protocol ensures that no global checkpoint is ever
crossed by an application barrier. In particular, the problem
shown in Figure 5 would be solved automatically as shown
in Figure 6. Thread 0 will take a checkpoint after waking up
from its barrier and realizing that other threads have begun
the global checkpoint. After taking a checkpoint, thread 0
once again synchronizes at a barrier and this time only wakes
up after threads 1 and 2 have both reached an application
barrier.

5.2 Locks
Locks present synchronization problems similar to those

of barriers. Furthermore, locks introduce an additional com-
plication: if a thread was holding a lock at checkpoint time,
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the protocol has to ensure that that thread is holding the
same lock on recovery.

An example of the general problem is shown in Figure 8.
Thread 1 has acquired a lock and wishes to take a check-
point before releasing this lock. Meanwhile, thread 0 wants
to acquire the same lock before it takes a checkpoint. Un-
fortunately, thread 1 already has this lock and is waiting for
thread 0 to reach its first checkpoint barrier before it can
release the lock, resulting in deadlock. Notice that if thread
0 could be forced to take a checkpoint just before it tries to
acquire the lock, there would be no deadlock.

To resolve these problems, we employ a technique sim-
ilar to the one described above for barriers. We asso-
ciate a lockCheckpointFlag with every lock. Before a
thread calls the first barrier of its checkpoint, it sets the
lockCheckpointFlag of every lock that it is holding to
TRUE and then releases all of its locks, taking care to re-
member which locks it was originally holding. The release
of locks will unblock any thread that is waiting for one of
these locks, such as thread 0 above.

Upon lock acquisition, each thread checks the value of the
lock’s lockCheckpointFlag. If the flag is FALSE, it knows
that the lock was acquired because the application itself had
released it and no further action is required. However, if the
flag is TRUE, the thread knows that it must have acquired
the lock not because it was released by the application but
because the lock owner decided to take a checkpoint. In this
case, the acquiring thread must also take a checkpoint, so it
performs the following actions.

• It releases the lock it just acquired.
• It sets the lock flags for its locks to TRUE.
• It releases its locks, noting which locks it was holding.

ccc_set_lock(lock){

omp_set_lock(lock)

while(lock.lockCheckpointFlag){

// only do this if checkpoint started while

// waiting to acquire lock

#pragma omp barrier

for all held locks

lock.lockCheckpointFlag=TRUE

record which locks are being held

release all locks

save application state

save lock state

for all locks that were held

reacquire lock

lock.lockCheckpointFlag=FALSE

#pragma omp barrier

// try to acquire the lock again

omp_set_lock(lock)

}

}

potentialCheckpoint(){

#pragma omp barrier

for all held locks

lock.lockCheckpointFlag=TRUE

remember which locks are held

release all locks

save application state

save lock state

for all locks that were held

reacquire lock

lock.lockCheckpointFlag=FALSE

#pragma omp barrier

}

Figure 10: Pseudocode for lock implementation.

• It executes the protocol to checkpoint its state.

This process of potentially forcing checkpoints before ac-
quiring locks prevents deadlocks. In our example, Figure 8
would be transformed into Figure 9.

When taking a checkpoint, each thread records the locks it
is currently holding. It uses this information on recovery to
reacquire its locks. Furthermore, before returning control to
the application, the coordination protocol must restore the
state of all locks as follows.

• All lock flags are set to FALSE.
• Each thread reacquires the locks that it had before the

checkpoint.

The second step appears to have potential for deadlock.
However, note that after the first checkpoint barrier is
passed, it is known that all the locks that were previously
held by some thread have been released by their owners.
Thus, when individual threads reacquire the locks that they
held before the checkpoint, no deadlock can occur.

The resulting pseudocode for locks is given in Figure 10.



One remaining synchronization concern regarding locks
is that in OpenMP there are in fact two ways to acquire
a lock: the blocking acquire provided by omp set lock() as
well as a non-blocking acquire provided by omp test lock().
omp test lock() simply checks if the lock is available, ac-
quiring it if it is, and returning a notice if it is not. The
fact that omp test lock() is guaranteed to return within a
bounded amount of time guarantees that an individual call
to omp test lock() will not cause deadlock. However, it is
possible to use multiple such calls to implement a blocking
lock acquire, which may cause a deadlock in the manner de-
scribed above. A loop that keeps calling omp test lock()

until it finally acquires the lock is an example of this.
While it is not possible to detect all such code patterns

at compile-time, this detection is hardly necessary. If after
calling omp test lock() a thread discovers that the lock in
question has had its lockCheckpointFlag set to TRUE, it
can force a checkpoint immediately in the manner described
above. If the call to omp test lock() did not acquire the
lock, it skips the step where the lock would be released.
Thus, if omp test lock() really is being called repeatedly,
this forcing of checkpoints before omp test locks will avoid
deadlocks just like it did for omp set lock().

While this algorithm is correct, it can be too conser-
vative when it comes to applications that do not use
omp test lock() to implement a blocking lock acquire. In
such applications checkpoints would be forced when they
are not necessary, potentially paying a price by taking a
checkpoint at a suboptimal location (which may have more
state than really needs to be saved). Therefore, our compro-
mise solution is to set a constant c such that if a thread calls
omp test lock() unsuccessfully on the same lock more than
c times in a row, then it will check its lockCheckpointFlag
and force a checkpoint if lockCheckpointFlag turns out to
be TRUE. Otherwise, the application is allowed reach its
next checkpoint location on its own.

5.2.1 Managing OpenMP Lock Objects
Another problem that must be addressed is that in

OpenMP, locks at the application level are simply pointers
to objects of type omp lock t. On recovery, the system needs
to recreate all the locks that existed at checkpoint time.
However if it merely tried calling omp init lock to recreate
the locks, there would be no guarantee that the OpenMP
implementation would place these locks at the same loca-
tions in memory.

To solve this problem, we need to add a layer of indirec-
tion between the application and OpenMP’s lock handling
routines. This layer wraps each lock object in a new struct
that contains a unique ID, a pointer to the corresponding
OpenMP lock object and a recovery number that indicates
how fresh the lock pointer is. Every time the application
restarts, a global recovery number gets incremented. When
a lock function is used, the lock’s recovery number is com-
pared to the global recovery number and if they are different,
the lock’s unique ID is looked up in a table to get the cur-
rent pointer to the lock. The lock’s wrapper struct is then
updated with the new recovery number and OpenMP lock
pointer. This up-to-date lock pointer in then used in future
interactions with OpenMP’s lock management routines. In
this way, the system can allow OpenMP to create brand new
locks on recovery while providing the application with the
illusion of persistent locks.

// waiting thread:

#pragma omp flush

while(flag==FALSE)

{

#pragma omp flush

}

// releasing thread:

flag = TRUE;

#pragma omp flush

Figure 11: Example of a spinlock.

5.3 Spinlocks
The last method for creating a dependency between two

threads is by using spinlocks implemented via shared reads
and writes. In OpenMP, such a spinlock might be imple-
mented as shown in Figure 11. In this example, the waiting
thread keeps looping until the releasing thread sets a flag
to TRUE. #pragma omp flush is simply OpenMP’s version
of the local memory fence common to many shared-memory
APIs and is used here to ensure that the write on the re-
leasing thread is visible at the waiting thread.

As in the lock example of Section 5.2, the introduction
of a checkpoint can lead to deadlock. However, the prob-
lem of detecting when a piece of code implements such a
spinlock is extremely difficult. Furthermore, any runtime
detection scheme would need to monitor individual reads
and writes, resulting in significant overheads. Therefore,
our checkpointing protocol does not support applications
that use spinlocks implemented via shared reads and writes.
This is a restriction that would be shared by any application-
level blocking protocol that does not track individual reads
and writes.

5.4 Alternatives
We have discussed the use of forcing checkpoints before

synchronization operations such as barriers and lock ac-
quires to avoid deadlocks. A number of alternate approaches
are possible. Though we did not choose to implement them,
we will discuss them here to provide some perspective on
the solution space.

5.4.1 Aborting checkpoints
Suppose we have a situation as in Section 5.1. As we

discussed, our protocol does not permit the recovery line to
cross the application barrier, so the solution was to force
checkpoints in order to push the checkpoint line before the
barrier. In the checkpoint abort algorithm, the checkpoint
line gets pushed after the application barrier. Instead of
forcing a checkpoint on thread 0, this algorithm aborts the
checkpoint on threads 1 and 2. This can be implemented by
an algorithm only a little more complex than that used for
checkpoint forcing.

The advantages of the checkpoint abort algorithm are that
(i) it never forces checkpoints at inconvenient points for a
thread, such as when the application state is large, and (ii)
it requires placing fewer additional potentialCheckpoint()
calls in the code. However, it may require the application to
unnecessarily wait on checkpoints that will be aborted and



it cannot guarantee that a checkpoint will ever be taken
since it is possible for the potential checkpoint locations to
be arranged in such a way that any choice of checkpoint
locations will cross an application barrier.

5.4.2 Serialization
Another alternative is a protocol that allows recovery lines

to straddle barriers and lock dependences. The resulting
inconsistency is resolved by serializing the execution of all
threads so as to make their updates to the shared address
space deterministic.

An outline of the serialization solution for barriers is as fol-
lows. When all threads block on either a checkpoint barrier
or an application barrier, the threads that want to check-
point are allowed to record their private state and thread
0 records the shared state. The threads that were sitting
at their checkpoints are now allowed to advance one at a
time up to their next application barrier (we call them the
pre-barrier threads). At this point, all threads have reached
the application barrier but some still have not reached their
next checkpoint location, where they could record their pri-
vate state. Thus, all remaining threads are executed one at
a time until each one reaches its next checkpoint location
(we call these the post-barrier threads). When all these re-
maining threads have recorded their private state, thread
0 records all the pieces of the shared state that changed
since the time when it was recorded at the beginning of the
checkpoint.

On recovery, the system restores the original shared state
and then has each pre-barrier thread execute one at a time
up to the barrier. At this point, all the pre-barrier threads
will have reached the barrier and the protocol now needs
to bring the shared state to its configuration at the time
when the post-barrier threads took their checkpoints. This
is done by applying the changes to the shared state made by
the post-barrier threads when they did their serial execution.
At the end, the application recovers to a state where all the
pre-barrier threads are at the barrier and all the post-barrier
threads are at their post-barrier checkpoints, a consistent
and valid configuration.

While this protocol has the advantage of no inconveniently
forced checkpoints or wasted time due to aborted check-
points, it does have the problem of slowing the system down
by a factor of n (where n is the number of threads) for the
duration of the execution of the protocol.

6. EXPERIMENTAL EVALUATION
Application-level checkpointing increases the running

times of applications in two different ways. Even if no check-
points are taken, the instrumented code executes more in-
structions than the original application to perform book-
keeping operations such as maintaining the pc stack and
the svd stack. Furthermore, if checkpoints are taken, writ-
ing the checkpoints to disk adds to the execution time of
the program. In this section, we present experimental re-
sults that measure these two overheads for the C3 system.

For our benchmark programs, we decided to use the
OpenMP codes from the SPLASH-2 suite [29]. We omit-
ted the cholesky benchmark because it ran for only a few
seconds, which was too short for accurate overhead measure-
ment. We also omitted volrend because of licensing issues
with the tiff library, and fmm because we could not get even
the unmodified benchmark to run on our platforms.

Checkpoint
benchmark location
fft in FFT1D(), before FFT on each column
radix in slave sort(), after each barrier
lu-c at end of lu() outermost loop
barnes in SlaveStart() after each time step
ocean-c in slave() after every step
radiosity in process tasks() before every task
raytrace in RayTrace() before every job bundle
water-nsquared in MDMAIN() at the end of each time step
water-spatial in MDMAIN() at the end of each time step

Table 1: Characteristics of SPLASH-2 Benchmarks

Table 1 describes the locations in the other SPLASH-2
codes where we placed potentialCheckpoint() calls. In
our studies, the longest-running code from this set finished
execution in about 5 minutes, so hardware failures are not
an impediment to running these codes in practice. Nev-
ertheless, the SPLASH-2 suite is believed to illustrate the
behavior of scientific codes, so the measured overheads for
these code give some insights into the overheads that would
be seen by users of the C3 system.

One of the major strengths of application-level check-
pointing is that the instrumented code is as portable as the
original code. To demonstrate this, we ran the instrumented
SPLASH-2 benchmarks on three different platforms: a 2-
way Athlon machine running Linux, a 4-way Compaq Al-
phaserver running Tru64 UNIX, and an 8-way Unisys SMP
system running Windows. In this section, we present over-
head results on the first two platforms; we were not able to
complete the experiments on the third platform in time for
inclusion in this paper. We also performed some compar-
ative studies with the Berkeley Checkpoint/Restart system
(BLCR) [10], which is a system-level checkpointing system.
However, this system runs only on Linux, so the comparisons
are restricted to that platform.

6.1 Linux/x86 Experiments
The Linux experiments were conducted on a 2-way

1.733GHz Athlon SMP with 1GB of RAM. The operating
system was SUSE 8.0 with a 2.4.20 kernel. The applications
were compiled with the Intel C++ Compiler Version 7.1.
All experiments were run using both processors (i.e. P=2).
Checkpoints were recorded to the local disk. The key pa-
rameters of the benchmarks used in the Linux experiments
are shown in Table 2.

6.1.1 Execution Time Overhead
In this experiment, we measured the running times of (i)

the original codes, and (ii) the instrumented codes without
checkpointing. Times were measured using the Unix time

command. Each experiment was repeated five times, and
the average is reported in Table 2. From the spread of these
running times, we estimate that the noise in these measure-
ments is roughly 2-3%. The table shows that for most codes,
the overhead introduced by C3 was within this noise margin.
For two applications, water-squared and water-spatial,
the instrumented codes ran faster than the original, un-
modified applications. Further experimentation showed that
this unexpected improvement arose largely from the supe-
rior performance of our heap implementation compared to



Problem Uninstrumented C3-instrumented run time C3-instrumentation
Benchmark size run time 0 checkpoints taken overhead

fft 224 data points 20s 20s 0%
lu-c 5000×5000 matrix 110s 110s 0%
radix 100,000,000 keys, radix=512 30s 31s 3%
barnes 16384 bodies, 15 steps 103s 106s 3%
ocean-c 514×514 ocean, 600 steps 162s 162s 0%
radiosity Large Room 8s 8s 0%
raytrace Car Model, 64MB RAM 32s 34s 6%
water-nsquared 4096 molecules, 60 steps 260s 223s -14%
water-spatial 4096 molecules, 60 steps 156s 141s -9%

Table 2: SPLASH-2 Linux Experiments

the native heap implementation on this system. We con-
cluded that the overhead of C3 instrumentation code for
the SPLASH-2 benchmarks on the Linux platform is small,
and that it is dominated by other effects such as the quality
of the heap implementation.

6.1.2 Checkpoint Sizes
The next set of experiments measured the sizes of check-

points, the overheads of saving checkpoints to disk, and the
time to recover from failure. We also compared our results
with the BLCR system-level checkpointing system.

To understand the experimental set-up, it is necessary to
note a peculiarity of the SPLASH-2 benchmarks. One fea-
ture of these benchmarks is that most memory is allocated
near the beginning of execution, and then written to over
the rest of the execution. For example, barnes and radix

allocate 130MB and 765MB of memory respectively at the
start of execution, but do not write to all of this memory
until they near the end of their execution. On Linux, these
initial calls to malloc do not allocate any physical pages but
merely reserve address space; a physical page is allocated for
a logical page only when that logical page is written to for
the first time. Since BLCR is designed to work only with
Linux, it optimizes state-saving by saving only those pages
that were actually allocated to the application by the ker-
nel. In particular, for some of the SPLASH benchmarks,
this means that the size of the checkpoint taken by BLCR
will increase if the checkpoint is taken later in the execution
of that program. The C3 system on the other hand check-
points all the data malloc()-ed by an application regardless
of whether it has actually been touched by the application.

Therefore, for the C3 runs, we set the timer so that each
application checkpointed mid-way through its execution.
When using BLCR, we manually initiated checkpoints at
various times during each benchmark’s execution because it
is difficult to take system-level checkpoints at precise points
in the execution of a parallel application.

The resulting checkpoint sizes are shown in Table 3.
Where a range of checkpoint sizes is reported for BLCR, it
means that the checkpoint sizes increased throughout the ex-
ecution of the program from the lower number to the higher
number.

For most of the codes, the difference between the check-
point sizes of the two systems is minimal. The codes for
which this is not true, such as radix and barnes, are codes
which write over an extended period of time to memory that
is allocated upfront, as described above. We find these re-
sults encouraging because we have not devoted any energy so

far in our project to reducing the size of the saved state. Our
ongoing work towards this goal is exploring two approaches.

• Currently the C3 system takes full checkpoints. We
are incorporating incremental checkpointing into our
system, which will permit the system to save only those
data that have been modified since the last checkpoint.
This mechanism has many advantages; among other
things, it will address the inefficiency vis-a-vis BLCR,
highlighted by the results in Table 3.

• We are also investigating the use of compiler tech-
niques to exclude some data from being saved at a
checkpoint because it can be recomputed during re-
covery. This is in the spirit of Beck et al, who have
explored the use of programmer directives towards this
end [17].

6.1.3 Checkpoint and Recovery Overhead
Finally, we measured the execution time overhead of tak-

ing a single checkpoint and performing a single recovery.
These numbers can be used in formulas containing particular
checkpointing frequencies and hardware failure probabilities
to derive the overheads for a long-running application.

To measure the overhead of taking a single checkpoint, we
ran the C3-transformed version of each benchmark without
taking a checkpoint and compared its execution time to the
time it took to run the same benchmark and taking a single
checkpoint. The difference is the number of seconds it takes
to take a checkpoint, which includes not only the time to
write the data to disk but also miscellaneous effects such
the impact that taking a checkpoint has on future cache
behavior.

To measure the overhead of a single recovery, we first mea-
sure the time of execution from the start of the program util
after the single checkpoint completes (the program is ’killed’
after this checkpoint). Then we add to this the time mea-
sured from the beginning of a restart from this checkpoint to
the end of the program. Finally, from this sum, we subtract
the execution time for the complete program that takes a
single checkpoint.

The results are shown in Table 3. The time to take check-
points is fairly low for most applications, and is significant
only for applications for which checkpoint sizes are very large
(fft and radix). As mentioned before, these checkpoints
were saved to local disk on the machine. If they were saved
to a networked file system, we would expect the overheads
to be larger.



Checkpoint Seconds per Seconds per BLCR Checkpoint
Benchmark Size (MB) Checkpoint Recovery Size (MB)
fft 765 43 22 770
lu-c 191 2 5 192
radix 768 43 24 284-764
barnes 569 4 10 55-130
ocean-c 56 1 4 52
radiosity 32 0 1 29
raytrace 68 0 2 33
water-nsquared 4 1 0 5
water-spatial 3 0 0 3

Table 3: Overhead of Checkpoint and Recovery on Linux.

Problem Uninstrumented C3-instrumented run time C3-instrumentation
Benchmark size run time 0 checkpoints taken overhead

fft 226 data points 68s 67s -2%
lu-c 12000×12000 matrix 719s 724s 1%
radix 300,000,000 keys, radix=512 61s 70s 15%
ocean-c 1026×ocean, 600 steps 153s 183s 20%
radiosity Large Room 13s 12s -9%
raytrace Car Model, 1GB RAM 20s 20.4s 2%
water-nsquared 12167 molecules, 10 steps 136s 140s 3%
water-spatial 17576 molecules, 40 steps 214s 218s 2%

Table 4: Characteristics and Results of SPLASH-2 Alpha Experiments

6.2 Alpha/Tru64 Experiments
The Alpha experiments were conducted at the Pittsburgh

Supercomputing Center on the Lemieux cluster. This clus-
ter is composed of 750 Compaq Alphaserver ES45 nodes.
Each node is an SMP with 4 1Ghz EV68 processors and
4GB of memory. The operating system is Compaq Tru64
UNIX V5.1A. All codes were run on all 4 processors of a
single node (i.e. P=4). Checkpoints were recorded to sys-
tem scratch space, which is a networked file system available
from all nodes. The key parameters of the SPLASH-2 bench-
marks used in the Alpha experiments are shown in Table 4.

6.2.1 Execution Time Overhead
We measured the overheads of instrumentation on

Lemieux using the same methodology we used for Linux.
Table 4 shows the results.

These results show that except for radix and ocean-c, the
overheads due to C3’s transformations are either negligible
or negative. The overheads in radix and ocean-c arise from
two different problems that we are currently addressing.

The overhead in radix comes from some of the details
of how C3 performs its transformations. The state-saving
mechanism described in Section 4 computes addresses of all
local and global variables, which may prevent the compiler
from allocating these variables to a register. For radix, it
appears that this inability to register-allocate certain vari-
ables leads to a noticeable loss of performance. We are cur-
rently re-designing the mechanisms described in Section 4
to circumvent this problem.

Our experiments also showed that the overhead in
ocean-c execution comes from our heap implementation (re-
placing our heap implementation with the native heap elim-
inated this overhead). While this implementation has been
optimized for Linux, it is not as optimized for Alpha. This
tuning is underway.

6.2.2 Checkpoint Sizes
Table 5 shows the checkpoint sizes for checkpoints created

by the C3 system. Note that the problem sizes used on
Lemieux are different from the problems sizes we used on the
Linux machine, so the sizes of checkpoint files are different
on the two systems. We do not know of any system-level
checkpointing system for Alpha/Tru64 that support multi-
threaded programs, so we were not able to compare these
checkpoint sizes with those of an SLC solution.

6.2.3 Checkpoint and Recovery Overhead
Table 5 shows the checkpoint time and the recovery time

for the different applications. It can be seen that there is
a correlation between the sizes of the checkpoints and the
amount of time it takes to perform the checkpoint. In these
experiments, the checkpoint files were written to the system
scratch space rather than to a local disk, so for codes that
take larger checkpoints, the overheads observed on Lemieux
are higher than the overheads on the Linux system shown
in Table 3.

Checkpoint Seconds per Seconds per
Benchmark Size (MB) Checkpoint Recovery
fft 3074 363 32
lu-c 1103 136 7
radix 2294 285 36
ocean-c 224 68 *
radiosity 43 8 1
raytrace 1033 137 7
water-nsquared 16 3.75 388
water-spatial 12 3.5 17

Table 5: Overhead of each checkpoint and recovery on

Alpha.



C3 Checkpoint Condor Checkpoint
Benchmark Size (MB) Size (MB)
sp 80 79
cg 428 427
bt 307 306
mg 435 435
ft 856 855
lu 45 44
ep 2 1
179.art 4 3
181.mcf 96 95
183.equake 42 46

Table 6: Comparison of C3 and Condor Checkpoint

Sizes.

The only code with a high recovery overhead is
water-nsquared, and it highlighted an inefficiency in our
current implementation. Note that water-nsquared takes
3.5 seconds to record a 16MB checkpoint but takes 388 sec-
onds to recover. The reason for this is that water-nsquared
malloc()-s a large number of individual objects: 194K.
This in comparison to the 18K objects that water-spatial
allocates or the 65K allocated by water-nsquared given the
input parameters used on Linux. C3’s checkpointing code
is optimized to use buffering when writing these objects to
a checkpoint, but its recovery code does not have such opti-
mizations, so it performs one file read for every one of these
objects. The cost of that many file reads, even to buffered
files is very high and results in a long recovery time. By
comparison if water-nsquared were run on Alpha using the
Linux parameters, it would have a 70s recovery overhead.
Our next implementation of the C3 system will optimize
reading the checkpoint files to eliminate this inefficiency.
Ocean-c’s recovery overhead was measured to be negative.

However this negative overhead was within the variability
of the timing results in this experiment, so it appears to be
an artifact of the fluctuations inherent to a networked file
system.

6.3 Discussion
We ran a additional set of experiments comparing the

checkpoint sizes produced by C3 against those produced by
the Condor [14] uniprocessor SLC system for Linux. The
checkpoint sizes produced by both systems, on codes se-
lected from the NAS OMP 2.3 (run in uniprocessor mode)
and the SPEC 2000 CPU benchmarks suites are show in
Table 6. It can be seen that the checkpoint sizes are very
similar for both systems.

When we began this work, we invested considerable time
in refining the protocol described in Section 3.1 because we
thought that the execution of the protocol would increase
the running time of the application significantly. Indeed,
much of the literature on fault-tolerance focuses on proto-
col optimizations such as reducing the number of messages
required to implement a given protocol.

Our experiments showed that the overheads are largely
due to other factors, summarized below.

• The performance of some codes is very sensitive to the
memory allocator. Overall, we obtained good results
on the Linux system because we have tuned our allo-
cator for this system; on Lemieux, where the tuning

work is still ongoing, some codes such as ocean-c had
higher overheads.

• The instrumentation of code to enable state-saving as
described in Section 4 prevents register allocation of
some variables in codes like radix on Lemieux. This is
relatively easy to fix by introducing new temporaries,
and it is being implemented in our preprocessor.

• For codes that produce large checkpoint files, the time
to write out these files dominates the checkpoint time.
We are exploring incremental checkpointing, as well as
compiler analysis, to reduce the amount of saved state.

• Finally, recovery time for codes that create a lot of
small objects, such as water-nsquared on Lemieux,
needs to be reduced by better management of file I/O.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented an implementation of a block-

ing, co-ordinated checkpointing protocol for application-
level checkpointing (ALC) of shared-memory programs us-
ing locks and barriers. The implementation has two com-
ponents: (i) a pre-compiler that automatically instru-
ments C/OpenMP programs so that they become self-
checkpointing and self-restarting, and (ii) a runtime layer
that implements the co-ordination protocol. Experiments
with SPLASH-2 benchmarks show that the overheads intro-
duced by our implementation are small. The implementa-
tion can be used to checkpoint shared-memory programs; it
can also be used in concert with a system for checkpoint-
ing message-passing programs, such as [5, 26], to provide a
solution for checkpointing hybrid message-passing/shared-
memory programs.

Our ALC approach has the advantage that programs in-
strumented by our pre-compiler become self-checkpointing
and self-restarting, so they become fault-tolerant in a
platform-independent manner. This is a major advantage
over system-level checkpointing approaches, which are very
sensitive to the architecture and operating-system. We have
demonstrated this platform-independence by running on a
variety of platforms. We have shown that the sizes of check-
points taken by our system are mostly comparable to those
of system-level checkpoints; in principle, the size of our
checkpoints may be reduced by using compiler analysis tech-
niques [17].

In the future, we intend to extend (C3) to deal with a
broader set of shared-memory constructs. In particular, we
intend to support the full OpenMP standard. Furthermore,
we intend to couple (C3) with the MPI checkpointer de-
scribed in [4] to produce a fault tolerance solution for pro-
grams using both message-passing and shared-memory con-
structs.
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